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1 A crash course on fermions

A systematic analysis of the representations of the Lorentz group is beyond the scope of these

lectures. Here we shall simply recall some basic facts about the spinor representations and the

two-component notation.

The Lorentz group is the set of matrices Λ such that

Λm
αηmnΛn

β = ηαβ, (1.1)

where

ηαβ = diag(−1, 1, 1, 1). (1.2)

Its Lie algebra contains six hermitian generators: there are three Ji, corresponding to rotations,

and three Ki, describing Lorentz boosts. These generators close the following Lie algebra

[Ji, Jj ] = iεijkJk [Ji,Kj ] = iεijkKk [Ki,Kk] = −iεijkJk (1.3)

This algebra possesses a quite simple mathematical structure that becomes manifest introducing

the following linear combinations

J±i =
1
2
(Ji ± iKi). (1.4)

In terms of the generators (1.4), the Lorentz algebra roughly separates into the direct sum of

two conjugate su(2) subalgebras

[J (±)
i , J

(±)
j ] = iεijkJ

(±)
k [J (±)

i , J
(∓)
j ] = 0, (1.5)

where J
(±)
i are not hermitian, being J

(+)†
i = J

(−)
i . Technically, the algebra of the Lorentz

group is a particular real form of the complexification of su(2) ⊕ su(2). At the level of finite

dimensional representations, however, these subtleties can be neglected and we can classify the

representations in terms of the two angular momenta associated to the two su(2)

(j1, j2) where j1, j2 = 0, 1/2, 1, . . . , n/2, . . . with n ∈ N. (1.6)

Since Ji = J (+) +J (−), the rotational spin content of the representation is given by the sum rule

of the angular momenta

J = |j1 − j2|, |j1 − j2|+ 1, · · · , |j1 + j2|. (1.7)

In this language, the spinor representation can be introduced by considering the universal cov-

ering of SO(3, 1), namely SL(2,C). To see that SL(2,C) is locally isomorphic to SO(3, 1) is

quite easy. Introduce

σm = (−1, σi), (1.8)
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where σi are the Pauli matrices. Then for every vector xm, the 2× 2 matrix xmσm is hermitian

and its determinant is given by the Lorentz invariant −xmxm. Hence a Lorentz transformation

must preserve the determinant and the hermiticity of this matrix. The action

σmxm 7→ AσmxmA† (1.9)

possesses both these properties if |det(A)| = 1. Therefore, up to an irrelevant phase factor, we

can choose the matrix A to belong to SL(2,C) and write

σmx′m = AσmxmA† = σmΛm
n(A)xn. (1.10)

This means that we can associate a Lorentz transformation to each element of SL(2,C). How-

ever, ±A generate the same Lorentz transformation, and thus the correspondence is not one to

one, we have a double-covering.

Exercise: Show that SL(2,C) is a double covering of SO(3, 1) and that it is simply-connected. Solution:

[1. Double-covering]: If A and B in SL(2,C) generate the same Lorentz transformation, for any xm the following equality

must hold

AxmσmA† = BxmσmB†,

Since A and B are invertible, the above condition can be equivalently written as

B−1Axmσm = xmσmB†A†−1

Choosing xm = (1, 0, 0, 0), we find B−1A = B†A†−1 and thus B−1A commutes with all the hermitian matrices. By the

Schur lemma B−1A = α1. Since A, B ∈ SL(2,C), α2 = 1 which in turn implies α = ±1.

[2. Simply-connected]: Given any element A of SL(2,C), we can always find a matrix S such that A = exp(S) with

Tr(S) = 2πik and k an integer. Then the curve A(t) = etSe−tQ, where Q =

(
1 1

0 2πik

)
, possesses all the necessary

properties: A(0) = 1, A(1) = A and det(A(t)) = etTr(S)e−2πikt = 1.

In this setting we can define spinors as the objects carrying the basic representation of SL(2,C)

(fundamental and anti-fundamental). Since the elements of SL(2,C) are 2×2 matrices, a spinor

is a two-complex object ψ =

(
ψ1

ψ2

)
, which transforms under an element M β

α of SL(2,C) as

ψ′α = M β
α ψβ. (1.11)

Unlike for SU(2) and similarly to SU(3), the conjugate representation M∗ is not equivalent to

M and it provides a second possible spinor representation. An object in this representation is

usually denoted by ψ̄α̇ and it is called dotted spinor. It transforms as

ψ̄′α̇ = M∗ β̇
α̇ ψβ̇. (1.12)
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The dot on the indices simply recall that we are in a different representation. In the language

of (1.6), we are dealing with (1/2, 0) and (0, 1/2) representations. [Technically, these are not

representations of the full Lorentz, but only of its proper orthochronus part. The parity, in fact,

exchanges these representations.] Since M is an unimodular matrix, we can construct a two

invariant antisymmetric tensors

εαβ and εα̇β̇ with ε12 = ε1̇2̇ = −1. (1.13)

Exercise: Show that εαβ and εα̇β̇ are invariant tensors.

Solution: Consider, for example, εαβ . One has

εαβ 7→ ε′αβ = M ρ
α M ρ

β ερσ = det(M)εαβ = εαβ .

Their inverse εαβ and εα̇β̇, defined by

εαρε
ρβ = δβ

α εα̇ρ̇ε
ρ̇β̇ = δβ̇

α̇, (1.14)

are also invariant tensors. Moreover, (1.13) and (1.14) can be used to raise and lower the indices

of the spinors

χα = εαβχβ χ̄α̇ = εα̇β̇χ̄β̇ χα = εαβχβ χ̄α̇ = εα̇β̇χ̄β̇. (1.15)

Exercise: Show that ψ′α = ψβM−1α
β and ψ̄′α̇ = ψ̄β̇M∗−1α̇

β̇

Solution: Consider, for example, ψ′α. One has

ψ′α = εαβψ′β = εαβM σ
β ψσ = ερσM−1α

ρ ψσ = M−1α
ρ ψρ,

where we have used that the invariance of the tensor εαβ , i.e. M ρ
α M σ

β εαβ = ερσ, in fact implies M σ
β εαβ = ερσM−1α

ρ .

Therefore (see exercise above) we can easily define spinor bilinear which are invariant under

Lorentz transformations

ψχ ≡ ψαχα = εαβψβχα = −εαβχαψβ = εβαχαψβ = χβψβ = χψ

ψ̄χ̄ ≡ ψ̄α̇χ̄α̇ = εα̇β̇ψ̄α̇χ̄β̇ = −εα̇β̇χ̄β̇ψ̄α̇ = εβ̇α̇χ̄β̇ψ̄α̇ = χ̄β̇ψ̄β̇ = χ̄ψ̄.
(1.16)

Here we have used that spinors are Grassmannian variables and thus anticommute.

We shall also define an operation of Hermitian conjugation such that and given by

(χα)† = χ̄α̇, (χ̄α̇)† = (χα) and (ψαχβ)† = (χ†βψ†α). (1.17)
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This implies, in turn, (ψχ)† = χ̄α̇ψ̄α̇ = χ̄ψ̄.

Notice that choices (1.11)-(1.12) and the eq. (1.10) fix the nature of the indices of σm. In this

notation eq. (1.10) reads

M β
α M∗ β̇

α̇ σm
αα̇ = Λ(M)m

nσn
αα̇. (1.18)

From the group theoretical point of view, (1.18) states that the matrices σm realize a one-to-one

correspondence between the vector representation (vm) and an object with two spinorial indices

(vαα̇ = vmσm
αα̇). Such object is called bispinor. [ In terms of Lorentz representations, eq. (1.18)

simply says ”(1/2, 0)⊗ (0, 1/2) = (1/2, 1/2)
vect. rep.

”.]

It is useful to introduce a second set of matrices, which are obtained by raising the indices of

σm

σ̄mα̇α = εα̇β̇εαβσm
ββ̇

. (1.19)

Explicitly they are given by

σ̄m = (1,−σ) (1.20)

and satisfy the relation

M∗−1β̇
α̇ M−1β

α σ̄mα̇α = M∗−1β̇
α̇ M−1β

α εα̇ρ̇εαρσm
ρρ̇ = εβαεβ̇α̇M ρ

α M∗ ρ̇
α̇ σm

ρρ̇ = Λm
n(M)σ̄nβ̇β . (1.21)

We have also the following relations

(σ̄mσn + σ̄nσm)α̇
β̇

= −2ηmnδα̇
β̇

(σmσ̄n + σnσ̄m) β
α = −2ηmnδβ

α, (1.22)

which can be easily proved.

Relations with Dirac spinors: The connection between the above representations and the

usual four component notation for Dirac and Majorana fermions is easily seen if we use the

so-called Weyl form of γ−matrices:

γm =

(
0 σm

σ̄m 0

)
with γ5 = iγ0γ1γ2γ3 =

(
1 0

0 −1.

)
(1.23)

With this choice, the standard Lorentz generators separate into the direct sum of the two two-

dimensional representations. In fact

Σmn =
i

4
[γm, γn] = i




1
4(σmσ̄n − σnσ̄m) β

α 0

0 1
4(σ̄mσn − σ̄nσm)α̇

β̇


 ≡ i


(σmn) β

α 0

0 (σ̄mn)α̇
β̇


 .

(1.24)
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The upper representation corresponds to the undotted spinors, while the lower one to the dotted

spinor. Therefore the four component Dirac spinor in two-component notation reads

ΨD =

(
χα

ψ̄α̇

)
, (1.25)

while the Majorana spinor is given by

ΨM =

(
χα

χ̄α̇

)
, (1.26)

where (χα)† = χ̄α̇. Consequently, the Dirac Lagrangian takes the form

LD =Ψ̄D(iγm∂m + M)ΨD = (ψαχ̄α̇)


 Mδβ

α iσm
αβ̇

∂m

iσ̄mα̇β∂m Mδα̇
β̇




(
χβ

ψ̄β̇

)
=

=iψσm∂mψ̄ + iχ̄σ̄m∂mχ + Mψχ + Mψ̄χ̄,

(1.27)

while for Majorana fermions we have

LM =
i

2
χσm∂mχ̄ +

i

2
χ̄σ̄m∂mχ +

M

2
χχ +

M

2
χ̄χ̄ =

=χ̄σ̄m∂mχ +
M

2
χχ +

M

2
χ̄χ̄ + total divergence.

(1.28)

The Weyl action is simply obtained by setting M = 0 in (1.28).
Exercise: Show that the following spinorial identities hold

χαχβ = −1
2
εαβχ2 χαχβ =

1
2
εαβχ2 χ̄α̇χ̄β̇ =

1
2
εα̇β̇χ̄2 χ̄α̇χ̄β̇ = −1

2
εα̇β̇χ̄2 (1.29a)

χσmχ̄χσnχ̄ = −1
2
ηmnχ2χ̄2 χσmnχ = χ̄σ̄mnχ̄ = 0 (1.29b)

χσnψ̄ = −ψ̄σ̄nχ (1.29c)

ψ̄α̇χα =
1
2
χσmψ̄σ̄mα̇α = −1

2
ψ̄σ̄mχσ̄mα̇α χαψ̄α̇ =

1
2
ψ̄σ̄mχσm

αα̇ = −1
2
χσmψ̄σm

αα̇ (1.29d)

(Important technical exercise!!)

Solution: The identities (1.29a) can be proven in the same way. Consider e.g.

χαχβ =
1

2
(δα

ρ δβ
σ − δβ

ρ δα
σ )χρχσ =

1

2
εαβεσρχρχσ = −1

2
εαβχρχρ = −1

2
εαβχ2

Instead, for the identities (1.29b) we can write

χσmχ̄χσnχ̄ = −χαχβ χ̄α̇χ̄β̇σm
αα̇σn

ββ̇
=

1

4
χ2χ̄2εαβεα̇β̇σm

αα̇σn
ββ̇

=
1

4
χ2χ̄2σm

αα̇σ̄nα̇α =
1

4
χ2χ̄2Tr(σmσ̄n) = −1

2
ηmnχ2χ̄2

(1.29c):

χσnψ̄ = χαψ̄α̇σn
αα̇ = εαβεα̇β̇χβψ̄β̇σn

αα̇ = −εβαεβ̇α̇ψ̄β̇σn
αα̇χβ = −ψ̄β̇ σ̄nβ̇βχβ = −ψ̄σ̄nχ

(1.29d): The spinorial bilinear ψ̄α̇χα is 2 × 2 matrix and thus it can be expanded in the basis σ̄mα̇α, namely ψ̄α̇χα =

Amσ̄mα̇α. Multiplying both sides of this identity by σnαα̇ and taking the trace, we find

−χσnψ̄ = AmTr(σnσ̄m) ⇒ An =
1

2
χσnψ̄.

The second identity can be proved in the same way.
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Constructing any Lorentz representation: Consider the generic representation (m
2 , n

2 ).It

can be constructed by means of the two fundamental representations (1/2, 0) and (0, 1/2). Since

the two labels denoting the representation behave as angular momenta, we can write that

(m/2, n/2) =

[
sym

m⊗

i=1

(1/2, 0)

]
⊗

[
sym

n⊗

i=1

(0, 1/2)

]

This means that a field in the representation (m
2 , n

2 ) has m undotted indices α1, . . . , αm and n

dotted indices α̇1, . . . , α̇n

χα1...αm;α̇1...α̇n . (1.30)

Moreover there is a total symmetries in the indices α1 . . . αm and in the indices α̇1 . . . α̇n.

For example the representation (1/2, 1/2) is described by the field χαα̇. This is a 2 × 2 matrix

and it can be expanded in terms of the matrices σm
α̇α:

χαα̇ = Vmσm
α̇α. (1.31)

This shows that the representation (1/2, 1/2) corresponds to the four vectors.

2 From the Coleman-Mandula theorem to the supersymmetry

algebra in D=4

The quest for a Lie-group unifying Poincarè invariance and internal symmetries in a non trivial

way came to an end with the advent of the Coleman-Mandula theorem.

Theorem: Let G be a connected symmetry group of the S−matrix and let us assume that the

following 5 conditions hold

• Assumption 1:(Poincarè Invariance) The group G contains a subgroup isomorphic to the

Poincarè group.

• Assumption 2: (Particle-finiteness) All the particles are representations with positive

energy of the Poincarè group. Moreover for any M there is a finite number of particles

with mass less than M .

• Assumption 3: (Weak elastic analyticity) The scattering amplitudes are analytic func-

tions of the energy of the center of mass, s, and of the transferred momentum, t, in a

neighborhood of the physical region with the exception of the particle-production thresholds.
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• Assumption 4: (Occurrence of scattering) Given two one-particle states |p〉 and |p′〉,
construct the two-particle state |p, p′〉. Then

T |p, p′〉 6= 0

for almost any value of s.

• Assumption 5: (Ugly technical hypothesis) There exists a neighborhood of the identity

in G, such that every element in this neighborhood belongs to a one-parameter subgroup.

Moreover, if x and y are two one-particle states whose wave-functions are test functions

(for our distributions), the derivative

1
i

d

dt
(x, g(t)y) = (x, Ay)

exists at t = 0, and it defines a continuous function of x and y which is linear in y and

anti-linear in x.

Then, G is locally isomorphic to the direct product of the Poincarè group with an internal

symmetry group. The algebra of the internal symmetry group is the direct sum of a semisimple

Lie algebra and of an abelian algebra.

The proof of this theorem is quite technical and it is far beyond the scope of these lectures. Here,

to understand the origin of the theorem, we shall present a simple argument which illustrates

why tensorial conserved charged are forbidden in interacting theories. Consider a spin 2 charge

Qmn, which we shall assume traceless (Qm
m = 0) for simplicity. By Lorentz invariance, its matrix

element on a one-particle state of momentum p and spin zero is

〈p|Qmn|p〉 = A(pmpn − 1
d
ηmnp2). (2.32)

Next, consider the scattering of two of these particles described by the asymptotic state |p1, p2〉.
If the conserved charge is local (the integral of a local density), we can safely assume that for

widely separated particles it holds

〈p1, p2|Qmn|p1, p2〉 = 〈p1|Qmn|p1〉+ 〈p2|Qmn|p2〉. (2.33)

Then the scattering is constrained by the following conservation laws

A(p1mp1n + p2mp2n − 1
d
ηmn(p2

1 + p2
2)) = A(p′1mp′1n + p′2mp′2n −

1
d
ηmn(p′21 + p′22 )) (2.34a)

p1m + p2n = p′1m + p′2n. (2.34b)

The only possible solutions of these equations are forward or backward scattering. There is no

scattering in the other directions. This contradicts assumptions 3 and 4.
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Exercise: Show that the only solutions of (2.34a) and (2.34b) are forward or backward scattering.

Solution: Since we are assuming A 6= 0 and p2
1 = p2

2 = p′21 = p′22 = m2, the above equations are simply

p1mp1n + p2mp2n = p′1mp′1n + p′2mp′2n

p1m + p2m = p′1m + p′2m.

In the center of mass reference frame, we can write ~p1 = −~p2, E1 = E2 = E, ~p′1 = −~p′2 and E′1 = E′2 = E. Thus the first

equation implies

~p1i~p1j = ~p′1i
~p′1j with i, j = 1, . . . , d− 1 ⇒ ~p1i = ±~p′1i.

Summarizing, the Coleman Mandula theorem states that all the conserved (bosonic) charges,

except the Poincarè ones, commute with translations and possess spin zero. Therefore they

cannot constrain the kinematics of the scattering, but only the internal conserved charges. All

the multiplets for this symmetries will contains particle with the same mass and spin.

A natural question is if we can avoid the conclusion of this no-go theorem in some way. To

explore this, let us look very carefully at possible situations where the hypotheses of the Coleman

Mandula theorem break down. Naively, one might think that the ugly technical hypothesis is

the natural candidate to be the loop-hole to elude the theorem. However this is not the case. In

fact there are more interesting possibilities which are covered by the theorem and which are not

due to the failure of the “ugly technical hypothesis”

• The theorem assumes that the symmetries are described by Lie algebra: i.e. the commu-

tator of two symmetries of the S−matrix is again a symmetry. From the point of view of

QFT, we are implicitly assuming that the conserved charges are bosonic objects, namely

they carry an integer spin. Then the above theorem states that the only possible spin for

the charge of an internal symmetry is zero.

The structure of a QFT is richer. Next to bosonic objects, we have also fermionic quanti-

ties which obey anti-commutation relations; this fact naturally endows the algebra of fields

with a graded structure:

[bosonic, bosonic] = bosonic [bosonic, fermionic] = fermionic

{fermionic,fermionic} = fermionic.

In mathematics these structure are known as graded Lie algebras or more commonly as

superalgebras. Is it possible to construct an interacting quantum field theory where the

symmetries of the S−matrix close a graded-Lie algebra? A positive answer will imply

the existence of conserved fermionic charges, evading in this way the Coleman Mandula

theorem. In the following, we shall show that this is actually possible and this will lead

us to construct the supersymmetry algebra and the supersymmetric theories.
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• There is a second possible loop-hole in the Coleman Mandula theorem: it assumes to deal

with point particles. Actually we can consider more general relativistic theories containing

objects extended in p spatial dimensions (p−branes). These extended objects can carry

conserved charges which are p−forms, Q[m1m2···mp]. We shall not have the time to discuss

this second possibility in the present lectures.

2.1 Graded Algebras

Before proceeding, we need to recall some basic facts on graded algebras. To begin with, we

shall define a Z2 graded vector space V . It is a vector space which decomposes into the direct

sum of two vector subspaces

V = S0 ⊕ S1 (2.35)

All the elements in S0 have grading zero and they are called bosons or even elements, while

all the elements in S1 have grading 1 and are called fermions or odd elements. Between two

elements of S is defined a bilinear graded Lie-bracket operation or a bilinear graded commutator

[·, ·}, which satisfies the following properties

• For all x and y in S the grading of the bracket [x, y} is ηx + ηy| mod 2, where ηx and ηy

are the grading of x and y respectively

• [x, y} = −(−1)nxny [y, x}

• (−1)nznx [x, [y, z}}+ (−1)nxny [y, [z, x}}+ (−1)nzny [z, [x, y}} = 0 (SuperJacobi).

The graded structure entails that

[S0, S0] ⊆ S0 {S1, S1} ⊆ S0 [S0, S1] ⊆ S1. (2.36)

In other words S0 is a standard Lie algebras. Moreover, since S1 is invariant under the (adjoint)

action of S0, the fermionic sector carries a representation of S0.

2.2 Supersymmetry algebra in D=4: LSH theorem

In this section we shall address the question of constructing the most general superalgebra

containing the Poincarè algebra as a subalgebra of the bosonic sector S0. We will begin by

focussing on the fermionic sector S1. It carries a representation R, in general reducible, of the

Lorentz group. Let us decompose R as the direct sum of irreducible representations

R =
k⊕

i=1

ri

(mi

2
,
ni

2

)
(2.37)
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where ri denotes the multiplicity of the representation (mi/2, ni/2). We shall assume that the

representation R is closed under hermitian conjugation: this implies that the representations(
mi
2 , ni

2

)
and

(
ni
2 , mi

2

)
appear in (2.37) with the same multiplicity1. The generators transforming

in the representation
(

mi
2 , ni

2

)
(mi > ni) will be denoted with the symbol

QI
α1...αmi ;α̇1...α̇ni

I = 1, . . . , ri, (2.38)

where the indices αi and α̇i run over the values 1 and 2 and QI
α1...αmi ; α̇1...α̇ni

is totally sym-

metric both in the indices α1 . . . αmi and α̇1 . . . α̇ni . The hermitian conjugate generator of

QI
α1...αmi ;α̇1...α̇ni

is indicated with

Q
I
α̇1...α̇mi ;α1...αni

I = 1, . . . , ri. (2.39)

It obviously transforms in the representation
(

ni
2 , mi

2

)
(mi > ni). We shall now consider the

anticommutator

{QI
α1···αmi ,α̇1···α̇ni

, Q̄I
α̇1···α̇mi ,α1···αni

}. (2.40)

The result of this graded Lie bracket must generically transform in the following direct sum of

Lorentz representations

(mi

2
,
ni

2

)
⊗

(ni

2
,
mi

2

)
=

(mi+ni)/2⊕

i,j=|mi−ni|/2

(i, j). (2.41)

However, if we choose all the indices equal to 1, the anticommutator

{QI
1···α1,1̇···1̇, Q̄

I
1̇···1̇,1···1} (2.42)

can only belong to the representation of maximal spin
(

mi + ni

2
,
mi + ni

2

)
. (2.43)

This can be checked by computing the eigenvalue of the z−component of J (+) and J (−): we find
mi+ni

2 in both cases.

Thus the result of the commutator (2.42) can only be a bosonic generator with this spin. How-

ever, due to Coleman-Mandula theorem, the bosonic generators have either spin 0 or belong to

the Poincarè group,

Mmn ∈ (1, 0)⊕ (0, 1), Pm ∈ (1/2, 1/2). (2.44)

1Because of the definition (1.4) J(+)† = J(−). At the level representation this implies that

(m, n)† = (n, m)

12



Consequently, the anticommutator (2.42) can either vanish or be proportional only to the mo-

mentum Pm. If (2.42) vanishes and the representation of the graded algebra is realized on a

Hilbert space of positive norm, we must conclude that QI
1···1,1̇···1̇ = Q̄I

1̇···1̇,1···1 = 0. This, in

turn, implies QI
α1···αr,α̇1···α̇r

= Q̄I
α̇1···α̇r,α1···αs

= 0 since QI
α1···αr,α̇1···α̇r

and Q̄I
α̇1···α̇r,α1···αs

belong

to irreducible representations. Therefore we are left only with the second possibility, i.e. Pm.

Then
mi + ni

2
=

1
2
, (2.45)

which is solved or by mi = 1/2 and ni = 0 or by mi = 0 and ni = 1/2. Since the two

representations are hermitian conjugate one to each other, we can just consider the first choice.

Thus the only admissible fermionic generators are

(QI
α, Q̄I

α̇) with I = 1, . . . , N. (2.46)

The above analysis also fixes the form of the anticommutator {QI
α, Q̄J

α̇}. In fact, the Lorentz

implies

{QI
α, Q̄J

α̇} = V IJσm
αα̇Pm, (2.47)

where V IJ is an hermitian matrix. In fact by taking the hermitian conjugate of both sides in

(2.47), we find

V IJ∗σm
αα̇Pm = {Q̄I

α̇, QJ
α} = V JIσm

αα̇Pm. (2.48)

By means of an unitary redefinition of the generators QI = U I
JQJ , we can bring V IJ into

diagonal form and write

{QI
α, Q̄J

α̇} = λIδ
IJσm

αα̇Pm. (2.49)

Since the anticommutators {QI
1, Q̄

I
1̇
} and {QI

2, Q̄
I
2̇
} are positive definite, the numerical factor λI

are positive and we can rescale the generators2 so that

{QI
α, Q̄J

α̇} = 2δIJσm
αα̇Pm. (2.50)

Next we shall examine the constraints on the commutators between fermionic generators and

translations. Since the generators Pαα̇ ≡ Pmσm
αα̇ belong to the representation (1/2, 1/2) and

the supersymmetry charge QI
α transforms in the (1/2, 0), the result of the commutator will

transform in the representation (1, 1/2) ⊕ (0, 1/2). In the absence of bosonic generators in the

representation (1, 1/2), the only possibility is

[Pαα̇, QI
β] = KI

JεαβQ̄J
α̇. (2.51)

2It is sufficient to perform the following rescaling QI
α 7→

√
λI

2
QI

α Q̄I
α̇ 7→

√
λI

2
Q̄I

α̇
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The presence of the invariant tensor εαβ in (2.51) ensures that the r.h.s. of (2.51) is a singlet

with respect to the first SU(2) of the Lorentz group. Similar arguments lead us to write

[Pαα̇, Q̄I
β̇
] = K̄I

Jεα̇β̇QJ
α, (2.52)

where K̄I
J = −(KI

J)∗ since Q̄ = Q†. The possible choices for the matrix KI
J are completely

fixed by the abelian nature of translations. In fact this implies that KI
J can only vanish (see

exercise below).

Exercise: Show that KI
J = 0.

Solution: Since translations close an abelian algebra, the graded Jacobi identity allows us to write

0 =2δIJ [Pββ̇ , [Pαα̇, Pρρ̇]] = [Pββ̇ , [Pαα̇, {QI
ρ, Q̄J

ρ̇ }]] = [Pββ̇ , {QI
ρ, [Pαα̇, Q̄J

ρ̇ ]}] + [Pββ̇ , {Q̄J
ρ̇ , [Pαα̇, QI

ρ]}] =

=K̄J
M εα̇ρ̇[Pββ̇ , {QI

ρ, QM
α }] + KI

M εαρ[Pββ̇ , {Q̄J
ρ̇ , Q̄M

α̇ }] =

=K̄J
M εα̇ρ̇{QM

α , [Pββ̇ , QI
ρ]}+ K̄J

M εα̇ρ̇{QI
ρ, [Pββ̇ , QM

α ]}+ KI
M εαρ{Q̄M

α̇ , [Pββ̇ , Q̄J
ρ̇ ]}+

+ KI
M εαρ{Q̄J

ρ̇ , [Pββ̇ , Q̄M
α̇ ]} = K̄J

MKI
Sεα̇ρ̇εβρ{QM

α , Q̄S
β̇
}+ K̄J

M εα̇ρ̇KM
Sεβα{QI

ρ, Q̄S
β̇
}+

+ KI
M εαρK̄J

Sεβ̇ρ̇{Q̄M
α̇ , QS

β}+ KI
M εαρK̄M

Sεβ̇α̇{Q̄J
ρ̇ , QS

β} =

=2K̄J
M δMSKI

Sεα̇ρ̇εβρPαβ̇ + 2K̄J
M εα̇ρ̇KM

IεβαPρβ̇ + 2KI
M εαρK̄J

Sεβ̇ρ̇δMSPβα̇ + 2KI
M εαρK̄M

J εβ̇α̇Pβρ̇.

Setting α̇ = β̇ = 1̇, α = β = 1 and ρ = ρ̇ = 2 in the above equation, we find 0 = 4(KK̄T )IJP11̇, which, in turn, implies

(KK̄T )IJ = 0. Since K̄I
J = −(KI

J )∗, the previous condition is also equivalent to (KK̄†)IJ = 0 ⇒ K = 0.

Summarizing, we have shown that

[Pαα̇, Qβ] = [Pαα̇, Q̄β̇] = 0. (2.53)

Consider now the anticommutator of two fermionic charges

{QI
α, QJ

β}. (2.54)

Lorentz invariance requires that the result of (2.54) only belongs to the representation (0, 0) and

(1, 0) , since (1/2, 0)⊗(1/2, 0) = (1, 0)⊕(0, 0). Concretely, the r.h.s. of the anticommutator (2.54)

must be a linear combination of the bosonic generators of spin zero, denoted by Bl (internal

symmetries), and of the self-dual part Mαβ = σmn
αβ Mmn of Lorentz generator Mmn. Therefore,

we shall write

{QI
α, QJ

β} = εαβCIJ
l Bl + Y IJMαβ . (2.55)

As QI
α commutes with Pm, Y IJ must identically vanish. We are left with

{QI
α, QJ

β} = εαβCIJ
l Bl ≡ εαβZIJ . (2.56)

Taking the hermitian conjugate of (2.56), we find

{Q̄I
α̇, Q̄J

β̇
} = εα̇β̇CIJ∗

l Bl ≡ εαβZIJ
+ . (2.57)
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Next, we shall consider the commutator [Bl, Q
I
α]. Its result must transform in the representation

(1/2, 0) of Lorentz group, therefore

[Bl, Q
I
α] = (Sl)I

LQL
α. (2.58)

The Jacobi identities for [Bm, [Bl, Q
I
α]] and {Q̄J

α̇, [Bl, Q
I
α]} imply that −(Sl)I

L must provide a

unitary representation of the internal symmetries. Taking the complex conjugate of the com-

mutator (2.58), we also find [Bl, Q̄
I
α̇] = −(S∗l )I

LQ̄L
α̇.

Exercise: Show that −(Sl)I
L provides a unitary representation of the internal symmetries.

Solution: The Jacobi identities for [Bm, [Bl, Q
I
α]] implies

0 =[Bm, [Bl, Q
I
α]] + [Bl, [Q

I
α, Bm]] + [QI

α, [Bm, Bl]] = (Sl)
I

L(Sm)L
RQR

α − (Sm)I
L(Sl)

L
RQR

α + ic k
lm (Sk)I

RQR
α =

=
(
(Sl)

I
L(Sm)L

R − (Sm)I
L(Sl)

L
R + ic k

lm (Sk)I
R

)
QR

α ,

where we have used that the bosonic generators Bl close a Lie algebra: [Bl, Bm] = ic k
lm Bk. Since the generators QI

α are

linearly independent, the matrices −(Sl)
I

K must provide a representation of the internal symmetries. The Jacobi identity

for {Q̄J
α̇, [Bl, Q

I
α]} implies that the matrices Sl are hermitian and thus the representation is unitary:

0 = {Q̄J
α̇, [Bl, Q

I
α]} − [Bl, {QI

α, Q̄J
α̇}]− {QI

α, [Q̄J
α̇, Bl]} = 2((Sl)

I
J − (S∗l )J

I)Pαα̇.

Now, we have all the ingredients to characterize the bosonic generators ZLM = CLM
l Bl and

ZLM
+ = CLM∗

l Bl appearing in the r.h.s of (2.56) and (2.57). To begin with, the Jacobi identities

for [Bl, {QI
α, QJ

β}] require that ZLM generators form an invariant subalgebra (i.e. an ideal) of

the spin zero bosonic sector

0 =[Bl, {QI
α, QJ

β}] + {QI
α, [QJ

β , Bl]} − {QJ
β , [Bl, Q

I
α]} =

=εαβ

(
[Bl, Z

IJ ]− (Sl)J
KZIK − (Sl)I

KZKJ
)
. (2.59)

Moreover, the generators ZIJ commute with all the fermionic charges: [Q̄K
α̇ , ZIJ ] = [ZIJ , QM

α ] =

0. In fact from Jacobi identity

0 = [QI
α, {QJ

β , Q̄K
α̇ }] + [QJ

β , {Q̄K
α̇ , QI

α}] + [Q̄K
α̇ , {QI

α, QJ
β}] = εαβ [Q̄K

α̇ , ZIJ ] (2.60)

it immediately follows that [Q̄K
α̇ , ZIJ ] = 0. Instead if we set [QK

α , ZIJ ] = HKIJ
R QR

α , the Jacobi

identities

0 = {Q̄M
α̇ , [QK

α , ZIJ ]} − {QK
α , [ZIJ , Q̄M

α̇ ]}+ [ZIJ , {Q̄M
α̇ , QK

α }] = 2HKIJ
M Pαα̇, (2.61)

implies HKIJ
M = 0 and thus [ZIJ , QM

α ] = 0. A simple but very important consequence of this

property is that

[ZIJ , ZLM ] =
1
2
εαβ [ZIJ , {QL

α, QM
β }] = 0. (2.62)
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In other words, the generators ZLM do not only form an invariant subalgebra, but this invariant

subalgebra is also abelian! Moreover, from the Coleman-Mandula theorem, we know that the

bosonic generators of spin zero close a Lie algebra that is the direct sum of a semisimple Lie al-

gebra and of an abelian algebra C. Therefore ZLM ∈ C, since the other component is semisimple

and

[ZLM , Bl] = 0. (2.63)

Thus, ZLM and (in the same way) ZLM
+ ) commute with all the generators of the graded Lie

algebra. For this reason, they are called central charges. They will play a fundamental role in

the second part of these lectures. Note that the central charges cannot be arbitrary; eq. (2.59)

provides a strong constraint on their form, (Sl)J
KZIK + (Sl)I

KZKJ = 0. Namely, they must

be an invariant tensor of the representation given by Sl.

Let us summarize the result of this section: we have argued that the most general graded algebra

in D = 4, whose bosonic sector contains the Poincarè algebra and respects the Coleman-Mandula

theorem, is given by

[Pm, Pn] = 0 [Mab, Pm] = i(ηamPb − ηbmPa) (2.64a)

[Mab,Mmn] = i(ηamMbn + ηbnMam − ηmbMan − ηnaMbm) (2.64b)

[Pm, QL
α] = [Pm, Q̄L

α̇] = 0 [Pm, Bl] = [Pm, ZIJ ] = 0 (2.64c)

{QM
α , Q̄N

α̇ } = 2δMNσm
αα̇Pm {QM

α , QN
β } = εαβZMN {Q̄M

α̇ , Q̄N
β̇
} = εα̇β̇ZMN

+ (2.64d)

[ZLM , QJ
α] = [ZLM , Q̄J

α̇] = 0 [ZLM , ZIJ ] = [ZLM , Bl] = 0 (2.64e)

[Bl, Bm] = ic k
lm Bk [Bl, Q

I
α] = (Sl)I

LQL
α [Bl, Q̄

I
α̇] = −(S∗l )I

LQ̄L
α̇. (2.64f)

where ZLM = CLM
l Bl e ZLM

+ = CLM∗
l Bl.

It is worth mentioning that this is not the most general superalgebra, if we admit the presence

of extended objects as well. The anticommutator of the supercharges can contain

{QM
α , Q̄N

α̇ } = 2δMNσm
αα̇Pm + ZMN

m σm
αα̇ {QM

α , QN
β } = εαβZMN + σmm

αβ ZMN
mn (2.65)

where ZMN
m and ZMN

mn are respectively traceless and symmetric in the indices M an N . The

first central extension can appear in a theory containing strings, the second one in a theory

containing a domain wall.
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3 Representations of the supersymmetry algebra

3.1 General properties

In this subsection, using the general structure of the susy algebra we shall establish some basic

properties of supersymmetric theories:

1. Since the full susy algebra contains the Poincarè algebra as a subalgebra, any representation

of the full susy algebra also gives a representation of the Poincarè algebra, although in

general a reducible one. Since each irreducible representation3 of the Poincarè algebra

corresponds to a particle, an irreducible representation of the susy algebra in general

corresponds to several particles.

2. All the particles belonging to the same irreducible representation possess the same mass.

In fact the Poincarè quadratic Casimir PmPm is also a Casimir of the supersymmetry

algrebra, since [P, Q] = [P, Q̄] = 0.

3. An irreducible representation of the susy algebra contains both bosonic and fermionic

particles. In fact, if |Ω〉 is a state, Q̄|Ω〉 and/or Q|Ω〉 is also a state. The difference in spin

between |Ω〉 and Q̄|Ω〉 (or Q|Ω〉) is 1/2.

4. An irreducible representation of the susy algebra with a finite number of particles contains

the same number of fermions and bosons.

Proof: Let us denote the fermionic number operator with NF . It counts the number

of particles with half-integer spin present in a given state. Starting from NF , we shall

define the operator (−1)NF , which is 1 on bosonic states (state of integer spin) and −1 on

fermionic states (state of half-integer spin). The defining property of this operator implies

that it commutes with all the supersymmetry charges, i.e.

(−1)NF QM
α + QM

α (−1)NF = 0 e (−1)NF Q̄M
α̇ + Q̄M

α̇ (−1)NF = 0. (3.66)

Consider the subspace W generated by the states of fixed momentum pm. Since we are

dealing with representations containing a finite number of particles, this subspace is finite

dimensional and on this subspace we can compute the following trace

TrW (Pm(−1)NF ) = TrW ((−1)NF {QI
α, Q̄J

α̇}) = TrW ((−1)NF (QI
αQ̄J

α̇ + Q̄J
α̇QI

α)) =

= TrW (−QI
α(−1)NF Q̄J

α̇ + QI
α(−1)NF Q̄J

α̇) = 0.
(3.67)

This, in turn, implies

pmTrW ((−1)NF ) = pm(nB − nF ) = 0, (3.68)
3Here, we obviously mean the representation with p2 ≥ 0 and p0 > 0.
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namely the number of fermionic (nF ) and bosonic (nB) particles is the same.

5. The energy of a supersymmetric theories is greater or equal to zero. In fact the susy

algebra allows us to write the hamiltonian of theory as follows

H = P 0 =
1
4
[{QI

1, Q̄
I
1̇
}+ {QI

2, Q̄
I
2̇
}] =

1
4
[{QI

1, (Q
I
1)
†}+ {QI

2, (Q
I
2)
†}], (3.69)

where we used that (QI
1,2)

† = Q̄I
1̇,2̇

. Consequently the Hamiltonian is positive

〈ψ|H|ψ〉 =
1
4

[∣∣∣∣QI
1|ψ〉

∣∣∣∣2 +
∣∣∣∣|Q̄I

1̇
|ψ〉∣∣∣∣2 +

∣∣∣∣QI
2|ψ〉

∣∣∣∣2 +
∣∣∣∣Q̄I

2̇
|ψ〉∣∣∣∣2

]
≥ 0. (3.70)

Let |Ω〉 be the vacuum of a supersymmetric theory. If supersymmetry is not spontaneously

broken, the vacuum is annihilated by all the charges Q and Q̄, and thus the vacuum energy

vanishes:

〈Ω|H|Ω〉 =
1
4

[∣∣∣∣QI
1|Ω〉

∣∣∣∣2 +
∣∣∣∣|Q̄I

1̇
|Ω〉∣∣∣∣2 +

∣∣∣∣QI
2|Ω〉

∣∣∣∣2 +
∣∣∣∣Q̄I

2̇
|Ω〉∣∣∣∣2

]
= 0. (3.71)

Vice versa, if the vacuum energy is different from zero eq. (3.71) implies that there is

at least one supersymmetric charge, which does not annihilate the vacuum. Namely, the

supersymmetry is spontaneously broken.

A remark about this result is in order. In (3.71) there is no sum over the index I; this

entails that supersymmetries are either all broken or all preserved. In this reasoning there

is however a potential loop-hole, which can be used (and it has been used) to evade such a

result. In fact this type of argument assumes implicitly that Poincarè invariance is present

in the system. If one now considers other systems where part of the Poincarè invariance

is preserved and part is broken, a partial breaking of the supersymmetry can also occur.

3.2 Representations without central charges

In this section we wish to construct all the possible unitary representations of the supersymmetry

algebra. To achieve this goal, we shall use the Wigner method of induced representations. This

method consists of two steps: (a) Firstly, we choose a reference momentum pm. We find the

subalgebra G, which leaves pm unaltered, and construct a representation of this subalgebra on

the states with momentum pm. (b) Secondly, we (literally) boost the representation of the

subalgebra H up to a representation of the full susy algebra. In the following we shall enter

into the details of this second part of the procedure, since it is very similar to the one for the

Poincarè group.

Since the M2 = −PmPm is a Casimir, we can consider the case of massless and massive repre-

sentations separately.
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3.2.1 Massless representations

In a representation where all the particles are massless (M2 = −P 2 = 0), a natural choice as

reference momentum is provided by pm = (−E, 0, 0, E). The subalgebra G then contains the

following elements:

Lorentz. The Lorentz transformations preverving the above reference momentum are generated

by J = M12, S1 = M01 −M13 and S2 = M02 −M23. These three operators close the algebra

of the Euclidean group E2 in two dimensions. However, in any unitary representation with

a finite number of particle states, the generators S1 and S2 must be represented trivially, i.e.

S1 = S2 = 0. Therefore the only surviving generator is J , which is identified with the well-known

helicity of the massless particles.

Exercise: Show that the the reference momentum pm = (−E, 0, 0, E) is preserved by three generators

J = M12, S1 = M01 −M13 and S2 = M02 −M23, which close the algebra of E2.

Solution: Consider a generic combination of the Lorentz generators ωmnMmn. It will preserve the reference momentum

if and only if

0 = ωmn[P r, Mmn]|ψ〉 = −2iωrnPn|ψ〉 ⇒ ωrnpn = E(ωr3 − ωr0) = 0.

This condition constrains the form of the coefficients ωmn. On finds ω03 = 0, ω13 = −ω01, ω23 = −ω02, namely the most

general element of the Lorentz algebra which leave the momentum pm intact is ωmnMmn = ω01(M01−M13) + ω02(M02−
M23) + ω12M12. This element is a linear combination of the generators J ≡ M12, S1 ≡ M01 −M13 and S2 ≡ M02 −M23,

which close the following algebra

[J, S1] = i(M02 −M23) = iS2 [J, S2] = −i(M01 −M13) = −iS1 [S1, S2] = −iM12 + iM12 = 0.

This is the algebra of the euclidean group in two dimensions.

Exercise: Show that S1 and S2 are represented trivially (S1,2 = 0) in any unitary finite dimensional

representation.

Solution: We choose a basis for the vector spaces carrying the representation so that J |λ〉 = λ|λ〉. If we define S± =

S1 ± iS2, these operators satisfy the commutation rule [J, S±] = [J, S1 ± iS2] = iS2 ± S1 = ±S±. This implies

JSn
±|λ, p, σ〉 = (λ± n)Sn

±|λ, p, σ〉.

The representation will contain an infinite number of states with different values of J unless there exists an integer n such

that Sn
± = 0. Since S†+ = S− and [S+, S−] = 0, S+ is a normal operator and it can be diagonalized. We must conclude

that S+ = 0 ⇒ S− = S1 = S2 = 0.

Supersymmetry charges: All the supersymmetry charges preserve the reference momen-

tum pm, since they commute with the generator Pm. In this subspace, their anticommutation

19



relations take the simplified form

{QI
α, Q̄J

α̇} = 2δIJ

(
E 0

0 E

)
+ 2δIJ

(
E 0

0 −E

)
= 4EδIJ

(
1 0

0 0

)
(3.72a)

{QI
α, QJ

β} = {Q̄I
α̇, Q̄J

β̇
} = 0. (3.72b)

Internal symmetries: All the generators Bl obviously leave the momentum pm unchanged.

Now, we shall construct a unitary representation of the subalgebra G. Let H be the Hilbert

space carrying the representation. We shall choose a basis of H so that J is diagonal

J |λ, p, σ〉 = λ|λ, p, σ〉, (3.73)

i.e. a basis formed by states of given helicity. In (3.73), p denotes the reference momentum, while

σ stands for the other possible labels of the state. The action of the supersymmetry charges on

this basis can be easily determined by proceeding as follows. Consider first QI
2 and Q̄I

2̇
. Since

{QI
2, Q̄

J
2̇
} vanishes and (Q̄I

2̇
= (QI

2)
†) in any unitary representation, QI

2 must be realized by the

null operator. Then we are left with the reduced algebra

{QI
1, Q̄

J
1̇
} = 4EδIJ {QI

1, Q
J
1} = {Q̄I

1̇
, Q̄J

1̇
} = 0 (3.74)

If we define the operators

aI =
1√
4E

QI
1, (aI)† =

1√
4E

Q̄I
1̇
. (3.75)

the above algebra becomes that of N fermionic creation and annihilation operators

{aI , (aJ)†} = δIJ , {aI , aJ} = {(aI)†, (aJ)†} = 0. (3.76)

The representations of this algebra are constructed in terms of a Fock vacuum, namely a state

such that

aI |λ,Ω〉 = 0 per I = 1, . . . , N. (3.77)

Since [J, (aI)†] = 1
2(aI)†, the Fock vacuum can be also chosen to be an eigenstate4 of the helicity

J :

J |λ,Ω〉 = λ|λ,Ω〉. (3.78)

All the other states of the representation can be generated by acting with creation operators on

the vacuum. A generic state will be of the form

|I1; · · · ; In〉 = (aI1)† · · · (aIn)†|Ω, λ〉, (3.79)
4Because of the commutation relation [J, (aI)†] = 1

2
(aI)†, the fermionic operators aI map eigenstates of J into

eigenstates of J .
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where n runs from 1 to N , the numbers of supersimmetries. The states, by construction, are

completely antisymmetric in the indices (Ir). Therefore their total number is finite and it can

be determined as follows. Let us fix the number of creation operators acting on the vacuum to

be n. Then a simple exercise in combinatorics shows that the number of states containing n

creation operators is
(
N
n

)
. Now the total number d of states is obtained by summing over n the

previous result

d =
N∑

n=0

(
N

n

)
= (1 + 1)N = 2N . (3.80)

The above states are associated to representations of fixed helicity. In fact, as

[J, (aI)†] =
1
2
(aI)†, (3.81)

we find that

J |I1; · · · ; In〉 = J(aI1)† · · · (aIn)†|Ω, λ〉 = [J, (aI1)† · · · (aIn)†]|Ω, λ〉+ λ|I1; · · · ; In〉 =

=
(
λ +

n

2

)
|I1; · · · ; In〉.

(3.82)

Moreover, since adding a creation operator simply raises the helicity by 1/2, the representation

will always contains 2N−1 bosonic states (states of integer helicity) and 2N−1 fermionic states

(states of half-integer helicity), independently of the helicity possessed by the Fock vacuum.

A systematic classification of the states belonging to a given representation can be given by

means of the so-called R−symmetry, the group of transformations which leaves invariant the

anticommutators of the spinorial charges. In mathematical terms this is called an automorphism

of the supersymmetry algebra. In some cases this automorphism can be also promoted to be an

internal symmetry of the supersymmetric theory.

The U(N) transformations aI 7→ U I
JaJ and a†IJ 7→ U∗I

Ja†J provide a natural automorphism

for the fermionic algebra (3.76). At the infinitesimal level, this R−symmetry is generated by

M IJ = [a†I , aJ ]. Since these generators commute with the helicity J ([J,MRS ] = 0), the states

of fixed helicity carry a representation of this R−symmetry. For example, the states of helicity

λ + n/2 realize a representation R, which is the totally antisymmetric tensor product of n

anti-fundamental representations of U(N): R =
∧n

i=1(N̄).

Although the R−symmetry group introduced above is a powerful tool for organizing the states

of the representation, it is not the largest automorphism of the fermionic algebra. In fact, if we

define qI = (aI + (aI)†) and qN+I = i((aI)† − aI) for I = 1, . . . , N , the fermionic algebra can be

rewritten as follows

{qa, qb} = 2δab with a = b = 1, ...., 2N. (3.83)

21



This is the Euclidean Clifford algebra of dimension 2N , whose largest automorphism is the

SO(2N), generated by Rab = i
4 [qa, qb]. Any irreducible supermultiplet will also carry a repre-

sentation of this automorphism. However, this automorphism cannot be an internal symmetry

of an interacting supersymmetric field theory, since its multiplets contain particles of different

helicity, [J,Rab] 6= 0. This possibility is forbidden by the Coleman Mandula theorem, SO(2N)

being a bosonic symmetry.

The largest automorphism which preserves the helicity of the states is given by the U(N) dis-

cussed previously, and in fact this R−symmetry can be realized as an internal symmetry of an

interacting supersymmetric field theory.

Exercise: Show that the largest isomorphism commuting with the helicity is U(N).

Solution: The most general operator M acting linearly on the fermionic algebra must be a bilinear in aI and a†I , namely

M = sIJ [aI , aJ ] + rIJ [aI†, aJ†] + ωIJ [aI†, aJ ].

This operator commutes with the helicity generator J =
1

2

∑

I

aI†aI + λ1 if and of if sIJ = rIJ = 0. We are left with

M = ωIJ [aI†, aJ ]. It is easy to check that these operators generate U(N).

Some relevant examples: N=1 Supersymmetry: The generic supermultiplet of N = 1 is

formed by two states: a vacuum of helicity λ and one excited state of helicity λ + 1/2

|λ,Ω〉 a†|λ,Ω〉. (3.84)

For N = 1, the R−symmetry is simply U(1) and thus we can associate to each state an

R−charge. The form of the U(1) generator is determined up to an additive constant, which can

be identified with the charge of the vacuum. It is given by R =
∑

I

aI†aI + n1. The charges of

the above two states are n and n + 1 respectively.

The multiplet (3.84) is not CPT-invariant; in fact the state CPT|λ,Ω〉 has helicity −λ and R-

charge −n and thus it cannot belong to the above irreducible multiplet. CPT-invariance is a

mandatory symmetry of relativistic local quantum field theories, therefore we cannot construct

a theory containing just the multiplet (3.84). This difficulty can be easily circumvented by

considering a reducible representation. We shall add to (3.84) the multiplet generated by the

vacuum | − λ + 1/2, Ω〉 e with R−charge −n − 1. Then the total (reducible) supermultiplet is

CPT-invariant and is given by

| − λ− 1/2,Ω〉
(−n−1)

a†| − λ− 1/2, Ω〉
(−n)

|λ,Ω〉
(n)

a†|λ,Ω〉
(n+1)

. (3.85)

The possibile CPT−invariant N = 1 multiplet are summarized in the table below
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(λ, λ′)\\(j) −2 −3
2 −1 −1

2 0 1
2 1 3

2 2

(0,−1/2)
mult. chirale

· · · 1 2 1 · · ·

(1/2,−1)
mult. vettoriale

· · 1 1 · 1 1 · ·

(1,−3/2) · 1 1 · · · 1 1 ·
(3/2,−2)

mult. supergravità

1 1 · · · · · 1 1

Next we consider the case of the N = 2 supermultiplets. We choose a Fock vacuum |λ,Ω〉
with helicity λ. Under the R−symmetry group U(2), it possesses an R−charge n with respect

to the U(1) and it transforms in the trivial representation of the SU(2). Then the generic

supermultiplet is

|λ,Ω〉
(1,n)

(aI)†|λ,Ω〉
(2,n+1)

1
2
εIJ(aI)†(aJ)†|λ,Ω〉

(1,n+2)

. (3.86)

In the notation (·, ·), the first entry denotes the representation of the SU(2) of R−symmetry,

while the second one is the U(1) R−symmetry. We have two singlets of SU(2), one of helicity

λ and one of helicity λ + 1, and a doublet of SU(2) of helicity λ + 1/2.

Let us illustrate some very important examples:

(A): For λ = −1 we have a singlet of helicity −1, a doublet of spinors of helicity −1/2 and finally

a singlet of helicity zero. This multiplet is not CPT-conjugate. To have a multiplet which is

closed under CPT, we shall add the multiplet generated by a vacuum of helicity 0. It contains

two singlets with λ = 0 and λ = 1 respectively and a doublet with spin 1/2. Summarizing, we

have the so-called N=2 vector multiplet:

• One massless vector

• Two massless spinors forming a doublet of SU(2)

• Two massless scalars, which are singlets of SU(2)

Sometimes it is convenient to break this multiplet into multiplets of the N = 1 supersymmetry:

1 (N=2 vector multiplet) = 1 (N=1 vector multiplet) ⊕ 1 (N=1 chiral multiplet) .

(B): For λ = −1/2, the supermultiplet contains a state of helicity −1/2, an SU(2) doublet

of helicity 0 and a second singlet of helicity 1/2. Such irreducible representation might appear

CTP-conjugate, but this is not the case. In fact, the two particles of spin 0 have to be represented

in terms of two real fields if they are CTP self-conjugate. However two real fields cannot be an

SU(2) doublet. Again we can overcome this difficulty by adding a second multiplet of the same

type. The total content of the supermultiplet is the
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• Two spinors

• Two complex scalar forming an SU(2) doublet

This supermultiplet is known as Hypermultiplet. In the language of N = 1 supersymmetry

the hypermultiplet corresponds to 2× (N=1 chiral multiplet) .

(C): Finally we shall consider the case of a supersymmetry N = 4. We shall choose a vacuum

of helicity −1, the only vacuum yielding a consistent field theory in the absence of gravity.

Moreover it will transform in the trivial representation of R−symmetry SU(4). Then the states

of the multiplets are

| − 1, Ω〉
(−1,1)

(aI)†| − 1, Ω〉
(−1/2,4̄)

(aI)†(aJ)†| − 1, Ω〉
(0,6)

1
3!

εIJKL(aI)†(aJ)†(aK)†| − 1, Ω〉
(1/2,4)

1
4!

εIJKL(aI)†(aJ)†(aK)†(aL)†| − 1, Ω〉
(1,1)

(3.87)

In the notation (·, ·) the first entry is the helicity of the state, while the second one de-

notes the relevant representation of SU(4). This multiplet is CTP-selfconjugate and is called

N=4 vector multiplet :

• A massless vector which is singlet of SU(4)

• Four massless spinors transforming in the fundamental of SU(4)

• 6 real scalars transforming in the 6 of SU(4): Recall in fact that 4∧4 ∼ 6. The 6 corresponds to

an antisymmetric two-tensor ΦIJ of SU(4). This representation is real since for an antisymmetric

tensor ΦIJ we can define the following SU(4) invariant reality conditions

ΦIJ =
1
2
εIJKL(Φ†)KL ΦIJ = −1

2
εIJKL(Φ†)KL.

For example we could use the first one to define our six scalars.

This multiplet in terms of the N = 1 or N = 2 multiplets decomposes as follows:

1 (N=1 vector multiplet) ⊕ 3 (N=1 chiral multiplet)

1 (N=2 vector multiplet) ⊕ 1 (N=2 hypermultiplet)

The number of supersymmetries present in a consistent field theory cannot be arbitrary. In

fact consistent field theories cannot describe particles with helicity strictly greater than 2. This

requirement translates into the following constraint

λ + N/2 ≤ 2 λ ≥ −2 ⇒ N ≤ 8, (3.88)
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namely the maximal number of supersymmetries is 8. If we neglect the gravitational interaction,

the maximal helicity allowed in a field theory is 1 and thus we have the more restrictive limit

λ + N/2 ≤ 1 λ ≥ −1 ⇒ N ≤ 4. (3.89)

For completeness, before considering the massive multiplets, we give a table of the most common

supergravity multiplets

N −2 −3
2 −1 −1

2 0 1
2 1 3

2 2

1 1 1 · · · · · 1 1

2 1 2 1 · · · 1 2 1

4 1 4 6 4 2 4 6 4 1

8 1 8 28 56 70 56 28 8 1

3.2.2 Massive representations

For massive particles the natural choice for the reference momentum is pm = (−M, 0, 0, 0).

Lorentz. The Lorentz transformations preserving this reference momentum are those gener-

ated by J1 = M23, J2 = M31 , J3 = M12 and they close the SU(2) algebra of spatial rotations

[Ji, Jk] = iεiklJl. (3.90)

Supersimmetry charges. Since the super-charges commute with the momentum, they all

leave the reference momentum unaltered. The fermionic algebra in the rest frame takes the

simplified form

{QI
α, Q̄J

α̇} = 2δIJ

(
M 0

0 M

)
= 2MδIJδαα̇, {QI

α, QJ
β} = {Q̄I

α̇, Q̄J
β̇
} = 0. (3.91)

Internal symmetries Again all the generators Bl do leave the momentum unaffected.

The Hilbert space carrying the representation of the massive supermultiplet can be decomposed

into the direct sum of representations of the group SU(2) of the spatial rotation. Namely, we

shall write

H =
⊕

s

nsHs (3.92)

Each subspace Hs carries a representation of spin s and ns is the number of times that this

representation appears in the above decomposition. For each Hs, we choose a basis such that

|s, sz, {i}〉 con J2|s, sz, {i}〉 = s(s + 1)|s, sz, {i}〉 J3|s, sz, {i}〉 = sz|s, sz, {i}〉, (3.93)
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where the additional label {i} denotes the other possible properties of the state. We are ready

now to investigate the action of the supersymmetry generators on this basis. To begin with, the

supersymmetry charges transform as follows under action of this SU(2)

[QI
α, Ji] =

1
2
(σiQ

I)α [Q̄I
α̇, Ji] = −1

2
(Q̄Iσi)α̇. (3.94)

In other words the charge Q transforms in the fundamental of SU(2) 2, while Q̄ in the anti-

fundamental 2̄. For SU(2) these two representations are equivalent and thus we shall drop the

distinction between dotted and undotted indices. If we redefine the charges as follows

aI
α =

1√
2M

QI
α, e (aI

β)† =
1√
2M

Q̄I
β̇
, (3.95)

they will satisfy the algebra

{aI
α, (aJ

β)†} = δIJδαβ {aI
α, aJ

β} = {(aI
α)†, (aJ

β)†} = 0. (3.96)

Again, the supersymmetric charges will close the algebra of fermion creation and annihilation

operators. Eq. (3.96) has an obvious automorphism: it is invariant under the U(N) transfor-

mations aI 7→ U I
JaI and aI† 7→ U∗I

JaI†. Since this automorphism does not act on the Greek

indices, it will commute with the spin and thus all the states of a given spin will realize a

representation of the group U(N). In other words U(N) must be a part of the R−symmetry

group.

Any representation of this fermionic algebra can be constructed starting from a set of Fock vacua

defined by

aI
α|Ω, i〉 = 0 ∀ I = 1, . . . , N α = 1, 2. (3.97)

This set of vacua |Ω, i〉 must carry a representation of the spatial rotation. In fact

aI
αJk|Ω, i〉 = [aI

α, Jk]|Ω, i〉 =
1
2
(σka

I)α|Ω, i〉 = 0. (3.98)

We choose the subspace of vacua |Ω, i〉 to support an irreducibile representation of spin s and

consequently we shall use the notation

|s, sz, Ω〉 con sz = −s, . . . , s. (3.99)

In general the space of Fock vacua can also carry a representation R of the R−symmetry group.

In this case we shall use the following notation for the vacua

|s, sz, R,Ω〉 (3.100)

Then the representation of the supersymmetry algebra is generated by all the states of the form

|(I1, α1); · · · ; (In, αn)〉 = (aI1
α1

)† · · · (aIn
αn

)†|s, sz, R,Ω〉, (3.101)
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where n run from 1 to N , the number of supercharges. The state, by construction, is completely

antisymmetric in the indices (Ir, αr). In the following, we shall consider the case where the

vacuum has spin 0 and is invariant under R−symmetry.

The classification of massive multiplets is more involved than the massless case. A way to

determine their properties and to classify them systematically is to use the R−symmetry group.

The largest automorphism of the algebra (3.96) is not U(N). Let us redefine the basis of the

algebra as follows

Γ` = (a`
1+(a`

1)
†) Γ`+N = (a`

2+(a`
2)
†) Γ`+2N = i(a`

1−(a`
1)
†) Γ`+3N = i(a`

2−(a`
2)
†). (3.102)

These hermitian operator will close a Clifford algebra of dimension 4N

{ΓM , ΓN} = 2δMN con M, N = 1, . . . , 4N. (3.103)

Therefore the largest automorphism is the SO(4N), generated by ARS = i
4 [ΓR, ΓS ]. This au-

tomorphism is particularly useful for determining the dimension of the multiplet. In fact the

Clifford algebra possess only one irreducible representation of dimension 22N , which corresponds

to the spinor representation of SO(4N). The states of this spinor representation can be decom-

posed into two sets of different chirality. These two sets are the eigenspaces of the projec-

tors 1/2(1 ± Γ4N+1), where Γ4N+1 =
∏4N

L=1 ΓL. If we choose a vacuum with fixed chirality (

Γ4N+1|Ω〉 = (−1)s|Ω〉) the eigenvalue of Γ4N+1 will simply distinguish between states with an

even and an odd number of fermionic creation operators, namely between bosonic and fermionic

states5. Since both the chiral subspaces have dimension 22N−1, all the massive supermultiplet

will have the same number of boson and fermions.

If the vacuum has spin s and it carries a representation R of the R−symmetry group the

dimension of the multiplet is

22N × (2s + 1)× dim(R). (3.104)

The automorphism is not suitable for an actual classification of the states belonging to the

multiplet. Since it does not commute with the spatial rotation generated by

J1 =
1
2

N∑

`=1

(a`
1)
†a`

2 + (a`
2)
†a`

1, J2 = − i

2

N∑

`=1

(a`
1)
†a`

2 − (a`
2)
†a`

1, J3 =
1
2

N∑

`=1

(a`
1)
†a`

1 − (a`
2)
†a`

2,

(3.105)

its multiplets contain particles of different spin and thus it cannot be promoted to be an internal

symmmetry of a quantum field theory. For our goal, it will be more effective to consider the
5Observed that

Γ4N+1|(I1, α1); · · · ; (In, αn)〉 = (−1)s+n|(I1, α1); · · · ; (In, αn)〉.
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largest automorphism which commutes with the spin. This automorphism becomes manifest

when we use the following basis for the fermionic algebra

q`
α = a`

α e q`+N
α = i(σ2(a`)†)α = εαβ(a`

β)† ∀ ` = 1, . . . , N ; (3.106)

This operators close the algebra

{qL
α , qM

β } = CLM εαβ, (3.107)

and satisfy the reality condition (qL)† = CLM iσ2q
M , where the matrix C is given by

(CLM ) =

(
O −1n×n

1n×n O,

)
. (3.108)

A redefinition qL 7→ UL
MqM preserves the form of the algebra (3.107) if UCUT = C and the

reality condition if U∗ = −CUC. These two conditions imply

UU † = U(U∗)T = −UCUT C = −C2 = 1 ⇒ U is a 2N × 2N unitary matrix . (3.109)

The 2N × 2N unitary matrices preserving the quadratic form C form the group USp(2N),

namely the unitary symplectic group. This is the relevant R−symmetry. The fact that this

automorphism commutes with the spatial rotations becomes even more manifest if we write the

generators RLM of this R−symmetry in terms of the fermionic operator qL. We find RLM =
1
2εαβ [qL

α , qM
β ], i.e. they are built out of singlets of SU(2).

Therefore in a massive supermultiplet all the state of the same spin can be arranged in a

representation of the group USp(2N). Now, we shall illustrate this in some examples with

N = 1 and N = 2 supersymmetries.

N = 1 Case: Consider a Fock vacuum of spin zero and invariant under R−simmetry. The

states of this multiplet are

|Ω〉 a†1a
†
2|Ω〉 a†β|Ω〉. (3.110)

The first two states have spin 0 while the third has spin 1/2. In order to see how these states
can be arranged in multiplets of USp(2) ∼ SU(2), let us write explicitly the generator of the
R−symmetry

J+ =
1
2
εαβ [q2

α,q2
β ] = 2(a1)†(a2)† J− =

1
2
εαβ [q1

α, q1
β ] = 2a1a2

J3 =
1
2
εαβ [q1

α, q2
β ] = (a1)†a1 + (a2)†a2 − 1.

(3.111)

It is immediate to see that a†β|Ω〉 is annihilated by all these generators and thus it is a singlet.

Moreover J+|Ω〉 = 2a†1a
†
2|Ω〉 and J−a†1a

†
2|Ω〉 = −2|Ω〉, then the two spin 0 states are a doublet

of USp(2). The subgroup associated with the UR(1) is generated by J3.

We can summarize the above result in the following table
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2 states of spin 0 2 states of spin 1/2

|Ω〉 (a1)†(a2)†|Ω〉 {a†1|Ω〉, a†2|Ω〉}
UR(1) −1 1 0

USp(2) doublet singlet

N = 2 Case: Next we consider the case of the supersymmetry N = 2. We shall consider again

a vacuum of spin zero and invariant under R−symmetry. Starting from this scalar vacuum, we

can build the following states by acting with the supersymmetry charges:

(a) 4 states with one supercharges: spin 1/2 : ψI
α = (aI

α)†|Ω〉
(b) 6 states with two supersymmetry charges: (aI

α)†(aJ
β)†|Ω〉. This states decompose in

spin 0 : T IJ =
1
2
εαβ(aI

α)†(aJ
β)†|Ω〉 T IJ = T JI ,

spin 1 : Vαβ =
1
2
εIJ(aI

α)†(aJ
β)†|Ω〉 Vαβ = Vβα.

(3.112)

(c) 4 states with three supercharges: spin 1/2 : χK
ρ = 1

4εIJεαβ(aK
α )†(aI

β)†(aJ
ρ )†|Ω〉

(d) 1 state with four supercharges: spin 0 : φ = εαβερσεIKεJL(aI
α)†(aJ

β)†(aK
ρ )†(aL

σ )†|Ω〉.
The R−symmetry group USp(4) acting on this states is generated by

HIJ =
1
2
([(a†)I

1, a
J
1 ] + [(a†)I

2, a
J
2 ]) F IJ =

1
2
εαβ [aI

α, aJ
β ] GIJ =

1
2
εαβ [(aI

α)†, (aJ
β)†]. (3.113)

The operators HIJ generates the subalgebra U(4) and in particular the subgroup UR(1) can be

associated to

S =
∑

i=1

2HII = ((a1
1)
†a1

1 + (a1
2)
†a1

2 + (a2
1)
†a2

1 + (a2
2)
†a2

2 − 2). (3.114)

With these choice the R−charges of the different states under the UR(1) are

spin 0 :
−2
η

0

T IJ
2
φ spin 1/2 :

−1

ψI
α

1

χI
α spin 1 :

0
Vαβ .

The property of transformation under the SUR(2) are instead given by

spin 0 :
sing.
η

tripl.

T IJ
sing.

φ spin 1/2 :
doubl.

ψI
α

doubl.

χI
α spin 1 :

sing.

Vαβ .

Exploiting the explicit form of the generators of USp(4) is not difficult to show that the state

with the same spin carry an irreducible representation of R−symmetry group: spin 0 5, spin

1/2 4, spin 1 1.

We can summarize the results in the following table

5 stati di spin 0 8 stati di spin 1/2 3 stati di spin 1

η T IJ φ {χI
α, ψI

α} Vαβ

UR(1) −2 0 2 (1,−1) 0

USp(2) 5 4 1
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The case with N supersymmetry charges is more involved and we shall not discuss it here in

detail. However one can show that the following result holds:

If our Clifford vacuum is a scalar under the spin group and the R-symmetry group, then the

irreducible massive representation of supersymmetry has the following content

22N = [N/2, [0]]⊕ [(N − 1)/2, [1]]⊕ [(N − 2)/2, [2]]⊕ . . . [(N − k)/2, [k]] · · · ⊕ [0, [N ]], (3.115)

where the first entry in the bracket denotes the spin and the last entry, say [k] denotes which

kth−fold antisymmetric traceless irreducible representation of USp(2N) this spin belongs to.

3.3 Representation with central charges

In this section we shall briefly analyze the question of how to construct the representation of

the supersymmetry algebra in the presence of central charges. We fix as reference momentum

pm = (−M, 0, 0, 0) (P 2 = M2). The only modification with respect to the case considered in

the previous section occurs in the fermionic algebra, which now is given by

{QI
α, Q̄J

α̇} = 2δIJ

(
M 0

0 M

)
(3.116)

{QM
α , QN

β } = εαβZMN {Q̄M
α̇ , Q̄N

β̇
} = εα̇β̇(Z∗)MN {ZLM , QJ

α} = {ZLM , Q̄J
α̇} = 0. (3.117)

Here ZMN is a complex matrix, antisymmetric in the indices (M, N).

Given any unitary matrix U , the transformations QI 7→ U I
JQJ , Q̄I 7→ U∗I

JQ̄J , Z ′MN =

UM
RUN

SZRS and Z ′∗MN = U∗M
RU∗N

SZ∗RS leave the form of the fermionic algebra unaltered

and they can be used to simplify the form of the matrix Z. The lemma 4 in appendix D states

that the matrix U can be chosen so that

Z ′ = ε⊗D, (3.118)

for an even number of supersymmetries or

Z ′ =

(
ε⊗D 0

0 0

)
, (3.119)

for an odd number of supersymmetries. Here D = diag(z1, . . . , zk, . . . ) and ε is the 2 × 2

antisymmetric matrix iσ2.

In the following we shall focus on the case of even N ; the case of odd N can be investigate in a

similar manner.
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The form of the matrix Z suggests to arrange the indices (M,N) in a different way. We replace

M and N with two pairs of indices: M 7→ (a,m) and N 7→ (b, n). The lowercase roman indices

(a, b) run from 1 to 2, while the indices (m, n) run from 1 to N/2 and distinguish the different

blocks of the matrix Z ′. In this basis the anticommutators of the charges have the following

form

{Qam
α , (Qbn

α )†} = 2δmnδabδ
α
β M {Qam

α , Qbn
β } = εabδmnZnεαβ

{(Qam
α )†, (Qbn

β )†} = εabδmnεαβZn {Zn, Q} = {Zn, Q†} = 0.
(3.120)

Let us now define the operators

am
α =

1√
2
[Q1m

α + εαβ(Q2m
β )†] bm

α =
1√
2
[Q1m

α − εαβ(Q2m
β )†] (3.121)

These operators close the algebra

{am
α , an†

β } = δmnδαβ(2M + Zn) {bm
α , bn†

β } = δmnδαβ(2M − Zn)

{a, b} = {a†, b} = {a, b†} = {a, a} = {b, b} = {a†, a†} = {b†, b†} = 0
(3.122)

Since the {a, a†} and {b, b†} are positive objects, consistency requires that

Zn ≥ −2M e Zn ≤ 2M ∀ n ⇒ |Zn| ≤ 2M ∀ n (3.123)

When this bound strictly holds for all the Zn, this algebra is isomorphic to the one considered

in the massive case up to a total rescaling. Therefore all the results of the massive case apply.

A new phenomenon appears when the bound is saturated. Let us assume, for example, that

there is a value k such that Zk = 2M . Then the anticommutator {bk, bk†}, which is a positive

definite quantity, vanishes identically and the operators bk and bk† must be represented as the

null operator. In this way, we have effectively lost one of the supercharges. If the bound is

saturated by q central charges, we will loose q supercharges and only N − q supercharge will be

realized non trivially. In particular this means that the multiplets do not have dimension 22N

but they are shorter. In fact their dimensions will be 22(N−q). These short multiplets are known

as BPS−multiplets.

add something on massive hypermultiplets
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4 The Basics of superspace

In the following we shall address the problem of realizing the representations of the supersym-

metry discussed in the previous section in terms of local fields. There are many approaches to

this question, that however can be more conveniently handled using the so-called superspace.

In these lectures we shall describe the construction of the N = 1 superspace in some details, but

we shall not consider the extensions to higher supersymmetries (a part from some remarks on

the N = 2 superspace).

The notion of superspace was firstly introduced by Salam and Stradhee and the mathematical

idea behind its construction is the concept of coset. Let us recall what a coset is. Consider

a group G and a subgroup H of G, then an equivalence relation can be defined between the

elements of G

g1 ∼ g2 if there is h ∈ H such that g1 = g2h. (4.124)

Such relation separates G into equivalence classes. The set of all equivalence classes is called

(left) coset and it is denoted with G/H. [ Analogously one can define the right coset: g1 ∼
g2 if there is h ∈ H such that g1 = hg2.] Since an element of the coset is an equivalence class,

we shall denote it by choosing one of its elements, e.g. g, and we shall write [g]. On the elements

of the coset, it is naturally defined a right action of the group G: for any k ∈ G

k[g] = [kg]. (4.125)

It is trivial to check that this action does not depend on the representative g.

If G and H are topological groups the coset G/H is called an homogeneous space. Summarizing,

given a group G we have constructed a space where an action of this group is naturally defined.

Let us illustrate this abstract procedure with a pedagogical example: the construction of the

Minkowski space starting from the Poincarè group.

Consider the quotient of the Poincarè group with respect to the Lorentz group. Since any

element of the Poincarè group can be decomposed uniquely as the product of a translation and

a Lorentz transformation,

T (ω, x) = exp(ixmPm) exp
(

i

2
ωmnMmn

)
, (4.126)

the coset is the set of equivalence classes [exp(ixmPm)] . Namely each point in the coset is defined

by four real coordinates xm. Now, let us compute the action of the Poincarè transformations on

these coordinates

Translations:

exp(iamPm) exp(ixmPm) = exp(i(xm + am)Pm) xm 7→ x′m = xm + am. (4.127)
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Lorentz Transformations: Λ = exp
(

i
2ωmnMmn

)

exp
(

i

2
ωabMab

)
exp(ixmPm) =

= exp
(

i

2
ωabMab

)
exp(ixmPm) exp

(
− i

2
ωabMab

)
exp

(
i

2
ωabMab

)
∼

= exp
(

ixm exp
(

i

2
ωabMab

)
Pm exp

(
− i

2
ωabMab

))
=

= exp (ixmΛn
mPn) xm 7→ x′m = Λm

nxn,

(4.128)

where we used that exp
(

i
2ωabMab

)
Pm exp

(− i
2ωabMab

)
= Λm

nPm. Therefore this procedure has

produced a four-dimensional space isomorphic to R4 where the Poincarè transformations act in

the usual way. We can safely say that this is the Minkowski space.

To construct the superspace we shall proceed similarly, defining the the N = 1 superspace to be

the following coset

SuperspaceN=1 =
N = 1 Poincaré supergroup

LorentzGroup
. (4.129)

For us the N = 1 Poincarè supergroup will be simply defined as the exponential of the super-

algebra constructed in the previous lectures. To exponentiate the fermionic sector, we have to

introduce a set of grassmannian coordinates, which play the role of the infinitesimal parameters

of the transformation. In N = 1 we have a supercharge Qα and its hermitian conjugate Q̄α̇,

thus we shall introduce the fermionic coordinates θα and θ̄α̇. This will allows us to form the

hermitian bosonic combination

θQ + θ̄Q̄ = θαQα + θ̄α̇Q̄α̇, (4.130)

which we can exponentiate to yield a supersymmetry transformation. Then, any element of the

supergroup can be parametrized as follows

exp
(−ixµPµ + i(θQ + θ̄Q̄)

)
exp

(
i

2
ωµνMµν

)
. (4.131)

Therefore the elements of the coset (4.129) are given by

exp
(−ixµPµ + i(θQ + θ̄Q̄)

)
. (4.132)

Namely, the N = 1 superspace is defined by four bosonic coordinates which span an R4, and by

a pair of fermionic coordinates (θα, θ̄α̇) which are related by complex conjugation.
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The action of a supersymmetry transformation on these coordinates is easily computed as follows

exp
(
i(εQ + ε̄Q̄)

)
exp

(−ixmPm + i(θQ + θ̄Q̄)
)

=

= exp
(
−ixmPm + i((θ + ε)Q + (θ̄ + ε̄)Q̄)− 1

2
[(εQ + ε̄Q̄), (θQ + θ̄Q̄)]

)
=

= exp
(
−ixmPm + i((θ + ε)Q + (θ̄ + ε̄)Q̄)− 1

2
εα{Qα, Q̄α̇}θ̄α̇ +

1
2
θα{Qα, Q̄α̇}ε̄α̇

)
=

= exp
(−i(xm + iθσmε̄− iεσmθ̄)Pm + i((θ + ε)Q + (θ̄ + ε̄)Q̄)

)
.

(4.133)

We have thus obtained

xm 7→ x′m = xm + iθσmε̄− iεσmθ̄ (4.134a)

θ 7→ θ′ = θ + ε θ̄ 7→ θ̄′ = θ̄ + ε̄ (4.134b)

The action of translations and Lorentz transformations can be computed in a similar manner

and one obtain

Translations

xm 7→ x′m = xm − am θ 7→ θ′ = θ θ̄ 7→ θ̄′ = θ̄ (4.135)

Lorentz Transformations

xm 7→ x′m = Λm
nxn θα 7→ θ′α = θβ(Λ−1) α

β θ̄α̇ 7→ θ̄′α̇ = θ̄β̇(Λ∗−1) α̇
β̇

(4.136)

Notice that all the transformations are in agreement with the indices carried by the coordinates.

Together with the usual bosonic derivatives ∂m, we have two graded (right-)derivatives acting

on the Grassmann coordinates as follows

∂

∂θβ
θα = δα

β

∂

∂θ̄β̇
θ̄α̇ = δα̇

β̇
(4.137)

Here ‘graded’ means that these derivatives obey the anti-Leibnitz rule, e.g.

∂

∂θβ
(φ1φ2) =

∂φ1

∂θβ
(φ2) + (−1)grad(φ1)φ1

∂φ2

∂θβ
. (4.138)

4.1 Superfields

The standard field can be seen as function over the Minkowski space. We can now define the

superfields in a similar way: they are functions over the supespace, i.e.

Φα(x, θ, θ̄). (4.139)
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The index α is a Lorentz group index. In general a superfield can carry a representation of the

Lorentz group. Since θ and θ̄ are anticommuting coordinates, the superfield will be a polynomial

of finite degree in these variables. The coefficient of this polynomial are standard functions over

the Minkowski space and they can be identified with the standard fields.

In the following, to avoid useless complications we shall drop the Minkowski index and consider

a scalar superfield. This kind of superfield will be sufficient for our goals.

We define the action of supersymmetry transformations on a superfield as follows

eiamPm+iεQ+iε̄Q̄Φ(x, θ, θ̄)e−iamPm−iεQ−iε̄Q̄ = Φ(x− a + iθσε̄− iεσθ̄, θ + ε, θ̄ + ε̄). (4.140)

This definition mimics the analogous definition of translations on standard fields: it just acts on

the coordinates of the superfield.

At the infinitesimal level the supersymmetry transformations (4.140) are given by

δεΦ = −i[Φ, εQ] = Φ(x− iεσθ̄, θ + ε, θ̄)− Φ(x, θ, θ̄)
∣∣
lin. in ε

=

= εα ∂

∂θα
Φ(x, θ, θ̄)− iεσmθ̄∂mΦ(x, θ, θ̄) = εα

(
∂

∂θα
− i(σmθ̄)α∂m

)
Φ(x, θ, θ̄) ≡

≡ εαQαΦ(x, θ, θ̄) ⇒ Qα ≡ ∂

∂θα
− i(σmθ̄)α∂m (4.141a)

δε̄Φ = −i[Φ, ε̄Q̄] = Φ(x + iθσε̄, θ, θ̄ + ε̄)− Φ(x, θ, θ̄)
∣∣
lin. in ε̄

=

= ε̄α̇
∂

∂θ̄α̇
Φ(x, θ, θ̄) + iθσmε̄∂mΦ(x, θ, θ̄) =

(
− ∂

∂θ̄α̇
+ i(θσm)α̇∂m

)
ε̄α̇Φ(x, θ, θ̄) ≡

≡ Q̄ε̄Φ(x, θ, θ̄) ⇒ Q̄α̇ ≡ − ∂

∂θ̄α̇
+ i(θσm)α̇∂m (4.141b)

The action of translations is instead simply given by

δaΦ = −i[Φ, amPm] = Φ(x− a, θ, θ̄)− Φ(x, θ, θ̄)
∣∣
lin. in a

= −am∂mΦ(x, θ, θ̄) (4.141c)

We can check the consistency of this approach by computing in two different ways the commu-

tator [δε̄, δε]: from the algebra

[δε̄, δε]Φ(x, θ, θ̄) = −[Φ, [εQ, ε̄Q̄]] = −εα[Φ, {Qα, Q̄α̇}]ε̄α̇ = −2εσmε̄[Φ, Pm] = −2iεσmε̄∂mΦ ,

(4.142)

and from the actual representations (4.141a) and (4.141b)

[δε̄, δε]Φ(x, θ, θ̄) =(ε̄Q̄εQ− εQε̄Q̄)Φ = −εα(Q̄α̇Qα + QαQ̄α̇)ε̄α̇Φ = −2iεσmε̄∂mΦ. (4.143)

This check also shows that the differential operator representing the supercharges satisfies the

anticommutator

{Qα, Q̄α̇} = 2iσm
αα̇∂m. (4.144)
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4.2 (Covariant) Derivative on the superspace

The derivative introduced at the end of the introduction does not commute with the super-

charges. This means that these derivatives break the covariance under supersymmetry transfor-

mations. To develop a formalism which is manifestly invariant under supersymmetry transfor-

mations, we must define a new derivation D (and D̄) such that

[δε, D] = [δε̄, D] = 0. (4.145)

A brute force computation shows that all the graded derivations with this property are obtained

by taking linear combinations of

Dα =
∂

∂θα
+ i(σmθ̄)α∂m and D̄α̇ = − ∂

∂θ̄α̇
− i(θσm)α̇∂m. (4.146)

These derivations close the following algebra

{Qα, Dα} = {Qα, D̄α̇} = {Q̄α̇, Dα} = {Q̄α̇, D̄α̇} = 0. (4.147)

and

{Dα, D̄α̇} = −2iσm
αα̇∂m {Dα, Dβ} = {D̄α̇, D̄β̇} = 0. (4.148)

The origin of these two graded derivations can be understood at the level of group theory. In

our construction of the superspace we have used the left coset and consequently we have defined

the left action of the group. However we could have equivalently defined the superspace through

the right coset and used the right action to realize the supersymmetry transformations. We

would have obtained the same superspace with a different form of the supersymmetry charges

given by (Dα, D̄α̇). Since the left and right action commute by definition, we must conclude

that (Qα, Q̄α̇) and (Dα, D̄α̇) commute as well.

4.2.1 Integration

Given the Grassmann algebra generated by the N anticommuting variable θI , we can define the

integral as follows ∫ N∏

I=1

dθIf(θ) =
∂

∂θ1
· · · ∂

∂θN
f(θ). (4.149)

In other words the result of the integral is proportional to the coefficient of the monomial of

degree N in the expansion of the function f(θ).

Therefore we shall define the integral of a superfield over the entire superspace as follows

I =
∫

d4xd2θd2θ̄Φ(x, θ, θ̄) =
∫

d4x
∂

∂θ1

∂

∂θ2

∂

∂θ̄1̇

∂

∂θ̄2̇
Φ(x, θ, θ̄). (4.150)
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The above definition can be rewritten in terms of the covariant derivatives Dα and D̄α̇. For

example if we replace ∂
∂θ̄1̇

with D1, we find the following expression for I

I =
∫

d4xD1
∂

∂θ2

∂

∂θ̄1̇

∂

∂θ̄2̇
Φ(x, θ, θ̄)− i

∫
d4x∂m

[
(σmθ)1

∂

∂θ2

∂

∂θ̄1̇

∂

∂θ̄2̇
Φ(x, θ, θ̄)

]
. (4.151)

The second term is a total divergence and it can be neglected if the fields vanish at infinity.

Therefore ∫
d4xD1

∂

∂θ2

∂

∂θ̄1̇

∂

∂θ̄2̇
Φ(x, θ, θ̄) =

∫
d4x

∂

∂θ1

∂

∂θ2

∂

∂θ̄1̇

∂

∂θ̄2̇
Φ(x, θ, θ̄). (4.152)

If we repeat this procedure for all the odd coordinates we find

I =
∫

d4xD1D2D̄1̇D̄2̇Φ(x, θ, θ̄), (4.153)

or, in manifestly Lorentz invariant form,

I = −1
4

∫
d4xD2D̄2Φ(x, θ, θ̄). (4.154)

This definition in terms of the covariant derivative seems to be strongly dependent on the order

of the derivatives. In fact, Dα and D̄α do not commute. This dependence is however harmless:

different orderings disagree for terms in the Lagrangian which are total divergences. Namely,

the action does not depend on the ordering.

The measure of integration above is also invariant under supersymmetry transformation. In fact

δεI = −1
4

∫
d4xD2D̄2δεΦ(x, θ, θ̄) = −1

4

∫
d4xD2D̄2εQΦ(x, θ, θ̄) =

= −1
4

∫
d4xεQ[D2D̄2Φ(x, θ, θ̄)] = −1

4

∫
d4x(εD − 2iεσmθ̄∂m)[D2D̄2Φ(x, θ, θ̄)] =

=
i

2

∫
d4x∂m

[
εσmθ̄D2D̄2Φ(x, θ, θ̄)

]
.

(4.155)

5 Scalar superfield

Consider the scalar superfield, namely a spin zero superfield. We can expand it as a polynomial

in the Grassmann variables θα and θ̄α̇. Taking into account that all the independent monomials

built out of the θ and θ̄ are

1
1
, θ

2

α, θ̄
2

α̇
, θ2

1
(≡ θαθα), θ̄2

1
(≡ θ̄α̇θ̄α̇), θσmθ̄

4
, θ̄2θα

2
, θ2θ̄α̇

2
, θ̄2θ2

1
, (5.156)

the expansion of the most general scalar superfield is given by

Φ(x, θ, θ̄) = φ(x) + θχ(x) + ψ̄(x)θ̄ + F (x)θ2 + G(x)θ̄2 + Vm(x)θσmθ̄+

+ τ̄(x)θ̄θ2 + θ̄2θλ(x) + θ2θ̄2D(x).
(5.157)
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It contains 8 complex bosonic fieds

φ(x), F (x), G(x), D(x)
4 scalars

, Vm(x)
1 vector

(5.158)

and 8 c fermionic fields

χ(x), λ(x), ψ̄(x), τ̄(x)
4 Weyl spinors

. (5.159)

It is immediate to recognize that this superfield provides a reducible representation of the super-

symmetry. In order to select the irreducible components we must impose some constraints on

the superfield. In the following we shall show two possible ways of reducing this representation:

the former produces the chiral superfield, while the latter yields the vector superfield.

6 On-shell v.s. Off-shell representations

The representations of the supersymmetry discussed at the group theory level are on-shell. This

means that the states satisfy the constraint p2 = M2, which is equivalent to the equations

of motion. However, when we try to realize them in terms of local fields governed by a local

Lagrangian, we are forced to relax this assumption in order to develop a manifestly covariant

formalism. This is not peculiar of supersymmetry, but also occurs for the representations of

the Poincarè group. Consider, for example, a parity invariant massless particle of spin 1, its

representation only contains two helicity states. Instead, in terms of local fields, it has to be

described by a vector Vm(x), which possesses 4 degrees of freedom. The correct counting is only

restored when the field satisfies the equation of motion and the gauge invariance is used. From

a group theoretical point of view, Vm(x) is an enlarged (thus reducible) representation of the

Poincarè group, the equations of motion and the gauge invariance work as projectors that throw

away the unwanted d.o.f.

Therefore, in order to write a supersymmetric action we must enlarge the on-shell multiplet

considered in the previous lecture. We will have two possibilities:

• The multiplet is enlarged to a reducible representation of the supersymmetry. In this case

the supersymmetry is realized also off-shell and the formalism is manifestly invariant

under supersymmetry at all stages.

• The multiplet is enlarged only to have a manifest invariance under the Poincarè group.

The supersymmetry is recovered only when the equations of motion are imposed (on-shell

supersymmetry), while is broken off-shell. In this setting the number of bosonic and

fermionic d.o.f. does not match unless the e.o.m are satisfied.
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The approach in terms of N = 1 superfields will provide us with an off-shell realization of the

N = 1 supersymmetry and a manifestly covariant formalism. However this is a lucky situation.

For extended supersymmetry and supergravities the off-shell representations are not known in

general and only the second possibility is available.

7 Chiral superfield

Given the set of scalar superfields Φ, the subset defined by the condition

D̄α̇Φ(x, θ, θ̄) = 0 (7.160)

is un invariant subset under supersymmetry transformations. In fact, if a superfield Φ solves

the constraint (7.160) also δεΦ is a solution

D̄α̇δε,ε̄Φ(x, θ, θ̄) = D̄α̇(εQ + ε̄Q̄)Φ(x, θ, θ̄) = (εQ + ε̄Q̄)D̄α̇Φ(x, θ, θ̄) = 0. (7.161)

The general solution of the constraint (7.160) can be determined by introducing the variable

ym = xm + iθσmθ̄ for which D̄α̇ym = 0. If we consider the superfield as a function of y, θ and

θ̄, the constraint (7.160) becomes

D̄α̇Φ(x, θ, θ̄) = − ∂

∂θ̄α̇
Φ(y, θ, θ̄) = 0. (7.162)

In other words the superfield depends on y and θ, but not θ̄: Φ(y, θ). This superfield is now a

chiral superfield and it can be expanded either in a polynomial of the Grassmannian variable θ

Φ(y, θ) = A(y) +
√

2χ(y)θ + θ2F (y), (7.163)

or in terms of the original 4 Grassmannian variables

Φ(x, θ, θ̄) =A(x) + iθσmθ̄∂mA(x)− 1
2
θσmθ̄θσnθ̄∂m∂nA(x)+

+
√

2χ(x)θ + i
√

2θσmθ̄∂mχ(x)θ + θ2F (x) = (7.164)

=A(x) +
√

2χ(x)θ + θ2F (x) + iθσmθ̄∂mA(x)− i√
2
θ2∂mχσmθ̄ +

1
4
θ2θ̄2¤A(x).

This superfield describes two complex scalar fields A(x), F (x) (4 real bosonic fiels ) and a Weyl

spinor χ(x) (4 real fermionic components): it contains twice the number of components that

are necessary to describe the chiral multiplet. However we cannot further reduce the degrees of

freedom by imposing a non-dynamical constraint. The unwanted fields will disappear from the

game when we shall impose that the fields satisfy the equations of motion. For this reason the

chiral superfield is said to provide the off-shell chiral multiplets.
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Let us consider the action of the supersymmetry transformations on the chiral superfield. This

action is given by

δε,ε̄Φ = (εQ + ε̄Q̄)Φ. (7.165)

Note that the supersymmetry charges for a chiral superfield can be written in a very simple

form because of its particular dependence on the variables x, θ and θ̄. We have

Qα =
∂

∂θα

∣∣∣∣
y,θ,θ̄

and Q̄α̇ = 2i(θσm)α̇
∂

∂ym

∣∣∣∣
y,θ,θ̄

. (7.166)

Thus

δε,ε̄Φ =
(

εα ∂

∂θα
+ 2i(θσmε̄)

∂

∂ym

)
Φ(y, θ) =

√
2εχ(y) + 2εθF (y) + 2i(θσmε̄)∂mA(y)+

+ 2i
√

2(θσmε̄)∂mχ(y)θ =
√

2εχ(y) + 2εθF (y) + 2i(θσmε̄)∂mA(y)+

− i
√

2θ2∂mχσmε̄.

(7.167)

In components, the above transformations read

δε,ε̄A(x) =
√

2εχ(x) (7.168a)

δε,ε̄χα(x) = i
√

2(σmε̄)α∂mA(x) +
√

2εαF (x) (7.168b)

δε,ε̄F (x) = −
√

2i∂mχσmε̄ =
√

2iε̄σ̄m∂mχ. (7.168c)

When the spinor field χ is on-shell, i.e. it satisfies the equation of motion σ̄m∂mχ = 0, the scalar

field F (x) becomes invariant under supersymmetry δε,ε̄F (x) = 0. Consistency requires that

0 = δζ,ζ̄δε,ε̄F (x) =
√

2iε̄σ̄m∂mδζζ̄χ = −2(ε̄σ̄m)α∂m((σnζ̄)α∂nA(x) + ζαF (x)) =

= −2(ε̄σ̄mσnζ̄∂m∂nA(x) + ε̄σ̄mζ∂mF (x)) = −2(−ε̄ζ̄¤A(x) + ε̄σ̄mζ∂mF (x)),
(7.169)

namely

¤A(x) = 0 ∂mF (x) = 0. (7.170)

The field A(x) is on-shell as well, and F is a constant non propagating field. Summarizing, A

and χ are the only degrees of freedom which survive on-shell: this is exactly the content of the

chiral multiplet when discussed at the level of representation theory.

The set of all chiral superfields is closed under multiplication. In fact

D̄α̇(Φi1Φi2 · · ·Φin−1Φin) = 0, (7.171)

since D̄α̇ is a (graded) derivation and it respects the (graded) Leibnitz rule. Moreover, any

polynomial or function in the chiral fields is still a chiral field.
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The chiral superfield Φ(x, θ, θ̄) is a complex object and thus we can define its hermitian conjugate

Φ†(x, θ, θ̄). This superfield is no longer chiral, because y 7→ ȳn = xn − iθσnθ̄ and θ 7→ θ̄ under

hermitian conjugation. However, it satisfies the constraint

DαΦ†(x, θ, θ̄) = 0, (7.172)

which is the hermitian conjugate of the constraint (7.160). A generic superfield Φ̄ satisfying the

condition DαΦ̄ = 0 is called anti-chiral superfield. Its expansion is given by

Φ̄(ȳ, θ̄) = B(ȳ) +
√

2 λ̄(ȳ)θ̄ + θ̄2H(ȳ), (7.173)

or, in terms of the original variables,

Φ̄(x, θ, θ̄) =B(x)− iθσnθ̄∂nB(x)− 1
2
θσmθ̄θσnθ̄∂m∂nB(x) +

√
2λ̄(x)θ̄−

−
√

2iθσmθ̄∂mλ̄(x)θ̄ + θ̄2H(x) =

=B(x) +
√

2λ̄(x)θ̄ − iθσnθ̄∂nB(x) + θ̄2H(x) +
1
4
θ2θ̄2¤B(x) +

i√
2
θ̄2θσn∂nλ̄.

(7.174)

The supersymmetry charges for the antichiral superfield then take the simplified form

Qα = −2i(σmθ̄)α
∂

∂ȳm

∣∣∣∣
ȳ,θ,θ̄

and Q̄α̇ = − ∂

∂θ̄α̇

∣∣∣∣
ȳ,θ,θ̄

. (7.175)

Consequently, we can easily compute the supersymmetry transformations for an antichiral su-

perfield and find

δε,ε̄B(x) =
√

2λ̄(x)ε̄ (7.176a)

δε,ε̄λ̄α(x) = i
√

2(εσm)α̇∂mB(x) +
√

2ε̄α̇H(x) (7.176b)

δε,ε̄H(x) =
√

2iεσm∂mλ̄(x). (7.176c)

7.1 An action for the chiral fields

The next step is to write an invariant action for the chiral multiplets. This action must be an

integral over the whole superspace of (super-)Lagrangian density, which depends on the chiral

super-fields ΦI (I is an index running over all the possible chiral superfields appearing in our

model). This Lagrangian, however, cannot be simply a function of the chiral superfields ΦI . In

fact
∫

d4xd2θ̄d2θF(ΦI) = −1
4

∫
d4xD2D̄2F(ΦI) = −1

4

∫
d4xD2D̄α̇

(
∂F(ΦI)

∂ΦA
D̄α̇ΦA

)
= 0.

(7.177)

In order to obtain a non-vanishing result, the Lagrangian density must depend on both chiral

and anti-chiral super-fields, namely L = K(ΦI†, ΦI). For the moment we shall consider the
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simplest choice for a function of this type: L = −1
4ΦI†ΦI , where ΦI with I = 1, . . . , N represent

N chiral superfields and ΦI† their hermitian conjugates. Then the action is given by

−1
4

∫
d4xd2θ̄d2θ

(
ΦIΦI†

)
=

1
16

∫
d4xD̄2D2(ΦIΦI†) =

1
16

∫
d4xD̄2[(D2ΦI)ΦI†] =

=
1
16

∫
d4x[([D̄2, D2]ΦI)ΦI† + 2([D̄α̇, D2]ΦI)D̄α̇ΦI† + D2ΦID̄2ΦI†].

(7.178)

The graded commutators appearing in the above expansion can be easily evaluated and we find

[D̄α̇, D2] = 4i(Dσm)α̇∂m and [D̄2, D2] = 16¤ + 8i(DσmD̄)∂m. (7.179)

Thus, the action reads

−1
4

∫
d4xd2θ̄d2θ

(
ΦIΦI†

)
=

1
16

∫
d4x[16ΦI†¤ΦI + 8i(Dσm)α̇∂mΦID̄α̇ΦI† + D2ΦID̄2ΦI†]−

(7.180)

It can be rewritten in terms of the usual fields by means of the following identities

ΦI
∣∣
θ=θ̄=0

= AI(x) ΦI†∣∣
θ=θ̄=0

= AI†(x)

DαΦI
∣∣
θ=θ̄=0

=
√

2χI
α(x) D̄α̇ΦI†∣∣

θ=θ̄=0
= −√2χ̄I

α̇(x)

D2ΦI
∣∣
θ=θ̄=0

= −4F I(x) D̄2ΦI†∣∣
θ=θ̄=0

= −4F I†(x)

(7.181)

and one finds

−1
4

∫
d4xd2θ̄d2θ

(
ΦIΦI†

)
=

∫
d4x[AI†¤AI − i(χIσm∂mχ̄I) + F IF I†] =

=
∫

d4x[AI†¤AI − i(χ̄I σ̄m∂mχI) + F IF I†].
(7.182)

This is the correct free action for N complex scalar fields and N Weyl fermions. The N complex

scalar fields F I do not propagate and they identically vanish on the equations of motion. They

can be dropped if we require that the supersymmetry is realized just on shell.

The next issue is how to introduce interactions such as scalar potentials and Yukawa couplings

and to preserve supersymmetry. This cannot be done by simply adding more complicate func-

tions of ΦI and ΦI†. These kind of terms will lead to derivative interactions, which are, moreover,

generically non renormalizable. This type of interactions can be instead obtained by integrating

a function of the chiral super-fields (but not of the anti-chiral ones) F(ΦI) over half of the

superspace
∫

d4xd2θF(ΦI) ≡
∫

d4y
∂

∂θ1

∂

∂θ2
F(ΦI) =

=
1
2
εαβ

∫
d4yDαDβF(ΦI) = −1

2

∫
d4yD2F(ΦI).

(7.183)
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This term is manifestly Lorentz invariant. Its invariance under supersymmetry transformations

is a little more subtle. The transformations generated by εQ preserve (7.183), since they cor-

responds to take an additional derivative with respect to θ. The transformations of the form

ε̄Q̄ correspond instead to take a total divergence of the integrand and so the action is again

invariant.

The analogous integration can be defined on the functions of the anti-chiral superfields
∫

d4xd2θ̄F̄(Φ̄I) ≡ −
∫

d4y
∂

∂θ̄1̇

∂

∂θ̄2̇
F̄(Φ̄I) = −1

2

∫
d4yD̄2F̄(Φ̄I). (7.184)

Since the Lagrangian must be real, a candidate interaction term for the chiral superfields is
∫

d4xd2θF(ΦI) + c.c. =
∫

d4xd2θF(ΦI) +
∫

d4xd2θ̄F∗(Φ†I) (7.185)

The first and the second integral, when written in terms of the standard fields, yield
∫

d4xd2θF(ΦK) = −
∫

d4x

(
∂F(AK)
∂ΦI∂ΦJ

χJχI − 2
∂F(AK)

∂ΦI
F I

)
, (7.186a)

∫
d4xd2θ̄F∗(Φ†K) = −

∫
d4x

(
∂F∗(A†K)
∂Φ†I∂Φ†J

χ̄J χ̄I − 2
∂F∗(A†K)

∂Φ†I
F †I

)
, (7.186b)

Therefore the supersymmetric action for a system of N chiral multiplets is given by

S = −1
4

∫
d4xd2θ̄d2θ

(
ΦIΦI†

)
+

1
2

∫
d4xd2θF(ΦI) +

1
2

∫
d4xd2θ̄F∗(Φ†I) =

=
∫

d4x

[
AI†¤AI − i(χ̄I σ̄m∂mχI) + F IF I† − 1

2
∂F(AK)
∂ΦI∂ΦJ

χJχI +
∂F(AK)

∂ΦI
F I−

− 1
2

∂F∗(A†K)
∂Φ†I∂Φ†J

χ̄J χ̄I +
∂F∗(A†K)

∂Φ†I
F †I

]
.

(7.187)

The introduction of the interactions has preserved the property that the fields F I and their

conjugates are not dynamical. We can eliminate them by means of their equations of motion,

which are solved by

F I = −∂F∗(A†K)
∂Φ†I

and F I† = −∂F(AK)
∂ΦI

. (7.188)

Then the action takes the following form

S =
∫

d4x


AI†¤AI − i(χ̄I σ̄m∂mχI)− 1

2
∂F(AK)
∂ΦI∂ΦJ

χJχI − 1
2

∂F∗(A†K)
∂Φ†I∂Φ†J

χ̄J χ̄I −
∣∣∣∣
∂F(AK)

∂ΦI

∣∣∣∣
2

F-terms


 .

(7.189)

and it is invariant under the supersymmetry transformations

δε,ε̄A
I(x) =

√
2εχI(x) (7.190a)

δε,ε̄χ
I
α(x) = i

√
2(σmε̄)α∂mAI(x)−

√
2εα

∂F(AK)
∂ΦI

. (7.190b)
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The potential for the scalar fields AI is manifestly positive definite. It is the sum of the square

absolute values. This property follows directly from the supersymmetry algebra, as shown in

(3.69). The absolute minima of this potential (vacua) are therefore determined by the system

of equations

F I =
∂F(AK)

∂ΦI
= 0. (7.191)

If this system of equations does not admit a solution the supersymmetry is spontaneously broken.

If we limit ourself to renormalizable interactions, the most general super-potential is a polynomial

at most cubic in the chiral superfiedls

F (Φ) = λIΦI +
1
2
mIJΦIΦJ +

1
3
gIJKΦIΦJΦK . (7.192)

Then the most general supersymmatric action with particles of spin less than 1 and with renor-

malizable interaction is

S =
∫

d4x

[
AI†¤AI − i(χ̄I σ̄m∂mχI)− 1

2
(mIJ + 2gIJKAK)χIχJ−

− 1
2
(m∗

IJ + 2g∗IJKA†K)χ̄I χ̄J −
N∑

I=1

∣∣λI + mIJAJ + gIJKAJAK
∣∣2

]
.

(7.193)

7.2 Non-linear sigma model

As long as we want to formulate a fundamental quantum field theory, i.e. valid at all scales,

renormalizability is a guiding principle. Then the most general Lagrangian containing only

chiral superfields has the form discussed in the previous section. It contains a kinetic term

given by −1
4φI†φI , and a superpotential which is at most cubic in the chiral superfields. In-

stead, if we consider our supersymmetric theory as an effective model the constrains imposed by

renormalizability must be relaxed and we can write a more general action

S =
∫

d4x

∫
d2θd2θ̄K(φI†, φI) +

∫
d4x

∫
d2θF(φI) +

∫
d4x

∫
d2θ̄F∗(φI†). (7.194)

The function K(φI†, φI) must define a real superfield, and this will be the case if K†(zI†, zI) =

K(zI , zI†) and F is an arbitrary function.

The expansion of this action in terms of component fields requires a lengthy and tedious analysis.

Firstly, we shall consider the case of vanishing superpotenzial F , and we shall evaluate the
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integral over the Grassmann coordinates of the kinetic term K(φI†, φI). We find
∫

d2θd2θ̄K(φI†, φI) = −1
4
D̄2D2(K) = −1

4
DαD̄α̇(D̄α̇Dα(K)) + total div. =

=− 1
4
(∂L∂I ∂̄J ∂̄KKDαΦLD̄α̇ΦK†D̄α̇φJ†DαΦI − 4i∂I ∂̄J ∂̄KK∂mΦK†D̄φJ†σ̄mDΦI−

+ ∂I ∂̄J ∂̄KKD̄α̇ΦK†D̄α̇φJ†D2ΦI − ∂I ∂̄J∂KKDαΦKD̄2φJ†DαΦI+

+ 4i∂I ∂̄JKDΦIσm∂mD̄φJ† − ∂I ∂̄JKD̄2φJ†D2ΦI − 4i∂I ∂̄J∂KKDΦKσmD̄Φ†J∂mΦI−
− 8Tr(σmσ̄n)∂I ∂̄JK∂nΦ†J∂mΦI − 4i∂I ∂̄JK∂mDΦIσmD̄Φ†J) + total div..

(7.195)

It is convenient to introduce the following notation: ∂̄I 7→ ∂Ī , ΦI† 7→ Φ̄Ī , ∂I ∂̄JK 7→ KIJ̄ ,

∂I∂J ∂̄KK 7→ KIJK̄ , ∂̄I ∂̄J∂KK 7→ KĪJ̄K and ∂I∂J ∂̄K ∂̄LK 7→ KIJK̄L̄. Then
∫

d2θd2θ̄K(Φ̄Ī , φI) =

=− 1
4
(KILJ̄K̄DαΦLD̄α̇Φ̄K̄D̄α̇Φ̄J̄DαΦI − 4iKIJ̄K̄∂mΦ̄K̄D̄Φ̄J̄ σ̄mDΦI−

+KIJ̄K̄D̄α̇Φ̄K̄D̄α̇Φ̄J̄D2ΦI −KIKJ̄DαΦKD̄2Φ̄J̄DαΦI+

+ 4iKIJ̄DΦIσm∂mD̄Φ̄J̄ −KIJ̄D̄2Φ̄J̄D2ΦI − 4iKIKJ̄DΦKσmD̄Φ̄J̄∂mΦI−
− 8Tr(σmσ̄n)KIJ̄∂nΦ̄J̄∂mΦI − 4iKIJ̄∂mDΦIσmD̄Φ̄J̄) + total div..

(7.196)

This expression, by construction, contains only terms of grading 0. Therefore can be written in

terms of the component fields by means of the following table

ΦI
∣∣
θ=θ̄=0

= AI(x) Φ̄Ī
∣∣∣
θ=θ̄=0

= ĀĪ(x)

DαΦI
∣∣
θ=θ̄=0

=
√

2χI
α(x) D̄α̇Φ̄Ī

∣∣∣
θ=θ̄=0

= −√2χ̄Ī
α̇(x)

D2ΦI
∣∣
θ=θ̄=0

= −4F I(x) D̄2Φ̄Ī
∣∣∣
θ=θ̄=0

= −4F̄ Ī(x)

, (7.197)

where the same notations used for the superfields were also applied to the component fields.
∫

d2θd2θ̄K(Φ̄Ī , φI) =

=− 1
4
(−4KILJ̄K̄χLχI χ̄J̄ χ̄K̄ + 8iKIJ̄K̄∂mĀK̄ χ̄J̄ σ̄mχI+

+ 8KIJ̄K̄ χ̄J̄ χ̄K̄F I + 8KIKJ̄χKχI F̄ J̄+

− 8iKIJ̄χIσm∂mχ̄J̄ − 16KIJ̄F I F̄ J̄ + 8iKIKJ̄χKσmχ̄J̄∂mAI+

+ 16KIJ̄∂nĀJ̄∂nAI + 8iKIJ̄∂mχIσmχ̄J̄) + total div..

(7.198)

It is convenient to eliminate the auxiliary fields F I and its complex conjugate F̄ Ī by means of

the equations of motion

−16KIJ̄ F̄ J̄+8KIJ̄K̄ χ̄J̄ χ̄K̄ = 0 − 16KIJ̄F I + 8KIKJ̄χKχI = 0

⇒ F̄ Ī =
1
2
K ĪIKIJ̄K̄ χ̄J̄ χ̄K̄ F I =

1
2
KIĪKĪJKχJχK ,

(7.199)
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where KIĪ = KIĪ are the inverse of KIĪ . Then we find
∫

d2θd2θ̄K(Φ̄Ī , φI) =

=
[
(KILJ̄K̄ −KAĀKA,J̄K̄KĀ,IL)χLχI χ̄J̄ χ̄K̄ − 2iKIJ̄K̄∂mĀK̄ χ̄J̄ σ̄mχI + 2iKIJ̄χIσm∂mχ̄J̄−

− 2iKIKJ̄χKσmχ̄J̄∂mAI − 4KIJ̄∂nĀJ̄∂nAI − 2iKIJ̄∂mχIσmχ̄J̄
]

+ total div. =

=
[
(KILJ̄K̄ −KAĀKA,J̄K̄KĀ,IL)χLχI χ̄J̄ χ̄K̄ − 2iKIJ̄K̄∂mĀK̄ χ̄J̄ σ̄mχI + 2iKIJ̄χIσm∂mχ̄J̄−

− 2iKIKJ̄χKσmχ̄J̄∂mAI − 4KIJ̄∂nĀJ̄∂nAI+

+ 2iKIJ̄χIσm∂̄mχJ̄ + 2iKILJ̄∂mALχIσmχ̄J̄ + 2iKIL̄J̄∂mĀL̄χIσmχ̄J̄
]

+ total div. =

=
[
(KILJ̄K̄ −KAĀKA,J̄K̄KĀ,IL)χLχI χ̄J̄ χ̄K̄ − 2iKIJ̄K̄∂mĀK̄ χ̄J̄ σ̄mχI + 4iKIJ̄χIσm∂mχ̄J̄−

− 4KIJ̄∂nĀJ̄∂nAI + 2iKIL̄J̄∂mĀL̄χIσmχ̄J̄
]

+ total div. =

=
[
(KILJ̄K̄ −KAĀKA,J̄K̄KĀ,IL)χLχI χ̄J̄ χ̄K̄ + 4iKIJ̄K̄∂mĀK̄χI σ̄mχ̄J̄ + 4iKIJ̄χIσm∂mχ̄J̄−

− 4KIJ̄∂nĀJ̄∂nAI
]

+ total div. =

=
[
(KILJ̄K̄ −KAĀKA,J̄K̄KĀ,IL)χLχI χ̄J̄ χ̄K̄ + 4iKIJ̄χIσm(∂mχ̄J̄ + K J̄RKRS̄K̄∂mĀK̄ χ̄S̄)

− 4KIJ̄∂nĀJ̄∂nAI
]

+ total div..

(7.200)

This Lagrangian can be written in a manifestly covariant form if we interpret the function K as

the Kaehler potential for the complex manifold spanned by the scalars (AI , ĀĪ). We have then

the following identifications

(a) the complex metric is given by

GIJ̄ = ∂I ∂̄JK GIJ = GĪJ̄ = 0. (7.201)

(b) the corresponding Christoffel symbol are

ΓI,JK = 0 ΓĪ,J̄K̄ = 0 ΓĪ,JK =
1
2
(∂JGĪK + ∂KGĪJ − ∂̄IGJK) = ∂J∂K∂ĪK

ΓI,J̄K =
1
2
(∂̄JGIK + ∂KGIJ̄ − ∂IGJ̄K) = 0 ΓĪ,J̄K =

1
2
(∂̄JGĪK + ∂KGĪJ̄ − ∂̄IGJ̄K) = 0

ΓI,J̄K̄ =
1
2
(∂̄JGIK̄ + ∂̄KGIJ̄ − ∂IGJ̄K̄) = ∂̄J ∂̄K∂IK.

(c) We shall also need the following component of the curvature

RIL̄,MN̄ =∂MΓIL̄N̄ − ∂N̄ΓIL̄M + gAĀΓA,L̄MΓĀ,N̄I + gAĀΓĀ,L̄MΓA,N̄I − gAĀΓA,L̄N̄ΓĀ,MI+

+ gĀAΓĀ,L̄N̄ΓA,MI = ∂MΓIL̄N̄ − gAĀΓA,L̄N̄ΓĀ,MI =

=∂I∂M ∂̄L∂̄NK − gAĀΓA,L̄N̄ΓĀ,MI .

(7.202)
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Then (7.200) takes the following form
∫

d2θd2θ̄K(Φ̄Ī , φI) =

=RLJ̄IK̄χLχI χ̄J̄ χ̄K̄ + 4iGIJ̄χIσm(∂mχ̄J̄ + ΓJ̄
R̄K̄∂mĀK̄ χ̄R̄)− 4GIJ̄∂nĀJ̄∂nAI + total div..

(7.203)

We can then write the following action as

1
4

∫
d4x

∫
d2θd2θ̄K(Φ̄Ī , φI) =

=
∫

d4x

[
1
4
RLJ̄IK̄χLχI χ̄J̄ χ̄K̄ + iGIJ̄χIσmDmχ̄J̄ −GIJ̄∂nĀJ̄∂nAI

]
.

(7.204)

If there is also a superpotential, the additional contributions are

1
2

∫
d4xd2θF(ΦK) = −1

2

∫
d4x

(FIJχJχI − 2FIF
I
)
, (7.205a)

1
2

∫
d4xd2θ̄F̄(Φ̄K̄) = −1

2

∫
d4x

(
F̄ĪJ̄ χ̄J χ̄I − 2F̄Ī F̄

Ī
)

. (7.205b)

These terms modify the equation of motion for F I and F̄ Ī

KIJ̄ F̄ J̄−1
2
KIJ̄K̄ χ̄J̄ χ̄K̄ + FI = 0 KIJ̄F I − 1

2
KIKJ̄χKχI + F̄Ī = 0

⇒ F̄ Ī =
1
2
ΓĪ

J̄K̄ χ̄J̄ χ̄K̄ −GĪJFJ F I =
1
2
ΓI

JKχJχK −GIJ̄ F̄J̄ ,

(7.205c)

Then the action in the presence of a superpotential is

1
4

∫
d4x

∫
d2θd2θ̄ K(Φ̄Ī , φI)

Kaheler potential
+

1
2

∫
d4xd2θ F(ΦK)

superpotential
+

1
2

∫
d4xd2θ̄ F∗(Φ†K)

superpotential
=

=
∫

d4x

[
1
4
RLJ̄IK̄χLχI χ̄J̄ χ̄K̄ + iGIJ̄χIσmDmχ̄J̄ −GIJ̄∂nĀJ̄∂nAI − 1

2
∇Ī∇J̄ F̄ χ̄J̄ χ̄Ī−

−1
2
∇I∇JFχJχI −GIJ̄∇IF∇J̄ F̄

]
.

(7.205d)
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Exercise: Prove eq. (7.195).

Solution: If we expand the derivatives acting on the Kinetic term, we find

D̄2D2(K) =DαD̄α̇(D̄α̇Dα(K)) + total div. =

=DαD̄α̇(∂I ∂̄JKD̄α̇φJ†DαΦI + ∂IKD̄α̇DαΦI) + total div. =

=DαD̄α̇(∂I ∂̄JKD̄α̇φJ†DαΦI − 2i∂IKσm
αα̇∂mΦI) + total div. =

=Dα(∂I ∂̄J ∂̄KKD̄α̇ΦK†D̄α̇φJ†DαΦI − ∂I ∂̄JKD̄2φJ†DαΦI−
− ∂I ∂̄JKD̄α̇φJ†D̄α̇DαΦI − 2i∂I ∂̄JKσm

αα̇D̄α̇Φ†J∂mΦI) + total div. =

=Dα(∂I ∂̄J ∂̄KKD̄α̇ΦK†D̄α̇φJ†DαΦI − ∂I ∂̄JKD̄2φJ†DαΦI+

+ ∂I ∂̄JKD̄α̇φJ†D̄α̇DαΦI − 2i∂I ∂̄JKσm
αα̇D̄α̇Φ†J∂mΦI) + total div. =

=Dα(∂I ∂̄J ∂̄KKD̄α̇ΦK†D̄α̇φJ†DαΦI − ∂I ∂̄JKD̄2φJ†DαΦI−
− 4i∂I ∂̄JKσm

αα̇D̄α̇Φ†J∂mΦI) + total div. =

=(∂L∂I ∂̄J ∂̄KKDαΦLD̄α̇ΦK†D̄α̇φJ†DαΦI + ∂I ∂̄J ∂̄KKDαD̄α̇ΦK†D̄α̇φJ†DαΦI−
− ∂I ∂̄J ∂̄KKD̄α̇ΦK†DαD̄α̇φJ†DαΦI + ∂I ∂̄J ∂̄KKD̄α̇ΦK†D̄α̇φJ†D2ΦI−
− ∂I ∂̄J∂KKDαΦKD̄2φJ†DαΦI − ∂I ∂̄JKDαD̄2φJ†DαΦI − ∂I ∂̄JKD̄2φJ†D2ΦI−
− 4i∂I ∂̄J∂KKσm

αα̇DαΦKD̄α̇Φ†J∂mΦI − 4i∂I ∂̄JKσm
αα̇DαD̄α̇Φ†J∂mΦI+

+ 4i∂I ∂̄JKσm
αα̇D̄α̇Φ†J∂mDαΦI) + total div. =

=(∂L∂I ∂̄J ∂̄KKDαΦLD̄α̇ΦK†D̄α̇φJ†DαΦI − 4i∂I ∂̄J ∂̄KK∂mΦK†D̄φJ†σ̄mDΦI−
+ ∂I ∂̄J ∂̄KKD̄α̇ΦK†D̄α̇φJ†D2ΦI − ∂I ∂̄J∂KKDαΦKD̄2φJ†DαΦI+

+ 4i∂I ∂̄JKDΦIσm∂mD̄φJ† − ∂I ∂̄JKD̄2φJ†D2ΦI−
− 4i∂I ∂̄J∂KKDΦKσmD̄Φ†J∂mΦI − 8Tr(σmσ̄n)∂I ∂̄JK∂nΦ†J∂mΦI+

− 4i∂I ∂̄JK∂mDΦIσmD̄Φ†J ) + total div..

7.3 First implications of supersymmetry: SUSY Ward Identity

In the following we shall examine the first consequences of the N = 1 supersymmetry at the

quantum level. In particular we shall show how supersymmetry can constrain the dependence

on the space-time coordinates and on the couplings present in the theory. For our goals it is

more natural to write the supersymmetry transformations (7.168) in operator language

[AI(x), Qα] =i
√

2χI
α(x) (7.206a)

[AI(x), Q̄α̇] =0 (7.206b)

{χI
β(x), Qα} =− i

√
2εβαF I(x) (7.206c)

{χI
β(x), Q̄α̇} =−

√
2σm

βα̇∂mAI(x) (7.206d)

[F I(x), Qα] =0 (7.206e)

[F I(x), Q̄α̇] =
√

2(∂mχIσm)α̇. (7.206f)
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Here AI(x), χI(x) and F I(x) can be thought as elementary fields or they can be composite

operators which span a chiral super-multiplet. Then let us consider the following Green function

〈AI1(x1) · · ·AIn(xn)〉0 (7.207)

and let us the derivative ∂m with respect to x1 and contract with −√2σm
αβ̇

, we find

−
√

2σm
αβ̇

∂x1
m 〈T (AI1(x1) · · ·AIn(xn))〉0 = −

√
2σm

αβ̇
〈T (∂mAI1(x1) · · ·AIn(xn))〉0 + eq. t. comm. =

= −
√

2σm
αβ̇
〈T (∂mAI1(x1) · · ·AIn(xn))〉0 = 〈T ({χI1

α (x1), Q̄β̇}AI2(x2) · · ·AIn(xn))〉0 =

= 〈0|Q̄β̇T (χI1
α (x1)AI2(x2) · · ·AIn(xn))|0〉+ 〈0|T (χI1

α (x1)AI2(x2) · · ·AIn(xn))Q̄β̇|0〉 = 0.

(7.208)

This follows immediately from the fact the Q̄α̇ annihilates the vacuum and from the vanishing

of the commutator [AI , Q̄] and of the extra equal time commutators arising from ∂m acting on

the θ−functions of the time-ordering. Since σm are set of independent matrices, we have

〈∂mAI1(x1) · · ·AIn(xn)〉0 = 0, (7.209)

i.e. the correlation function does not depend on x1. In the same way one can show that this

correlator does not depend on any of the coordinates xi. Taking the limit of large separation

among the fields, we can apply the cluster property and we can conclude

〈AI1(x1) · · ·AIn(xn)〉0 = 〈AI1〉0〈AI2〉0 · · · 〈AIn〉0. (7.210)

The next step is to see how the supersymmetry constrains the dependence of the above correla-

tion functions on the couplings appearing in the superpotential. Suppose that our superpotential

contains a term of the form

λ

∫
d4xd2θΦ0 + h.c. (7.211)

where Φ0 is a composite chiral superfield. We want to analyze the depence on Λ̄ of the above

correlator

∂

∂λ̄
〈T (AI1(x1) · · ·AIn(xn))〉0 = 〈T (

∫
d4xd2θ̄Φ̄0A

I1(x1) · · ·AIn(xn))〉0 =

=
∫

d4x〈T (F0(x)AI1(x1) · · ·AIn(xn))〉0
(7.212)

Here F0 is the highest component of the antichiral supermultiplet Φ0.

Since F̄0(x) = − i
2
√

2
{Q̄α̇, χ̄α̇}

∂

∂λ̄
〈T (AI1(x1) · · ·AIn(xn))〉0 = − i

2
√

2

∫
d4x〈T ({Q̄α̇, χ̄α̇}AI1(x1) · · ·AIn(xn))〉0 = 0 (7.213)
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For the same argument given in the other case. Therefore this correlation function can depend

only holomorphically on the coupling appearing in the (microscopic) superpotential. Exploiting

also the other WI we can conclude that given any composite chiral superfield Φ its expectation

value on the vacuum 〈Φ〉0 is an holomorphic function of the couplings.

7.4 Renormalization properties of the WZ and NLS model: Non-renormali-

zation theorems

In this section we shall try to investigate the property of WZ and NLS models under renor-

malization. We shall look at this question from a modern point of view, namely in terms of

low energy (or Wilsonian) effective action. For a given physical system, it is a local 6 action,

but potentially with an infinite number of couplings, which is suitable to descrive the relevant

degrees of freedom below a certain scale of energy given by a cut-off µ.

In high energy the typical example of this situation is realized by the the chiral effective action

for QCD, theories describing the strong interactions at energy below ΛQCD in terms of pions.

This example also illustrates the common feature in the effective theories that low energy degrees

of freedom (pions) are very different from the degrees of freedom of the fundamental theory.

Given the theory at scale µ0, the effective theory at lower scale µ is obtained by integrating out

all the fluctuation in the range of energy µ < E < µ0. The resulting action can be expanded as

a (potentially) infinite sum of local operator

Sµ =
∫

d4x
∑

i

gi(µ)Oi(x). (7.214)

This local expansion is meaningful on length scale of the order 1/µ and it describes the processes

in a unitary way up to energy less than µ. The effect of integrating out the modes the modes

between µ− dµ and µ can be described by an infinite set of differential equations governing the

couplings in (7.214)

µ
dgi

dµ
= βi(gk, µ). (7.215)

If there is a point g0
k in the space of coupling such that βi(g0

k, µ) = 0, we shall call this point

fixed point. With this value of the couplings the theory does not change with the scale. Such

a theory is naturally called scale invariant theory. Suppose now to expand the above equation

around the fixed point g0
k. At the lowest order, we find

µ
dgi(µ)

dµ
=

∂βi

∂gj
(g0

k, µ)(gj(µ)− g0
k). (7.216)

6We shall explain below in which sense we are using the adjective local
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We can always redefine our basis of local operator so that the matrix βij(g0, µ) = ∂βi
∂gj

(g0
k, µ) is

diagonal βij(g0, µ) = λiδij , then the above system is easily solved

µ
dgi(µ)

dµ
= λi(gi(µ)− g0

i ) ⇒ gi(µ) = g0
i +

(
µ

µ0

)λi

ci (7.217)

when when we decrease µ, if λi > 0, gi(µ) is driven to g0
i , then the eigenvalue is said to be

irrelevant in the IR; if λi < 0 gi(µ) is driven away from gi
0, and λi is called relevant; finally

if λi = 0, gi(µ) is fixed at g0
i and λi is marginal.

Consider the case when the fixed point in the IR is a free theory (gaussian fixed point). This,

for example, occurs for any theory containing only scalars, spinors and U(1) fields if the the

interactions are sufficiently small (Coleman-Gross Theorem). A free theory is scale invariant

when we choose the following scaling for the fields

φ 7→
(

µ

µ0

)
φ, ψ 7→

(
µ

µ0

)3/2

ψ, Vµ 7→
(

µ

µ0

)
Vµ (7.218)

Then any operator built out of these fields will scale with its mass dimension ∆i, i.e. Oi(x) 7→
s∆i
i Oi(x). Therefore the scaling of the interaction associated to this operator Oi(x) in the

effective action is ∫
d4xOi(x) 7→

(
µ

µ0

)∆i−4 ∫
d4xOi(x). (7.219)

We immediately see that in the infrared the operator with ∆i > 4 are irrelevant, those with

∆i < 4 are relevant while ∆i = 4 are marginal. [Strictly speaking, we are assuming that the

quantum fluctuations are not not so large to destroy the free scaling. Namely, they are small

enough not to alter the qualitative picture implied by (7.218) and (7.219). However the marginal

operators are in delicate situation. It is sufficient a small perturbation to change their status:

they might become relevant or irrelevant. An operator which is still marginal after the inclusion

of the quantum correction is said exactly marginal.]

The above analysis shows us that the physics in the infrared is dominated by relevant and

marginal operator, while the contribution of irrelevant operator can be consistently neglected.

The fortune and the power of effective action is that the number of relevant and marginal

operators that we can write for a given problem is in general limited. This means that a good

description of our physical system below a certain scale µ will only require the inclusion of

limited number of terms in Sµ.

In the case of a free fixed point in the infrared we shall choose to parameterize our effective

theory as follows:

Sµ = Sfree +
∑

i

∫
d4xµ∆i−4gi(µ)Oi(x). (7.220)
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Here we have factored out the mass dimension of the operator Oi(x) and the coupling constants

gi(µ) get correction from loops of virtual particles with energy in the range µ < E < µ0.

Since the integration region is limited the quantum correction does not suffer neither UV or IR

divergences, even in the presence of massless particles. This should be contrasted with the usual

1−PI action which is strongly affected by these divergences.

For the moment we have just considered the case when the far IR is described by a free field

theory, but one can encounter other possibilities:

• Consider a theory where all excitations are massive. When our scale µ is below the mass of

the lightest excitation, there is no propagating degree of freedom and the system is frozen.

We have a trivial effective action: there is no propagation to be described.

• There are surviving massless degrees of freedom in the infrared which interact non-trivially.

The effective action in the IR is given by an interacting conformal field theory.

Constraining Sµ: holomorphicity and symmetries.

holomorphicity: We have just discussed how to construct an action that describes a physical

system below a certain scale µ starting from a microscopic theory valid at higher scale µ0. If

the microscopic theory is generic and it does not possess any particular property, the resulting

Wilsonian action Sµ will be a mess containing all sort of terms. There is no systematic way to

predict the structure of Sµ.

In this respect supersymmetric field theories are quite special. If we assume that the super-

symmetry is not spontaneously broken when µ flows in the infrared, the form of Sµ must obey

to very strict constraints. Consider, for example, a supersymmetric NLSM which describe the

physics at certain scale µ0 (microscopic theory), we want to follow its flow when µ0 is lowered

to µ.

To begin with, we shall assume that the physics at the scale µ is still described by a NLS model

(macroscopic theory) with a specified set of light chiral, which is not necessarily a simple subset

of those of the microscopic action at the scale µ0. We have no derivation of this assumption.

We can only check if it gives a self-consistent prediction.

Now we want to compare the structure of the superpotentials present in the two actions. On one

side there is Fµ0(gi, ΦI), on the other side we have the macroscopic superpotential Fµ, which

potentially depends on certain superfields Φ̂I , describing the light degrees of freedom, on the

couplings gi and ḡi and on the scale µ.

Property 1. [Holomorphicity] The superpotential Fµ does not depend on ḡi, namely it is

an holomorphic function of the couplings appearing in the microscopic superpotential.
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In order to prove this, we shall use a trick let us promote the couplings gi to chiral superfields

Gi, then Fµ0(gi, ΦI) 7→ Fµ0(Gi, ΦI). The original theory is recovered when Gi is chosen to be

constant. Since supersymmetry imposes that a chiral superfield can appear only holomorphically

in a superpotential, Fµ can depend on Gi and not on Ḡi. Setting Gi to be a constant we find

the property 1.

This trick might seems unusual and somewhat strange. However it is just the supersymmetric

version of the familiar technique used in QM to get selection rules. Consider the case of the

Stark effect, where we have rotationally invariant system, the Hydrogen atom, subject to a non-

invariant perturbation ∝ ~E ·~x. The dependence of the energy splitting on the background electric

field cannot be arbitrary. Indeed the simple remark that ~E can be considered a vector and not

simply three constant in the Hamiltonian produces selection rules for the possible contribution

of ~E (Wigner-Eckart theorem).

symmetry: R-symmetry. Further constraint on the form of the superpotential Fµ can come

from the the bosonic symmetries of the microscopic theory. In supersymmetric theories, a special

role is played by the bosonic symmetries that commutes with the Poincarè generators, but they

do not with the supersymmetry charges:

[B`, Q
I
α] = (S`)I

LQL
α [B`, Q̄

I
α̇] = −(S∗` )I

LQ̄L
α̇, (7.221)

where Sl is an hermitian matrix. In a theory with just one supersymmetry, the above commu-

tation relation reduces to

[B`, Qα] = S`Qα [B`, Q̄α̇] = −S`Q̄
L
α̇, (7.222)

with S` a real number. The B` for which S` does not vanish must generate abelian U(1)

symmetries. In fact

[Br, [Bs, Qα]] + [Bs, [Qα, Br]] + [Qα, [Br, Bs]] = 0 ⇒ f k
rs Sk = 0. (7.223)

This, in turn, implies that the vector {Sk} belongs to the kernel of the Killing form and thus its

entries can be different from zero only in the abelian sector of the bosonic internal symmetry.

Then we can define at most a single (independent) U(1) generator with the following properties

[R,Qα] = −Qα [R, Q̄α̇] = Q̄L
α̇ (7.224)

The generator R is given by R = −
∑

` S`B`∑
S`S`

. This particular U(1) is called R-symmetry.

Determining the action of this symmetry on the chiral superfields requires a small generalization

of our previous approach. In the presence of an R−symmetry the superspace is defined by

SuperspaceN=1 =
N = 1 Poincaré supergroup

Lorentz Group× R-symmetry
. (7.225)
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Consequently the action of the R−symmetry charges is defined by

exp (iαR) exp
(−ixmPm + i(θQ + θ̄Q̄)

) ∼
exp (iαR) exp

(−ixmPm + i(θQ + θ̄Q̄)
)
exp (−iαR) =

=exp
(−ixmPm + i(e−iαθQ + eiαθ̄Q̄)

)
,

(7.226)

and on a chiral superfield it is given by

Φ 7→ Φ′(θ′, y′) = Φ(e−iαθ, y)einα, (7.227)

where we have assumed that the superfield possesses a global supercharge n. This means that

the component fields transforms as follows

φ(x) 7→ φ′(x′) = enαφ(x) χ(x) 7→ χ′(x′) = e(n−1)αχ(x) F (x) 7→ F ′(x′) = e(n−2)αF (x)

(7.228)

These transformations are consistent with the following assignment for the R−symmetry charges

of the superspace coordinates

R(θ) = 1, R(θ̄) = −1, R(dθ) = −1, R(dθ̄) = 1. (7.229)

Recall that dθ ∼ ∂
∂θ . Thus, in order to have an action that is invariant under R−symmetry the

superpotential term must carry a +2 R−charge
∫

d4y

∫
d2θ
−2

F
2

⇒ R(F) = 2. (7.230)

Other U(1) charges and the cubic superpotential in WZ model. Consider the case

of one chiral superfield and the standard superpotential of the Wess-Zumino model defined at

scale µ0

Fµ0 =
1
2
mµ0φ

2 +
λ

3
φ3 (7.231)

We shall promote the mass m to a chiral superfield M and the coupling constant to a chiral

superfield Λ. Then

Fµ0 =
1
2
Mµ0φ

2 +
Λ
3

φ3 (7.232)

We shall assume that Λ 7→ Λ′ = eiqΛαΛ and M 7→ M ′ = eiqMαM and Φ 7→ Φ′ = einαΦ, then
∫

d2θFµ0 7→
∫

d2θ′F ′µ0
=

∫
d2θ′(

1
2
M ′µ0φ

′2 +
Λ′

3
φ′3) =

=
∫

d2θ

[
ei(−2+qM+2n)α 1

2
Mµ0φ

2 + ei(−2+qΛ+3n)α Λ
3

φ3

] (7.233)

Therefore, in order to have an action, which is invariant under R−symmetry we have to impose

that qΛ = 2− 3n and qM = 2− 2n.
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Notice that is possible to define an additional U(1) under which the coordinate of the superspace

do not transform and the superpotential is uncharged. It is sufficient to choose qΛ = −3n and

qM = −2n. Then we have the following set of charges

UR(1) U(1)

Φ n n

M 2− 2n −2n

Λ 2− 3n −3n

Can we fix a sensible value of n? We can select n by imposing the UR(1) does not possess neither

gravitational nor gauge anomaly

gravitational : n + 2− 2n + 2− 3n = 4− 4n ⇒ n = 1

gauge : n3 + (2− 2n)3 + (3− 2n)3 = 0, which vanishes for n = 1.
(7.234)

With this choice we have the standard table

UR(1) U(1)

Φ 1 1

M 0 −2

Λ −1 −3

We want to find the superpotential at a lower scale µ. We shall assume that the theory is

described by the same chiral superfield. The superpotential must obey the UR(1) symmetry and

the additional U(1). Then w hat are the possible invariant monomials that we can construct

with the fields? The invariance of ΛαMβΦγ imposes

γn− (2n− 2)β − α(3n− 2) = 0 and γn− 2nβ − 3nα = 0 ⇒ α = γ and β = −γ. (7.235)

Thus all the monomials of the form are
(

ΛΦ
M

)γ are invariant. This, in turn, implies that any

function f
(

ΛΦ
M

)
will be unaltered by the above transformation.

Since the super-potential must have R−charge 2, let us also find all the monomials with this

property. The constraints are

γn−(2n−2)β−α(3n−2) = 2 and γn−2nβ−3nα = 0 ⇒ α = −2+γ and β = 3−γ. (7.236)

Therefore all the monomial with the right R−charge are Λγ−2M3−γΦγ = MΦ2
(

ΛΦ
M

)γ−2∼ MΦ2.

The most general superpotential obeying the above symmetries is then

Fµ = MµΦ2f

(
ΛΦ
Mµ

)
⇒ Fµ = mµΦ2f

(
λΦ
mµ

)
(7.237)

Since Fµ0 is an holomorphic we can expand it in a Laurent-series

Fµ =
∞∑

k=−∞
ak(mµ)1−kλkΦ2+k (7.238)

The explicit form of the function f can be restricted if we made the following assumptions
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Assumption 1: Smoothness of the limit λ → 0. This assumption imposes k ≥ 0

Assumption 2: Smoothness of the limit m → 0. More correctly we are taking λ and m to 0

with the additional requirement that m
λ 7→ 0.The Wilsonian action is regular in this limit and

thus this requires k ≤ 1.

With this restriction the above superpotential (7.237) reduces to

Fµ = a0(µ)mµΦ2 + a1(µ)λΦ3. (7.239)

Then we have the following effective action

Sµ =
1
2

∫
d4x

∫
d2θd2θ̄Z [Φ†Φ+ · · · ]+

∫
d4x

[∫
d2θ(a0(µ)mµΦ2 + a1(µ)λΦ3) + c.c.

]
(7.240)

In order to determine a0(µ) and a1(µ), let us compare the prediction of the two theories. If

we consider the limit λ → 0, we reach the free theory then the mass in the microscopic and

macroscopic theory have to be the same, this implies

a0(µ) =
1
2

µ0

µ
Z. (7.241)

[Recall that we have to normalize canonically the kinetic term to obtain the mass.] But since we

are approaching a free theory Z = µ/µ=0 and consequently. a0 = 1/2. To obtain a1, we shall

impose that at tree level the two theories must give the same prediction. This immediately fixes

a1 = 1/3. Summarizing

Fµ =
1
2
mµΦ2 +

1
3
λΦ3. (7.242)

Property 2. [Holomorphicity] In the WZ model the superpotential Fµ is not renormalized.

Extension of the proof to any superpotential. Consider now the case of a generic

superpotential in the microscopic theory F(Φi, µ0). A useful trick it is to replace the above

superpotential with Y F(Φi, µ0), where Y is a chiral superfield. The original theory is then

recovered for Y = 1. The enlarged theory possesses an UR(1) symmetry with the following

assignments for the charges

R[Y ] = 2 and R[Φi] = 0. (7.243)

Assume now that the superpotential depends on the same set of chiral superfield at the scale µ

as well. Then holomorphicity and R−symmetry implies that the superpotential must have the

following form

YW(Φi, µ) (7.244)

As Y 7→ 0, we approach a free theory and the UV and IR action must match in perturbation

theory. This immediately implies that

W(Φi, µ) = F(Φi, µ). (7.245)
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Notice that the hypothesis the the IR and the UV theory are described by the same degree of

freedom appear to be self-consistent. This also is an agreement with the Coleman-Gross theorem

that the scalar/spinor theory are infrared free.

The Kahler potential. We have seen that the renormalization of the superpotential is

severely constrained, one might wonder whether something special occurs for the Kahler poten-

tial K(Φ,Φ†). Unfortunately the answer is not. There is no particular constraint for dependence

of the renormalized K(Φ, Φ†) on the coupling of the microscopic theory. Both gi and ḡi can ap-

pear. For example a simple one-loop computation shows that the wave function renormalization

in the WZ model yields

Z = 1 + #|g|2 log
(

µ2
0

µ2

)
. (7.246)

7.5 Integrating out (and in)

For the moment we have just examined cases where the IR degrees of freedom coincide with the

UV ones. Consider now the following superpotential with two chiral superfields

W =
M

2
Φ2

H +
g

2
ΦHΦ2

0 (7.247)

We want to integrate out all the modes down to µ < M . At this energy the superfield ΦH is no

longer dynamical and it can be integrated out.

Integrating using symmetries. First of all consider the case of UR(1), the invariance of the

action imposes the following constrains for the charges

qM + 2qH − 2 = 0 and qg + qH + 2q0 − 2 = 0. (7.248)

For a generic U(1) we have the following constrain for the charges

q̂M + 2q̂H = 0 and q̂g + q̂H + 2q̂0 = 0. (7.249)

Therefore apart from the U1(R), we can define two additional U(1): UA(1) and UB(1). The

solution of the constrains (7.249) depends on two free parameters. The above constraints can

be, for example, by the following assignments of charges (a different choice will not affect the

final result)

UR(1) UA(1) UB(1)

ΦH 1 1 0

Φ0 1/2 0 1

M 0 −2 0

g 0 −1 −2
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Consider now the invariant monomial we can construct out of M , g and Φ0. The invariance

under UB(1) selects: Mα(gΦ2
0)

β; that under UA(1) imposes
(

gΦ2
0√

M

)β
. Finally, the UR(1) fixes

β = 2. Therefore the only possible superpotential compatible with the symmeetries is

a0(µ)
g2

M
Φ4

0. (7.250)

Comparing the three level perturbation theory we have a0(µ) = −1/8. This result can be checked

by integrating out the field ΦH through its equation of motion

∂F
∂ΦH

= MΦH +
g

2
Φ2

0 = 0 ⇒ ΦH = − g

2M
Φ2

0 ⇒ F = − g2

8M
Φ4

0. (7.251)

Making the example more interesting. Let us consider what happens if we add a cubic

term in Φ3
H

F =
M

2
Φ2

H +
g

2
ΦHΦ2

0 +
y

6
Φ3

H (7.252)

We want to integrate out all the modes down to µ < M . It appears natural to eliminate ΦH

from the dynamical degrees of freedom and write a superpotential only for Φ0. The previous

symmetry extends to this case with this assignment for the charges

UR(1) UA(1) UB(1)

ΦH 1 1 0

Φ0 1/2 0 1

M 0 −2 0

g 0 −1 −2

y −1 −3 0

Consider now the invariant monomial we can construct out of M , g, y and Φ0. The invariance

under UB(1) selects: Mαyβ(gΦ2
0)

γ ; that under UA(1) imposes M− γ
2
− 3β

2 yβ(gΦ2
0)

γ . Finally, the

UR(1) fixes β = γ− 2: M−2γ+3yγ−2(gΦ2
0)

γ = M3

y2

(
gyΦ2

0
M2

)γ
.Thus the most general superpotential

compatible with the symmeetries is

F =
M3

y2
f

(
gyΦ2

0

M2

)
. (7.253)

The function cannot be determined by symmetry arguments. However it can be obtained by

eliminating the field ΦH through its equation of motion

∂F
∂ΦH

= MΦH +
g

2
Φ2

0 +
y

2
Φ2

H = 0 ⇒ ΦH = −M

y

(
1±

√
1− gyφ2

0

M2

)
. (7.254)

Then we obtain

F =
M3

3y2

[
1− 3gyφ2

0

2M2
±

(
1− gyφ2

0

M2

) √
1− gyφ2

0

M2

]
(7.255)
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The dependence is the one suggested by the symmetries, but there is an unexpected singularity.

The superpotential F has a brunch cut at φ2
0 = M2

gy . What is the meaning of this singularity?

Let us compute the mass of ΦH

M2
H =

∂2F
∂φ2

H

= M + yΦH = ∓M

√
1− gyφ2

0

M2
(7.256)

At φ2
0 = M2

gy , the superfield ΦH becomes massless and it should not be integrated out. This

is a lecture that we have to keep in mind: the presence of such a singularity in the effective

superpotential denote the appearance of massless modes around the singularity.

7.6 Spontaneous supersymmetry breaking in WZ and NLS model

We have already stressed that we have a spontaneous breaking of the supersymmetry if and only

if the energy of the vacuum is different from zero. In fact the susy algebra allosw us to write

the hamiltonian as follows

H = P 0 =
1
4
[{QI

1, Q̄
I
1̇
}+ {QI

2, Q̄
I
2̇
}] =

1
4
[{QI

1, (Q
I
1)
†}+ {QI

2, (Q
I
2)
†}], (7.257)

where we used that (QI
1,2)

† = Q̄I
1̇,2̇

. Consequently the Hamiltonian is positive definite

〈ψ|H|ψ〉 =
1
4

[∣∣∣∣QI
1|ψ〉

∣∣∣∣2 +
∣∣∣∣|Q̄I

1̇
|ψ〉∣∣∣∣2 +

∣∣∣∣QI
2|ψ〉

∣∣∣∣2 +
∣∣∣∣Q̄I

2̇
|ψ〉∣∣∣∣2

]
≥ 0. (7.258)

Let |Ω〉 be the vacuum of a supersymmetric theory. If supersymmetry is spontaneously broken,

there is at least one Q, which does not annihilate the vacuum, then

〈Ω|H|Ω〉 =
1
4

[∣∣∣∣QI
1|Ω〉

∣∣∣∣2 +
∣∣∣∣|Q̄I

1̇
|Ω〉∣∣∣∣2 +

∣∣∣∣QI
2|Ω〉

∣∣∣∣2 +
∣∣∣∣Q̄I

2̇
|Ω〉∣∣∣∣2

]
> 0. (7.259)

Vice versa if the vacuum energy is different from zero, the above equation implies that there is

at least one supersymmetric charge, which does not annihilate the vacuum. Namely, the super-

symmetry is spontaneously broken.

This condition of spontaneous breaking can be stated by saying that the vacuum expectation

value of the supersymmetry transformation of one of the field is different from zero:

〈Ω|δ(Field)|Ω〉 = 〈Ω|{εQ,Field}|Ω〉 6= 0. (7.260)

It would be zero if the vacuum is invariant. The field enjoying this property cannot be a boson

since its variation are fermions and a vev of fermions field will break Lorentz invariance. Then

it must be a fermion. For a theory containing only chiral multiplets, then we must have

〈Ω|δε,ε̄χ
I
α(x)|Ω〉 = 〈Ω|i

√
2(σmε̄)α∂mAI(x) +

√
2εαF I(x)|Ω〉 6= 0. (7.261)

59



The first contribution ∂mAI(x) vanishes for Poincarè invariance and we are left with the following

vev 〈Ω|F I(x)|Ω〉 6= 0. Therefore the supersimmetric is broken if and only if

〈Ω|F I(x)|Ω〉 6= 0. (7.262)

This condition is equivalent to the requirement that the scalar potential,

V =
∑

I

|FI |2, (7.263)

does not possess a minimum of vanishing energy.

Similarly, the supersymmetry is not spontaneously broken if and only there exists a solution of

the system of equations

FI = 0 admits a solution. (7.264)

Let us see investigate the generic spectrum of the theory in the presence of the breaking. We

must write the mass matrices. For the fermions, we find

M1/2 = (FIJ) =
(

∂F
∂AI∂AJ

)
, (7.265)

while for the scalars we get

M2
0 =




∂2V
∂AI∂ĀJ

∂2V
∂AI∂AJ

∂2V
∂ĀI∂ĀJ

∂2V
∂ĀI∂AJ


 =




∑

K

F̄KJFKI

∑

K

F̄KFKIJ

∑

K

FK F̄KIJ

∑

K

F̄KIFKJ


 . (7.266)

A non-supersymmetric vacuum solves

∂V

∂AI
=

∑

K

FIKF̄K = 0 but not FI = 0. (7.267)

This means that F̄K is not vanishing and it is a non-trivial element of the kernel of the matrix

FIJ . In other words the fermion ψ =
∑

F̄IχI is massless and take the name of goldstino. This

is the hallmark of spontaneous supersymmetric breaking as the goldstone boson is for the usual

bosonic symmetries.

However the spontaneous symmetry breaking cannot produce an arbitrary pattern for the

masses. In fact supersymmetries imposes the following constraint on theory containing scalars

and spinors

Tr
(
M2

0

)− 2Tr
(
M2

1/2

)
= 2

∑

IJ

FIJ F̄IJ − 2
∑

IJ

FIJ F̄IJ = 0. (7.268)

This mass formula in an abstract way can be rewritten as

STr(M2) ≡
∑

s

(−1)2s(2s + 1)Tr
(
M2

s

)
= 0, (7.269)
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where STr is called supertrace and M2 denote the mass matrix of all degrees of freedom of

the theory bosonic and fermionic. Note that the boson states contribute with a plus sign while

fermion states with the minus sign, but all the states are weighted with the spin degeneracy.

The above supertrace formula also allows us to illustrate the generic pattern of the mass splitting

in the spontaneous breaking. Let us apply the formula to a chiral multiplet. First of all, (7.269)

implies that the two real components (X,Y ) of the complex scalar A are no longer degenerate,

otherwise all the states are still degenerate and there is no breaking. Then, if we parameterize

the spectrum as follows m2
X = m2

χ + ∆1, m2
Y = m2

χ + ∆2, where m2
χ is the square mass of the

fermion, we find

0 = m2
X + m2

Y − 2m2
χ = ∆1 + ∆2 ⇒ ∆1 = −∆2 = ∆, (7.270)

see fig. below One of the scalar is always lighter than the fermion: which one depends on the

(A,   )

(X or Y)

(X or Y)
m  +

m  -

m

|∆|

|∆|

2

2

2χ
χ

Figure 1: mass splitting in spontaneous supersymmetry breaking

sign of ∆. This is bad new for a phenomenological applictation: the selectron cannot be lighter

than the electron.

A remark on the possibility of spontaneously breaking supersymmetry (SSB) is in order. Su-

persymmetry is unbroken if and only if

FI(A) =
∂F
∂ΦI

(A) = 0, with I = 1, . . . , N. (7.271)

These are N complex equation in N complex unknowns and so there will be generically a

solution. Generically means that by making an arbitrary small change in the couplings we move

from a theory with SSB to a theory with unbroken supersymmetry.

Restricting the form of the superpotential by imposing global symmetries improves the situations

only partially. If the global symmetries commute with the supersymmetry charges, the presence

of supersymmetric vacua is still a generic feature. The situation changes if we consider a

potential invariant under R−symmetry, which spontaneously breaks UR(1). In fact if UR(1) is

spontaneously broken, there is a charged scalar field, which takes an expectation value different
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from zero on the vacuum. For simplicity, we shall assume that carries R−charge equal to 1 and

we shall denoted with A1. Since the superpotential is UR(1) invariant we can write it as

F(A1, A2, . . . , AN ) = A2
1f

(
A2

Aq2
1

, · · · ,
AN

AqN
1

)
≡ A2

1f(U2, . . . , UN ). (7.272)

The conditions for having a supersymmetric minimum are

f(U2, . . . , UN ) = 0
∂f

∂Ui
(U2, · · · , UN ) = 0, (7.273)

where we have used A1 6= 0. These are N equations in N −1 unknowns. No solution generically

exists. Therefore we have the following net result:

if the superpotential is a generic function constrained only by global symmetries supersymmetry

is spontaneously broken if and only if there is a spontaneous breaking of the R−symmetry.

A famous Example: The O’ Raifeartaigh model. Consider the WZ model containing

three chiral superfield Φ0, Φ1 and Φ2 with a superpotential of the following form

F = µΦ0 + mΦ1Φ2 + gΦ0Φ2
1. (7.274)

Among the renormalizable superpotentials, this superpotential is completely specified by the Z2

symmetry

P (Φ0) = Φ0 P (Φ1) = −Φ1 P (Φ2) = −Φ2 (7.275)

and the by the following assignment of the supercharges

R(Φ0) = 2 R(Φ1) = 0 R(Φ2) = 2 (7.276)

The supersymmetric vacua of the theory must solve the following three equations

F0 =µ + gA2
1 = 0 (7.277)

F1 =mA2 + 2gA0A1 = 0 (7.278)

F2 =mA1 = 0 (7.279)

The last equation implies that A1 must vanish. Then F0 = µ and F1 = mA2, thus no su-

persymmetric solution exists. To find the actual vacuum, we have to minimize the potential

V = |F0|2 + |F1|2 + |F2|2

∂V

∂A0
=F̄12gA1 = 0 (7.280)

∂V

∂A1
=F̄02gA1 + F̄12gA1 + F̄2m = 0 (7.281)

∂V

∂A2
=F̄1m = 0 (7.282)
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Notice tha A1 = 0 solve the first and the second equation since F2 ∝ A1. We have just

left with F̄1 = 0 ⇒ A2 = 0. Therefore there is a set of non-supersymmetric vacua with

(A0, A1, A2) = (v0, 0, 0) parameterized by the vev of A0. Let us compute the spectrum of this

model around these vacua. The mass matrix for the fermions is

Mf =
(

∂F
∂AI∂AJ

)
=




0 0 0

0 2gv0 m

0 m 0


 (7.283)

whose eigenvalues are
{

0, gv0 −
√

m2 + g2v0
2, gv0 +

√
m2 + g2v0

2
}

. Thus the square of the

fermionic masses are {0,m2
F1,m

2
F2} =

{
0,

(
gv0 −

√
m2 + g2v0

2
)2

,
(
gv0 +

√
m2 + g2v0

2
)2

}
.

Reconstructing the mass of the scalars is a little bit more involved. We have the following

mass matrix

M2
s =




0 0 0 0 0 0

0 m2 + 4g2v2
0 2gmv0 0 2gµ 0

0 2gmv0 m2 0 0 0

0 0 0 0 0 0

0 2gµ 0 0 m2 + 4g2v2
0 2gmv0

0 0 0 0 2gmv0 m2




. (7.284)

If we diagonalize we obtain the following pattern for the scalar masses


0, 0,

(
gv0 −

√
µ2

4v2
0

+ m2 + g2v2
0 + gµ

)2

− µ2

4v2
0

,

(
gv0 −

√
µ2

4v2
0

+ m2 + g2v2
0 − gµ

)2

− µ2

4v2
0

,

(
gv0 +

√
µ2

4v2
0

+ m2 + g2v2
0 − gµ

)2

− µ2

4v2
0

,

(
gv0 +

√
µ2

4v2
0

+ m2 + g2v2
0 + gµ

)2

− µ2

4v2
0





.

We have two real massless scalars and 4 real massive real scalar. To understand better the

pattern of the breaking, consider, for example, the small µ limit, then the above expressions

simplify to


0, 0,

(
mF1 ± gµ√

m2 + g2v2
0

)2

,

(
mF2 ± gµ√

m2 + g2v2
0

)2


.

and the general pattern becomes manifest. The two massless scalars correspond to the goldston

mode associate to the R−symmetry breaking.
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8 Vector superfield

The name vector superfield is actually misleading. It does not refer to the properties of transfor-

mation of the superfield under the Lorentz group, but to the field of maximal spin present in it.

A more correct, but less used name is real superfield.

To begin with, we shall again consider the scalar superfield and we shall try to reduce the repre-

sentation carried by this superfield following a different path. The generator of supersymmetry

transformation is an hermitian operator:

(εQ + ε̄Q̄); (8.285)

thus it cannot alter the reality properties of a superfield. Therefore a constraint of the form

V (x, θ, θ̄) = V †(x, θ, θ̄) (8.286)

defines another invariant subspace (under supersymmetry transformations). Recalling that

(λψ)† = λ̄ψ̄ and (λσnψ̄)† = ψσnλ̄ it is a straightforward exercise to show that the most general

real superfield has the following form

V (x, θ, θ̄) =C(x) + iθχ(x)− iχ̄(x)θ̄ +
i

2
H(x)θ2 − i

2
H†(x)θ̄2 − Vm(x)θσmθ̄+

+ iλ̄(x)θ̄θ2 − iθ̄2θλ(x) +
1
2
θ2θ̄2D(x),

(8.287)

where the fields Vm, C, D are real. The information carried by this super-field is still redundant.

In fact within the set of all real superfields there is the invariant subspace

Λ(x, θ, θ̄) + Λ†(x, θ, θ̄) (8.288)

where Λ(x, θ, θ̄) is a chiral superfield, i.e. D̄α̇Λ(x, θ, θ̄) = 0. The real super-fields (8.288) are

somehow trivial: they simply carry a replica of the chiral super-fields already discussed. We

can eliminate this redundancy by introducing the following equivalence relation among vector

super-fields

V (x, θ, θ̄) ∼ Ṽ (x, θ, θ̄) iff V (x, θ, θ̄)− Ṽ (x, θ, θ̄) = Λ(x, θ, θ̄) + Λ†(x, θ, θ̄), (8.289)

with D̄α̇Λ(x, θ, θ̄) = 0. In order to implement this equivalence relation it is convenient to change

the parametrization used for the vector super-field and to write

V (x, θ, θ̄) =C(x) + iθχ(x)− iχ̄(x)θ̄ +
i

2
H(x)θ2 − i

2
H†(x)θ̄2 − Vm(x)θσmθ̄+

+ iθ2θ̄

[
λ̄(x) +

i

2
σ̄m∂mχ(x)

]
− iθ̄2θ

[
λ(x) +

i

2
σm∂mχ̄(x)

]
+

+
1
2
θ2θ̄2

(
D(x) +

1
2
¤C(x)

)
.

(8.290)
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In this form the presence of the hidden real chiral super-field is more manifest. Now if we recall

the complete expansion for the chiral super-field Λ(x, θ, θ̄)

Λ(x, θ, θ̄) =A(x) +
√

2ψ(x)θ + θ2F (x) + iθσmθ̄∂mA(x)− i√
2
θ2∂mψσmθ̄ +

1
4
θ2θ̄2¤A(x),

the above equivalence relation in components reads

C(x) ∼ C̃(x) if C̃(x) = C(x) + A(x) + A†(x)

χ(x) ∼ χ̃(x) if χ̃(x) = χ(x)− i
√

2ψ(x)

H(x) ∼ H̃(x) if H̃(x) = H(x)− 2iF (x)

Vm(x) ∼ Ṽm(x) if Ṽm(x) = Vm(x)− i∂m(A(x)−A†(x))

λ(x) ∼ λ̃(x) if λ̃(x) = λ(x)

D(x) ∼ D̃(x) if D̃(x) = D(x).

(8.291)

This equivalence relation among different vector superfields is reminiscent of the usual gauge

invariance. In particular, in the case of field Vm, it has exactly the form of a U(1) gauge

transformation whose parameter is given by the imaginary part of A(x).

This naturally suggests to use V (x, θ, θ̄) to describe the supersymmetric U(1) gauge multiplet.

However the (on-shell) vector multiplet must only contain a vector and a Majorana (or Weyl)

spinor, while the superfield (8.290) appears to accomodate additional scalar and spinor fields.

These degrees of freedom are actually unphysical and they can be eliminated by means of the

the gauge transformation generated by the chiral superfield

Λ̃(x, θ, θ̄) =
1
2
(−C(x) + if(x))− iχ(x)θ − i

2
θ2H(x) +

i

2
θσmθ̄∂m(−C(x) + if(x))− (8.292)

− i√
2
θ2∂mψσmθ̄ +

1
8
θ2θ̄2¤(−C(x) + if(x)).

In fact we find that

V̂ (x, θ, θ̄) = V (x, θ, θ̄) + Λ̃(x, θ, θ̄) + Λ̃†(x, θ, θ̄) =

= −Vm(x)θσmθ̄ + iθ2θ̄λ̄(x)− iθ̄2θλ(x) +
1
2
θ2θ̄2D(x).

(8.293)

where

Vm(x) ∼ Ṽm(x) if Ṽm(x) = Vm(x) + ∂mf(x), (8.294)

and λ and D are gauge-invariant. This choice for the equivalence-class representative is known

as “Wess-Zumino gauge”. It contains four bosonic fields, a U(1) field Vm (3 = 4 − 1 off-shell

d.o.f) and one real scalar D, and a Weyl spinor λ (4 off-shell d.o.f). We cannot further reduce

the representation without using the equations of motion.

The “Wess-Zumino gauge” does not only break the gauge invariance, but also supersymmetry.

In fact

δε,ε̄V̂ (x, θ, θ̄) = (εQ + ε̄Q)V̂ (x, θ, θ̄) 6∈ Wess-Zumino gauge (8.295)
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or explicitly

δε,ε̄V̂ (x, θ, θ̄) =− Vm(x)εσmθ̄ − Vm(x)θσmε̄− iθσmθ̄εσmλ̄(x) + iθσmθ̄λσmε̄− iθ̄2ελ(x) + iθ2ε̄λ̄+

+ εθθ̄2D(x) + ε̄θ̄θ2D(x) +
i

2
θ̄2(εσ`σ̄mθ)∂`Vm(x)− i

2
θ2(θ̄σ̄mσ`ε̄)∂`Vm(x)−

− 1
2
θ̄2θ2(εσm∂mλ̄(x) + ∂mλ(x)σmε̄). (8.296)

Now, let us perform the gauge transformation generated by the chiral supefield

Λ(y, θ) =− ε̄σ̄mθVm(y)− iθ2ε̄λ̄(y) = −ε̄σ̄mθVm(x)− iε̄σ̄mθθσnθ̄∂nVm − iθ2ε̄λ̄(x) =

=θσmε̄Vm(x) +
i

2
θ2θ̄σ̄nσmε̄∂nVm − iθ2ε̄λ̄(x)

on the vector superfield V̂ (x, θ, θ̄) + δε,ε̄V̂ (x, θ, θ̄). We find

V̂ ′ =V̂ (x, θ, θ̄) + δε,ε̄V̂ (x, θ, θ̄) + δΛ,Λ†(V̂ + δε,ε̄V̂ (x, θ, θ̄)) =

=− (Vm(x) + iε̄σ̄mλ− iλ̄(x)σ̄mε)θσmθ̄ + iθ2θ̄
(
λ̄(x)− Flmσ̄m`ε̄− iε̄D(x)

)
− (8.297)

− iθ̄2
(
λ(x)− εσ`mF`m + iεD(x)

)
θ +

1
2
θ2θ̄2

(
D(x)− εσm∂mλ̄(x)− ∂mλ(x)σmε̄

)
.

This superfield is again in the Wess-Zumino gauge. Therefore we can define a combination of

the supersymmetry and gauge transformations, which leaves the Wess-Zumino gauge invariant.

It corresponds to the following transformations

δVm(x) =iε̄σ̄mλ + iεσmλ̄(x) (8.298a)

δλ(x) =σ`mεF`m(x) + iεD(x) (8.298b)

δD(x) =ε̄σ̄m∂mλ(x)− εσm∂mλ̄(x) (8.298c)

These transformations do not close the standard super-symmetry algebra. For example

[δξ, δε]Vm =iε̄σ̄mσrsξFrs(x)− ε̄σ̄mξD(x) + c.c.− (ε ↔ ξ) = 2iFmr(ε̄σ̄rξ − ξ̄σ̄rε) =

=2i∂m[Vr(ε̄σ̄rξ − ξ̄σ̄rε)]
gauge transformation

− 2i(ε̄σ̄rξ − ξ̄σ̄rε)∂rVm

translations

(8.299)

The commutator does not simply yield a translation, but also a gauge transformation. This

is not in contradiction the the supersymmetry algebra. In fact (8.298) are the composition of

a supersymmetry and a field dependent gauge transformation. This additional contribution is

responsible for the new term in the commutator. In this framework local gauge transformations

and supersymmetry merged in a unique giant supergroup and they cannot be disentangled. This

is price to be paid if we want to throw out of the game the fields C, H and χ.

This analysis suggests a reduced framework for the off-shell description of the gauge multiplet.

We forget about the vector superfield and we consider, as a starting point, a multiplet given by
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(Vm, λ, D) endowed with the super-transformations (8.298) and with the gauge Vm 7→ Vm +∂mf .

Then one looks for an action that is invariant under (8.298) without any reference to superspace.

A final technical, but very useful remark on the Wess Zumino gauge. In this gauge we cannot

consider arbitrary powers of the vector field. In fact the following equalities hold

V̂ (x, θ, θ̄) = −Vm(x)θσmθ̄ + iθ2θ̄λ̄(x)− iθ̄2θλ(x) +
1
2
θ2θ̄2D(x)

V̂ 2(x, θ, θ̄) = Vm(x)θσmθ̄Vn(x)θσnθ̄ = −1
2
VmV mθ2θ̄2

V̂ 3(x, θ, θ̄) = 0.

(8.300)

8.1 The action for the abelian vector superfield

We have stressed that the vector superfield has the correct matter content to describe the

supersymmetric version of a U(1) gauge theory. In the following we shall show how to construct

an action for this superfield. This action will describe a U(1) gauge field and a Majorana spinor.

The first step is to construct a superfield carrying only the gauge invariant part of Vm: i.e.

the analog of the field strength. This can be obtained by taking a certain number of covariant

derivatived of V . To begin with, let us consider the action of Dα on V , then

DαṼ = Dα(V + Λ + Λ̄†) = DαV + DαΛ. (8.301)

This remove the dependence on the antichiral part of the gauge transformation. Next, let us

take derivative D̄β̇,

D̄β̇DαṼ = D̄β̇DαV + D̄β̇DαΛ = D̄β̇DαV + {D̄β̇, Dα}Λ = D̄β̇DαV − 2iσm
αβ̇

∂mΛ. (8.302)

It is clear from the above result, that the superfield

Wα = −1
4
D̄2DαV, (8.303)

is gauge invariant. A similar analysis show that

W̄α̇ = −1
4
D2D̄α̇V. (8.304)

is invariant as well. By the definition, the superfielsd Wα and W̄α̇ are chiral and antichiral

respectively. However they are not independent since they are related from the following con-

straint

D̄α̇W̄ α̇ = DβWβ, (8.305)
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which follows directly from their definition. Finding their explicit expression is a straightforward

exercise and we find

Wα =− iλα(y) +
(

δβ
αD(y)− i

2
(σmσ̄n) β

α Fmn(y)
)

θβ + θ2(σn∂nλ̄(y))α,

W̄α̇ =iλ̄α̇(ȳ) + θ̄β̇

(
εα̇β̇D(ȳ) +

i

2
εα̇ρ̇(σ̄nσm)ρ̇

β̇
Fnm(ȳ)

)
+ θ̄2(∂nλ(ȳ)σn)α̇.

(8.306)

Exercise: Show the expressions (8.306) for Wα and W̄α̇.

Solution: Since we are computing gauge invariant quantities we can use any gauge for the field V . We shall choose the

Wess-Zumino gauge and we shall write the superfield in terms of the variable y = x + iθσθ̄ or of the variable ȳ = x− iθσθ̄

V̂ (x, θ, θ̄) = −Vm(y)θσmθ̄ + iθ2θ̄λ̄(y)− iθ̄2θλ(y) +
1

2
θ2θ̄2 (D(y)− i∂nV n(y)) =

= −Vm(ȳ)θσmθ̄ + iθ2θ̄λ̄(ȳ)− iθ̄2θλ(ȳ) +
1

2
θ2θ̄2 (D(ȳ) + i∂nV n(ȳ)) .

Then

V̂α(y, θ, θ̄) ≡ DαV (y, θ, θ̄) =− Vm(y)(σmθ̄)α + 2iθαθ̄λ̄(y)− iθ̄2λα(y)+

+ θ̄2

(
δβ
αD(y)− i

2
(σmσ̄n) β

α Fmn(y)

)
θβ + θ̄2θ2(σn∂nλ̄(y))α,

from which we get

Wα =− 1

4
D̄2DαV = −1

4
D̄2DαV̂ = −1

4
εα̇β̇ ∂

∂θ̄α̇

∂

∂θ̄β̇
V̂α(y, θ, θ̄) =

=− iλα(y) +

(
δβ
αD(y)− i

2
(σmσ̄n) β

α Fmn(y)

)
θβ + θ2(σn∂nλ̄(y))α.

In the same way one shows the second result.

It is quite easy to write an invariant action by means of these two chiral fields. Since they

already contain the first derivatives of the fields, the action can be only a real Lorentz invariant

quadratic polynomial in W and W̄ . The only possibility is then

S = −1
8

∫
d2θd4xW 2 − 1

8

∫
d2θ̄d4xW̄ 2. (8.307)

The two contributions are given respectively by

−1
8

∫
d4xd2θW 2 =− 1

8

∫
d4x

(
WαD2Wα −DβWα(DβWα)

)
=

=
1
8

∫
d4x

(
−4iλσn∂nλ̄ + 2D2 − F abFab − i

2
εabcdFabFcd

) (8.308)

and

−1
8

∫
d4xd2θ̄W 2 =− 1

8

∫
d4x

(
W̄α̇(D̄2W̄ α̇)− D̄β̇W̄α̇(D̄β̇W̄ α̇)

)
=

=
1
8

∫
d4x

(
4i∂nλ(x)σnλ̄(x) + 2D2(x)− FabF

ab +
i

2
εabcdFabFcd

)
,

(8.309)
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where we have used that
Wα|θ̄,θ=0 = −iλα(x) W̄α̇

∣∣
θ̄,θ=0

= iλ̄α̇

DβWα|θ̄,θ=0 = εαβD(y)− i(σmn)αβFmn(x) D̄β̇W̄α̇

∣∣∣
θ̄,θ=0

= εα̇β̇D(ȳ) + i(σ̄nm) β̇α̇Fnm(x)

D2Wα

∣∣
θ̄,θ=0

= −4(σn∂nλ̄(x))α D̄2W̄α̇

∣∣
θ̄,θ=0

= −4(∂nλ(x)σn)α̇.
Then the action for the vector field is

S =− 1
8

∫
d2θd4xW 2 − 1

8

∫
d2θ̄d4xW̄ 2 =

=
∫

d4x

(
i

2
∂nλ(x)σnλ̄(x)− i

2
λ(x)σn∂nλ̄(x) +

1
2
D2(x)− 1

4
Fab(x)F ab(x)

)
=

=
∫

d4x

(
−iλ(x)σn∂nλ̄(x) +

1
2
D2(x)− 1

4
Fab(x)F ab(x)

)
.

(8.310)

This action describe a U(1) gauge particle and massless Majorana fermion. The field is not

dynamical. It has an algebraic Lagrangian and it can be eliminated by setting through its

equation of motion which gives D = 0.

The action described in (8.311) is not the most general supersymmetric U(1) action. In fact we

can consider

S = −1
8

∫
d2θd4xW 2 − 1

8

∫
d2θ̄d4xW̄ 2 − ξ

∫
d2θ̄d2θd4xV. (8.311)

The additional contribution is known as the Fayet-Ilioupulos term. It produces a linear term

in the D field. At the moment its role can appear pointless, since the D is not dynamical.

However it can and it will have role in the spontaneous of the supersymmetry.

9 Matter couplings and Non-abelian gauge theories

In the following we shall discuss how to couple a gauge vector superfield to a multiplet of

supersymmetric matter. Since there is no fundamental difference between the abelian and non-

abelian case, we shall consider directly the latter one. The procedure will also suggest how to

construct the generalization of the kinetic term to the non-abelian case.

To begin with, we shall consider a chiral superfield Φ, namely a superfield such that D̄α̇Φ = 0,

and we shall assume that each component field transforms in the unitary representation R of a

compact group G, i.e.

Φ 7→ Φ′ = U(λ)Φ = e−iλΦ con λ = λaT
a
R, (9.312)

The kinetic term −1
4Φ†Φ possess is obviously invariant under these global transformations

Φ†Φ 7→ Φ′†Φ′ = Φ†eiλ†e−iλΦ = Φ†eiλe−iλΦ = Φ†Φ. (9.313)

since λ† = λ. We want to promote this global symmetry to a local one. In the superspace

language, the constant hermitian matrix λ can be thought as a superfield which is both chiral and
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antichiral. In fact for a chiral superfield Λ(y, θ) satisfying the antichiral condition DαΛ(y, θ) = 0

as well, we find

0 = D̄α̇DαΛ(y, θ) = {D̄α̇, Dα}Λ(y, θ) = −2iσm
αα̇∂mΛ(y, θ) ⇒ Λ(y, θ) = Λ(θ). (9.314)

Consequently the condition DαΛ(y, θ) = DαΛ(θ) = 0 requires that Λ is independent of θ, i.e. it

is constant.

Then, to have a local transformation we shall replace the constant matrix λ with a local superfield

Λ(x, θ, θ̄) = Λa(x, θ, θ̄)T a
R. Since a gauge transformation must map a chiral into a chiral superfield

we must impose that

D̄α̇(e−iqΛ(x,θ,θ̄)Φ(y, θ)) = e−iqΛ(x,θ,θ̄)Φ(y, θ)D̄α̇Λ(x, θ, θ̄) = 0, (9.315)

namely D̄α̇Λ(x, θ, θ̄) = 0. The superfield Λ(x, θ, θ̄) is chiral. Thus

Φ 7→ Φ′(y, θ) = e−iΛ(y,θ)Φ(y, θ) Φ† 7→ Φ′†(ȳ, θ̄) = Φ†(ȳ, θ̄)eiΛ†(y,θ). (9.316)

The kinetic term is no longer invariant

Φ†Φ 7→ Φ′†Φ′ = Φ†eiΛ†(y,θ)e−iΛ(y,θ)Φ, (9.317)

since Λ†(y, θ) 6= Λ(y, θ). We can recover the invariance by exploiting the vector superfield. In

the abelian case V transforms as follows7

V 7→ V ′ = V + i(Λ(y, θ)− Λ†(y, θ)), (9.318)

and if we write this transformation in exponential form, we find

eV 7→ eV ′ = eV +i(Λ(y,θ)−Λ†(y,θ)) = e−iΛ†(y,θ)eV eiΛ(y,θ). (9.319)

This ensures that the following kinetic term is invariant in the abelian case

L = Φ†eV Φ. (9.320)

However we can also extend this result to the non-abelian case in a very simple way. We shall

consider a matrix vector superfield V = V aT a
R and we shall impose that this field transforms as

follows

eV 7→ eV ′ = e−iΛ†eV eiΛ. (9.321)
7We have change convention with respect to the previous section. We have used as chiral superfield iΛ instead

of Λ.
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under the non-abelian gauge transformation defined by the chiral superfield Λ(y, θ) = Λa(y, θ)T a
R.

With this choice the kinetic term (9.320) becomes invariant also when considering non abelian

transformation.

What is the relation between (9.321) and the usual gauge transformations for the component

fields?

Let us expand the gauge transformation (9.321) at the linear order in Λ by means of the following

result on BCH formula

eAeB =eA+LA/2[B+coth(LA/2)B]+O(B2)

eBeA =eAe−AeBeA = eAee−LAB = eA+LA/2[e−LAB+coth(LA/2)e−LAB]+O(B2) =

=eA+LA/2[−B+coth(LA/2)B]+O(B2) =

(9.322)

where LXY = [X, Y ] and e−x + coth(x/2)e−x = −1 + coth(x/2). We find

eV ′= e−iΛ†eV eiΛ = e−iΛ†eV +iLV/2[Λ+coth(LV/2)Λ]+O(Λ2)=eV +iLV/2[(Λ+Λ†)+coth(LV/2)(Λ−Λ†)]+O(Λ2),

(9.323)

which in turn implies

δV =iLV/2[(Λ + Λ†) + coth(LV/2)(Λ− Λ†)] + O(Λ2) =

=i(Λ− Λ†) + i

[
V,

Λ + Λ†

2

]
+ · · · .

(9.324)

At the lowest order the transformation is identical to the abelian one. This suggests that we

can choose the Wess-Zumino gauge also in the non abelian case. Unlike the abelian case, the

relationship between the component fields of V (x, θ, θ̄) and Λ(y, θ) in the Wess-Zumino gauge

fixing is nonlinear, due to the complicated form of (9.326). However the end result is the

same: VWZ(x, θ, θ̄) is as given in (8.293). Furthermore, as in the abelian case, the Wess-Zumino

decomposition does not fix the gauge freedom. It only constrains the difference i(Λ−Λ†), while

the sum (Λ + Λ†) is still an arbitrary quantity that can be used.

Let us analyze how this residual gauge transformation acts on the a vector super-field in the

Wess-Zumino gauge. To preserve the WZ−gauge the only non vanishing component in Λ− Λ†

must be

i(Λ− Λ†) = θσmθ̄∂mf. (9.325)

Then coth(LVWZ/2)(Λ − Λ†) = (Λ − Λ†) because all higher terms in the Taylor vanishes since

they are proportional to θ3 or higher powers. Therefore in the WZ-gauge the residual gauge

transformation linearize also in the superfield

δVWZ =i(Λ− Λ†) + i

[
VWZ ,

Λ + Λ†

2

]
+ O(Λ2) (9.326)
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Expanding this transformation, we find that Vm is a non abelian connection, while D and λ

transform in the adjoint representation. Therefore the known and usual rules of transformation

will become manifest only in the Wess-Zumino gauge. For a generic vector superfield, the gauge

transformation are realized in a higly non-linear way.

This analysis exhausts the discussion of the coupling with chiral superfields. But we are still

missing an action for the non abelian gauge superfield. There are many ways to construct this

action, but we find very instructive to follow as much as possible the pattern used in the non

supersymmetric case.

The fist step is to construct gauge covariant derivatives∇A with A = (α, α̇, m). They are defined

by the property

∇A(e−iΛ(y,θ)Φ) = e−iΛ(y,θ)∇A(Φ) (9.327)

Since the gauge transformation are realized by chiral field we have the immediate identification

∇α̇ = D̄α̇. (9.328)

We cannot identify ∇α with Dα. In fact

Dα(e−iΛ(y,θ)Φ) = Dα(e−iΛ(y,θ))Φ + eΛ(y,θ)DαΦ 6= e−iΛ(y,θ)Dα(Φ). (9.329)

However this mismatch can be easily resolved by defining the covariant derivative as follows

∇α = e−V DαeV . (9.330)

In fact

∇′αΦ′ = e−V ′DαeV ′Φ′ = e−iΛe−V eiΛ̄Dαe−iΛ̄eV eiΛe−iΛΦ = e−iΛe−V DαeV Φ = e−iΛ∇αΦ.

(9.331)

We shall define ∇` by setting

{∇α,∇α̇} = −2iσl
αα̇∇`. (9.332)

The super-connection is then defined by

AA = i(∇A −DA). (9.333)

We have

Aα̇ =i(∇α̇ −Dα̇) = 0 (9.334a)

Aα =i(∇α −Dα) = i(e−V (DαeV )) = i

(
DαV − 1

2
[V, DαV ] +

1
3!

[V, [V, DαV ]] + · · ·
)

(9.334b)

A` =
1
4
(σ̄α̇α

` {∇α,∇α̇} − ∂`) =
1
4
σ̄α̇α

` D̄α̇Aα (9.334c)
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Given the covariant derivatives, it is straightforward to define the curvature in the usual way

FAB = i[∇A,∇B} − iTC
AB∇C (9.335)

TC
AB is called supertorsion tensor. Its presence is due to the fact that the standard derivatives

(Dα, D̄α̇, ∂`) do not commute. The only non-vanishing contribution is T `
αα̇ = −2iσl

αα̇. Then

Fα̇β̇ =i{D̄α̇, D̄β̇} = 0

Fαβ =i{e−V DαeV , e−V DβeV } = e−V {Dα, Dβ}eV = 0

Fαβ̇ =i{∇α,∇β̇} − 2σm
αβ̇
∇m = 0 (due to the definition of ∇m)

F`α̇ =i[∇`,∇α̇] = i

[(
∂l − i

4
σ̄β̇β

` D̄β̇Aβ

)
, D̄α̇

]
= −1

4
σ̄β̇β

` D̄α̇D̄β̇Aβ =

=
1
8
εα̇β̇σ̄β̇β

` D̄2Aβ =
1
8
εα̇β̇σ̄β̇β

` D̄2(e−V DβeV ) ≡ −1
2
εα̇β̇σ̄β̇β

` Wβ

F`α =i[∇`,∇α] = (F`α̇)† =
(
−1

2
εα̇β̇σ̄β̇β

` Wβ

)†
= −1

2
σ`αβ̇εβ̇α̇W̄α̇

(9.336)

Therefore there are only two non vanishing component. Their content can be given in terms of

two spinor chiral superfields

Wα = −1
4
D̄2(e−V DαeV ) W̄α̇ = −1

4
D2(e−V D̄α̇eV ), (9.337)

which transform covariantly under gauge transformations

Wα 7→ W ′
α = e−iΛWαeiΛ W̄α̇ 7→ W̄ ′

α̇ = e−iΛ̄W̄α̇eiΛ̄ (9.338)

These two quantities reduce to their abelian analog in the abelian limit.

It is now straightforward to write an action for the non abelian case. It is formally identical to

the abelian case

S = − 1
32

∫
d2θd4xTr(W 2)− 1

32

∫
d2θ̄d4xTr(W̄ 2), (9.339)

where the chiral and antichiral Wα and W̄α̇ are given by (9.337). Moreover the trace is taken

with the following normalization Tr(T aT b) = 1
2δab.

Let us write this action in terms of the component fields present in the vector super-field. In

order to have an action with a finite number of terms, we shall work in Wess-Zumino gauge,

where eV = 1 + V + 1
2V 2

Wα = −1
4
D̄2(DαV − 1

2
[V,DαV ]) = −1

4
D̄2DαV +

1
8
D̄2[V, DαV ] (9.340)

The first contribution is the same of the abelian case, while the second one contains the non

abelian corrections. Therefore it is sufficient compute only the latter. Since

V DαV − (DαV )V =
1
2
[Vm, Vn](y)(σnσ̄mθ)αθ̄2 − i[Vm, (σmλ̄)α](y)θ2θ̄2, (9.341)
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we find

1
8
D̄2([V, DαV ]) =

1
8
εα̇β̇ ∂

∂θ̄α̇

∂

∂θ̄β̇
([V, DαV ]) = −1

4
[Vm, Vn](y)(σnσ̄mθ)α +

i

2
[Vm, (σmλ̄)α](y)θ2.

(9.342)

When we add these two contribution to the abelian part, we find the natural non abelian

generalization

Wα = −iλα(y) +
[
δβ
αD(y)− i

2
(σmσ̄n) β

α Fmn(y)
]

θβ + θ2
(
σnDnλ̄

)
α

, (9.343)

where

Dn = ∂n +
i

2
[Vn, ·] and Fmn = ∂mVn + ∂nVm +

i

2
[Vm, Vn]. (9.344)

Then the action

S =− 1
32

∫
d4x

∫
d2θTr(WαWα) + c.c. =

=− 1
32

∫
d4x

∫
d2θTr ([2θαD(y)− i(σrσ̄sθ)αFrs(y)] [2θαD(y)− i(σmσ̄nθ)αFmn(y)]−

− 4iθ2λσnDnλ̄
)

+ c.c. =

=− 1
32

∫
d4x

∫
d2θθ2Tr

(−2FmnFmn − 2iεrsmnFrsFmn + 4D2 − 4iλσnDnλ̄
)

+ c.c. =

=− 1
16

∫
d4xTr

(
FmnFmn + iεrsmnFrsFmn − 2D2 + 2iλσnDnλ̄

)
. + c.c. =

=
∫

d4x

[
−1

8
Tr(FmnFmn) +

1
4
Tr(D2)− i

4
Tr(λσnDnλ̄)

]

(9.345)

The action contains a non abelian gauge field, a Majorana spinor transforming in the adjoint

representation coupled to the gauge field and finally a non dynamical field D, that can be

eliminated through its equation of motion. For a pure supersymmetric gauge theory we have

simply D = 0.

Note that the action with the correct normalization is obtain after the rescaling V 7→ 2V . Then

S =
∫

d4x

[
−1

2
Tr(FmnFmn) + Tr(D2)− iTr(λσnDnλ̄)

]
(9.346)

Couplings to Matter: Let us investigate now the form of the coupling for the chiral super-

field, namely we want to expand the matter action

S =− 1
4

∫
d4xd2θd2θ̄[Φ†eV Φ] =

1
16

∫
d4xd2D̄2D2[Φ†eV Φ] =

=
1
16

∫
d4xd2D̄2D2[Φ†Φ] +

1
16

∫
d4xd2D̄2D2[Φ†V Φ] +

1
16

∫
d4xd2D̄2D2[Φ†V 2Φ]

(9.347)
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The complete expansion of this action is quite tedious. The first term is the free one and it

has been already discussed when we have considered the chiral superfield. The second term is

quite lengthy, however it is sufficient to keep track of the terms whose final contribution will be

proportional to θ2θ̄2. We find

Φ†(x, θ, θ̄)V (x, θ, θ̄)Φ(x, θ, θ̄) =
1
2
θ2θ̄2

(
i[A†V m(x)∂mA(x)− ∂nA†V nA] + χ̄σ̄mVmχ+

+
√

2iA†λχ + A†DA−
√

2iχ̄λ̄A
)
+lower terms. (9.348)

The second term is quite easy to be expanded

1
2
Φ†(x, θ, θ̄)V 2(x, θ, θ̄)Φ(x, θ, θ̄) = −1

4
A†VmV mAθ2θ̄2 + lower terms. (9.349)

All the contribution can be collected together to find the action
∫

d4x

[
−

(
∂mA† − i

1
2
A†Vm

)(
∂mA + i

1
2
VmA

)
− iχ̄σ̄m

(
∂m + i

1
2
Vm

)
χ+

+
i√
2
(A†λχ− λ̄χ̄A) +

1
2
A†DA

]
.

(9.350)

Again the correct normalization for this action are restored when V 7→ 2V , i.e.
∫

d4x
[
−

(
∂µA† − iA†Vµ

)
(∂µA + iVµA)− iχ̄σ̄m (∂m + iVm) χ+

+ i
√

2(A†λχ− λ̄χ̄A) + A†DA
]
.

(9.351)

We can complete this action by adding the kinetic term for the gauge field
∫

d4x
[
−

(
∂µA† − iA†Vµ

)
(∂µA + iVµA)− iχ̄σ̄m (∂m + iVm) χ+

+ i
√

2(A†λχ− λ̄χ̄A) + A†DA+

−1
2
Tr(FmnFmn) + Tr(D2)− iTr(λσnDnλ̄)

]
.

(9.352)

Note that if we integrate out the field D in (9.352) by means of its equation of motion, we find

a quartic contribution to the scalar potential. In fact

Da + A†T aA = 0 ⇒ D = −A†T aA ⇒ VD =
1
2
(A†T aA)(A†TaA) =

1
2
DaDa (9.353)

Therefore in terms of superfields, the correctly normalized supersymmetric action for a gauge

field coupled to a set of N chiral superfield ΦI transforming in the representation RI is

S =−
∫

d4x

∫
d2θ

[ τ

32πi
Tr(WαWα)− τ̄

32πi
Tr(W̄α̇W̄ α̇)

]
−

∫
d4x

∫
d2θd2θ̄

∑
s

ξsVUs(1)−

− 1
4

∫
d4xd2θd2θ̄

∑

I

[ΦI†e2VRI ΦI ] +
1
2

∫
d4xd2θF(ΦI) +

1
2

∫
d4xd2θ̄F∗(Φ†I),

(9.354)
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where Wα = −1
8D̄2(e−2V Dαe2V ), V = V aT a

adj and VRI
= V aT a

RI
. Moreover we have allowed for

a complex coupling τ , which we shall parameterize as follows

τ =
θY M

2π
+

4πi

g2
. (9.355)

This will produce an additional term which is given

− θY M

64π2i

∫
d4x4iTr(FmnF̃mn) = − θY M

16π2

∫
d4xTr(FmnF̃mn), (9.356)

namely a θ−term. The sum over s runs over all the U(1) factor and it takes into account the

possibility of adding Fayet-Iliopulos term.

NOTE: The coefficient can be a little bit simplified if we change the normalization in the

definition of the Grassmannian integral. Up to now
∫

d2θθ2 = −1
2
D2θ2 = −1

2
ερσ(Dα(Dαθρθσ)) = −ερσDρ(θσ) = Dσθσ = 2. (9.357)

We may choose to redefine the normalization of the integral so that
∫

d2θθ2 = 1 and
∫

d2θ̄θ̄2 = 1.

With this new normalization the above action takes the form

S =−
∫

d4x

∫
d2θ

[ τ

16πi
Tr(WαWα)− τ̄

16πi
Tr(W̄α̇W̄ α̇)

]
−

∫
d4x

∫
d2θd2θ̄

∑
s

ξsVUs(1)−

−
∫

d4xd2θd2θ̄
∑

I

[ΦI†e2VRI ΦI ] +
∫

d4xd2θF(ΦI) +
∫

d4xd2θ̄F∗(Φ†I),

(9.358)

This action will naturally contain a potential for the scalar which is a simple extension of the

one for the WZ model. Its general form is

V =
∑

I

|F I |2 +
1
2

∑
a

DaDa (9.359)

This means that the equation for a supersymmetric vacua are now

F I = 0 Da = 0. (9.360)
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9.1 General action for the N=1 matter-gauge system

The action that we have written in the previous section is not the most general Lagrangian for

the matter-gauge system with N = 1 supersymmetry. A part from the superpotential all the

other terms are the ones obeying to the criterium of renormalizability. We want to drop this

constraint and look for a more general action.

To begin with, let us consider the matter action. We already know that the most general action

is provided by

−
∫

d4kd2θd2θ̄K(ΦI†, ΦI). (9.361)

We shall assume that this action possesses an global invariance of the form

ΦI 7→ e−iΛΦI and ΦI† 7→ ΦI†eiΛ. (9.362)

We want to promote this global invariance. For a local transformation

ΦI† 7→ ΦI† 7→ ΦI†eiΛ†(y,θ) 6= ΦI†eiΛ(y,θ), (9.363)

instead

ΦI†e2V 7→ ΦI† 7→ ΦI†eiΛ†(y,θ)e−iΛ†(y,θ)e2V eiΛ(y,θ) = ΦI†e2V eiΛ(y,θ). (9.364)

Therefore we can have local gauge invariance with the minimal substitution

−
∫

d4x

∫
d2θd2θ̄K(ΦI†,ΦI) 7→ −

∫
d4x

∫
d2θd2θ̄K(ΦI†e2V , ΦI). (9.365)

The kinetic term for the gauge fields can be also generalized. Construct with the chiral fields W

and ΦI a scalar superfield H(ΦI ,W ), which is invariant under the gauge transformations. Any

function H yields an action with at most two derivatives on the gauge fields. However we shall

not choose a generic H. We shall focus out attention on H = Gab(Φ)Wα
a Wbα, where a and b are

indices in the adjoint representation. Then

1
16g2

∫
d2θGab(Φ)Wα

a Wbα = −1
4
D2(Gab(Φ)W β

a Wbβ) =

=− 1
64g2

Dα
(
Gab

I (Φ)DαΦIWα
a Wbα + 2Gab(Φ)DαW β

a Wbβ

)
=

=− 1
64g2

(
Gab

JI(Φ)DαΦJDαΦIW β
a Wbβ + Gab

I (Φ)D2ΦIW β
a Wbβ−

−2Gab
I (Φ)DαΦIDαW β

a Wbβ + 2Gab
I (Φ)DαΦIDαW β

a Wbβ + 2Gab(Φ)D2W β
a Wbβ+

+ 2Gab(Φ)DαW β
a DαWbβ

)
=

=− 1
64g2

(
2Gab(Φ)[D2W β

a Wbβ −DαW β
aβDαW β

b ]− 2Gab
JI(Φ)χIχJλaλb+

+ 4Gab
I (Φ)F Iλaλb + 4i

√
2Gab

I (Φ)χIλbDa − 4
√

2Gab
I (Φ)χIσmnλbFa,mn

)
.

(9.366)
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The first term will reproduce the N = 1 SYM action with the color indices contracted with the

standard matrix Gab. The other are the new couplings between gauge fields and matter: there

are four fermion interactions, Pauli couplings and further coupling with the auxiliary fields.

The expansion of the matter part we shall give simply the old result for the NLS model with all

the quantities covariantized with respect to the gauge group.

We can easily write the potential for the scalar once we have integrated the auxiliary fields. It

is of the usual form

V = GIJ̄FIF̄I +
1
2
Re(Gab)−1(AĪT aKĪ)(A

IT bKI) (9.367)

10 N=2 gauge theories

An N = 2 gauge theory reads in the N = 1 Language as N = 1 theory coupled to a chiral

multiplet in the adjoint representation. An N = 1 theory with this properties is given by

S =−
∫

d4x

∫
d2θ

[ τ

16πi
Tr(WαWα)− τ̄

16πi
Tr(W̄α̇W̄ α̇)

]
−

∫
d4xd2θd2θ̄Ψe2V Ψ, (10.368)

where Ψ is chiral field in the adjoint. If we define DmA ≡ ∂µA+ i[Vm, A], Dmλ ≡ ∂µλ+ i[Vm, λ]

and Dmχ ≡ ∂µχ + i[Vm, χ], in components the above action reads
∫

d4xTr
[
−2(DmA)†DmA− 2iχ̄σ̄mDmχ− 2iλ̄σ̄mDmλ− 1

2
FmnFmn + D2+

− 2i
√

2(A†{λ, χ} − {λ̄, χ̄}A) + 2D[A,A†]

]
.

(10.369)

where we have used the following definition (T a
adj)bc = −ifabc for writing everything in terms of

commutators. The additional and unusual factor 2 are due to the normalization of the generators

Tr(T aT b) = 1
2δab.

This action is invariant under N = 2 if and only if there exists an SUR(2) invariance under

which the fermions form a doublet. Let’s define (λI) = (λ, χ), then

εIJ{λI , λJ} = εIJ(λIλJ + λJλI) = 2εIJλIaλJb[Ta, Tb] = 2(λ1aλ2b − λ2aλ1b)[Ta, Tb] =

= 4λ1aλ2b[Ta, Tb] = 4λaχb[Ta, Tb] = 4{λ, χ}.
(10.370)

Then we can rewrite the above action as follows
∫

d4xTr
[
−2(DmA)†DmA− 2iλ̄I σ̄mDmλI − 1

2
FmnFmn + D2+

− i√
2
(A†εIJ{λI , λJ} − εIJ{λ̄I , λ̄J}A) + 2D[A,A†]

]
,

(10.371)

78



which is manifestly SU(2) invariant and therefore is N = 2 supersymmetric. Notice that the an

N = 2 gauge theory possesses a scalar potential

V = Tr([A,A†]2), (10.372)

and supersymmetric vacua given by [A,A†] = 0 (see Fawad).

We now consider the possibility of adding matter. A massless hypermultiplet contains two

massless spinors of opposite helicities. Since these two spinors belong to the same supermultiplet

must couple to the gauge field in the same way, namely they mast transform in the same

representation. This means that N = 2 theories are vectorlike. At the level of N = 1 superfield

content, this means that if a N = 1 chiral superfield transforming in the representation R, an

N = 1 chiral superfield transforming in the conjugate representation R̄ is present as well.

Therefore we can write N = 1 gauge interactions between the vector gauge multiplet and the

chiral superfield and this is the easy part. The not obvious part is to write the most general

superpotential which would give origin to an N = 2 theory. We have at our disposal, apart from

the matter chiral superfields, the chiral superfield describing the N = 2 additional gauge degrees

of freedom. We shall denote the matter superfield in R representation with φa and with φa those

in the R̄ representation. The gauge gauge chiral superfield is written as Ψa
b = ΨA(TA)a

b, where

(TA)a
b are the generators in R⊗ R̄ representation. The superpotential is we have

F = baφ
a + baφa + c b

a Ψa
b −mφaφ

a + gφaΨa
bφ

b, (10.373)

where we limited ourselves to renormalizable interactions. We can allow for small generalizations.

If the R representation is reducible the mass and the cubic coupling might not be diagonal.

Moreover if R is a real representation we can allow for cubic couplings of the type dabcφaφbφc, but

these last couplings will be ruled out by requiring the invariance under N = 2 supersymmetry.

If we now expand, after a lengthy calculation, a manifest SU(2) invariance is recovered if an

only if

ba = ba = c b
a = 0 g = 1. (10.374)

We remain with the following superpotential for the N = 2 theory

F = −mφaφ
a + φaΨa

bφ
b. (10.375)

What about N = 4? In the language of N = 1 is given by a gauge multiplet coupled to tree

chiral superfields in the adjoint representations. Again we have to fix the superpotential. We

directly start from the previous result and we shall call all the superfields Ψi since they cannot

be distinguished. Then m is equal to zero since we deal with a massless multiplet. Moreover

(Ψ2)B
C = ΨA(TA)B

C = −iΨAfAB
C . (10.376)
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We are left with

F = ifABCΨ1AΨ2BΨ3C = Tr(Ψ1[Ψ2, Ψ3]). (10.377)

One can verify that this supepotential gives origin to a theory with an SU(4) invariance and

thus with an N = 4 supersymmetry.

Comment on massive hypermultiplets transformation and the appearance of the

Central charge.

10.1 N=2 superspace: the general form of N=2 supersymmetric gauge action

In the following we shall discuss some features of the N = 2 superspace in its simplest and naive

form, neglecting all the technical details and in particular the effect of the central charges. A

systematic presentation of the topic would require a set of dedicated lectures.

When we try to generalize the construction of the N = 1 to the N = 2 superpace, almost all the

steps works in the same way. The main difference is that everything acquires an SU(2) index

which keeps track of the R-symmetry 8:

(θ, θ̄) 7→ (θI

2
, θ̄I

2
) (10.378a)

(Q, Q̄) 7→ (QI

2
, Q̄I

2
) (10.378b)

(D, D̄) 7→ (DI

2
, D̄I

2
) (10.378c)

∫
d2θ 7→

∫
d2θ1d2θ2 (10.378d)

All these quantities will enjoy the same properties of the N = 1 case.

A generic N = 2 scalar superfield will be a function of x, θI and θ̄I and it is a singlet of SU(2).

We shall denote it by Φ(x, θI , θ̄I). This superfield will contain a huge number of components.

In order to reduce the number of components, as we did in N = 1 case, we shall impose a

constraint, which preserves supersymmetry and R−symmetry. The natural choice is

D̄IΨ(x, θI , θ̄I) = 0, (10.379)

we shall call the solutions of (10.379) N=2 chiral superfield , since they are the obvious general-

ization of the N = 1 chiral superfield. The above constraint is easily solved by introducing the
8There are differences related to the presence of central charges. The presence of the bosonic coordinates

associated to these generators leads to superfields which contains an infinite number of fields. One usually can

impose consistently that the superfields do not depends on these coordinates. For this reason, we shall neglect

the role of the central charges from now on. This implies that the representation of all the quantities is identical

to case N = 1 apart from the appearance of the SU(2) index.
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coordinates

z = x + iθIσθ̄I , (10.380)

which satisfies D̄Iz = 0. Then the above condition becomes

∂

∂θ̄I
Ψ(z, θI , θ̄I) = 0 ⇒ Ψ(x, θI , θ̄I) = Ψ(z, θI). (10.381)

The field content can be obtained by analyzing all the derivatives DI
α of the superfield at θI =

0, θ̄I = 0

Ψ|θ=θ̄I=0 = φ(x) DI
αΨ

∣∣
θI=θ̄I=0

= λI
α(x) DI

αDJ
βΨ

∣∣
θI=θ̄I=0

=
1
2
εIJFmn(x)σmn

αβ +
1
2
εαβCIJ(x)

1
2
εIJDI

αDJDKΨ
∣∣∣∣
θI=θ̄I=0

= χI
α(x)

1
4
εIKεJL(DIDJ)(DKDL)Ψ

∣∣∣∣
θI=θ̄I=0

= Z(x)

(10.382)

Therefore the content of the N=2 chiral superfield is

(φ(x), Z(x), CIJ(x), λI
α(x), χI

α(x), Fmn(x)) (10.383)

This superfield seems a natural candidate to describe gauge fields, since it naturally contains an

object transforming as a field strength. However, at the moment Fmn is not the curl of a vector

field, it is an arbitrary complex quantity. This means that we have to reduce the representation

by imposing another constraint. The right condition is

DIDJΨ = D̄ID̄JΨ† (10.384)

We can write down a solution of this constraint if we shall break the SU(2) covariance: first of

all we shall write (θI) = (θ, θ̃) and subsequently we shall expand the superfield Ψ in power of θ̃:

Ψ(z, θI) = Φ(z, θ) + i
√

2θ̃W(z, θ) + θ̃2F (z, θ). (10.385)

The superfield Ψ solves the constraint (10.384) if Wα is the chiral field strength superfield of a

vector N = 1 superfield V and F is given by

F (z, θ) =
∫

d2θ̄Φ†(z − iθσθ̄, θ, θ̄)e2V (z−iθσθ̄,θ,θ̄) (10.386)

where Φ†(x, θ, θ̄) is understood as the one given in (7.174). Then the whole action of N = 2

theory is simply obtained by taking

SN=2 =
∫

dzd2θd2θ̃(Ψ2) =
∫

dzd2θΦ(z, θ)F (z, θ) +
∫

dzd2θWα(z, θ)Wα(z, θ) =

=
∫

dz

∫
d2θd2θ̄Φ†(z − iθσθ̄, θ, θ̄)e2V (z−iθσθ̄,θ,θ̄)Φ(z, θ) +

∫
dzd2θWα(z, θ)Wα(z, θ).

(10.387)
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We have also the obvious generalizations

SN=2 =
∫

dzd2θd2θ̃G(Ψ) =
∫

dzd2θGab(Φ)W a(z, θ)W b(z, θ)+

+
∫

dzd2θGa(z, θ)F a(z, θ) =
∫

dzd2θGab(Φ)W a(z, θ)W b(z, θ)+

+
∫

dz

∫
d2θd2θ̄

[
Φ†(z − iθσθ̄, θ, θ̄)e2V (z−iθσθ̄,θ,θ̄)

]a
Ga(z, θ),

(10.388)

where Ga = ∂G
∂ψa and Ga = ∂2G

∂ψa∂ψb . In N=1 langauge the most general gauge theory with a

N = 2 supersymmetry is a gauged non-linear sigma model, where both the couplings of the

vector multiplet and the Kaheler potential are determined by one function G.
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A Background Field Method

When quantizing a gauge theory, the classical local symmetry δAµ = −Dµω possessed by the

Lagrangian9

L = − 1
2g2

FµνF
µν (A.389)

is not manifest in the intermediate steps of many perturbative calculations because of the gauge

fixing procedure. Thus an efficient use of the constraints originating from the presence of this

invariance is often difficult. A manifest (and partially fictitious) gauge invariance can be restored

in the perturbative formalism if we introduce a classical background field Aµ and we split the

original field Aµ as follows

Aµ = Aµ + Qµ, (A.390)

where Qµ is called the quantum field. The Lagrangian (A.389) written in terms of these two

fields, i.e.

L = − 1
2g2

Fµν(Q + A)Fµν(Q + A), (A.391)

exhibits two distinct local symmetries:

• Quantum symmetry:

δqAµ =0

δqQµ =−DµΩ− [Aµ,Ω] with Dµ· = ∂µ ·+[Qµ, ·]
(A.392)

• Classical symmetry:

δcAµ =−DµΘ with Dµ· = ∂µ ·+[Aµ, ·]
δcQµ =[Θ, Qµ]

(A.393)

When quantizing the field Qµ, we are obviously forced to break the quantum symmetry (A.392)

by introducing a gauge-fixing term, however it is not necessary to destroy the invariance (A.393).

This goal is achieved by choosing a gauge-fixing term that is invariant under (A.393). We can

use for example

Sg.f. = −1
ξ

∫
dx4(DµQµ)2. (A.394)

The ghost action is consequently given by

Sghost = 2i

∫
dx4c̄Dµ(Dµc + [Aµ, c]) = 2i

∫
dx4c̄Dµ(Dµc + [Qµ, c]), (A.395)

9In the following, a trace over the Lie algebra generators, which are taken anti-hermitian, is understood where

necessary. Moreover we shall use the Euclidean notation. This is in fact more suitable for a systematic loop

expansion.
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and it is manifestly invariant under (A.393). Summarizing the total action

Stot ≡ Sgauge + Sg.f. + Sghost

is unchanged by the classical transformations and this symmetry is therefore unbroken at the

quantum level if we use a regularization procedure that preserves it, e.g. dimensional regular-

ization.

We shall now explore the effects of this background symmetry on the full effective action Γ. To

begin with, we shall introduce

Z[J,A] =
∫

DQµe−Stot(Q,A)−J ·Q. (A.396)

This functional generator is invariant under background transformation if we assume that the

current J transforms as follows

δcJ = [Θ, J ]. (A.397)

The same invariance obviously holds for the connected generator

W [J,A] = − log(Z[J,A]) (A.398)

and for the effective action

Γ[Q̂,A] = W [J,A]− J · Q̂ where Q̂ =
δW [J,A]

δJ
, (A.399)

once we have chose the following trasformation rule for the classical field Q̂

δQ̂ = [Θ, Q̂]. (A.400)

In other words, the full effective action Γ[Q̂,A] must be a gauge-invariant functional of the fields

Q̂µ and Aµ with respect to the background symmetry (A.393) and (A.400).

At this stage, a natural question is how to relate the background field formalism to the usual

one. In order to answer this question, we perform the change of variable Q 7→ Q−A in the path

integral (A.396). The dependence on the background A disappears from Sgauge, which becomes

the standard Yang-Mills action for the field Q. However it is still present in the gauge fixing

term and consequently in the ghost action. We have then

Z[J,A] = eJ ·A
∫

DQµDcDc̄ e
−Sgauge(Q)+ 1

ξ

∫
d4x(Dµ(Qµ−Aµ))2)−2i

∫
d4xc̄DµDµc−J ·Q ≡ eJ ·AZ̄A[J ].

(A.401)

Here Z̄A[J ] is the standard functional generator for Yang-Mills Green-functions, but with the

unusual gauge-fixing 1
ξ (Dµ(Qµ −Aµ))2. The identity (A.401), in turn, entails

W [J,A] = −J ·A + WA[J ] (A.402)

84



and performing the Legendre transform

Γ[Q̂,A] = ΓA[Q̂ + A]. (A.403)

In other words the effective action in the background field formalism is the standard effective

action for a gauge fixing of the form 1
ξ (Dµ(Qµ −Aµ))2 evaluated for Qclass. = Q̂ + A.

At this point, there is a second question we should answer: what is the advantage of the

background field formalism? If we had to compute the entire Γ[Q̂,A], the advantage would be

insignificant. Actually the presence of the second source, the background field A, has increased

the number of 1-PI diagrams to compute. This morally balances the simplifications coming from

the recovered gauge invariance! However, this is not the end of the story.

For answering many important questions in the quantum theory, it is sufficient to know Γ[0,A]:

the generating function of 1-IP Green function with no external Q̂ field. Consider, for example,

the problem of determining the β−function of the theory. Since the same coupling g describes the

interactions of both background and quantum fields, the complete information about β−function

is already present in Γ[0,A]. But this is not the only simplification. In fact, since Γ[0,A] is

by construction a gauge invariant functional of the background field, a simple argument based

on dimensional analysis entails that the only possible divergent term must have the form of a

divergent constant times

Fµν(A)Fµν(A), (A.404)

with

Fµν(A) = ∂µAν − ∂νAµ + g[Aµ,Aν ]. (A.405)

In (A.405) we have restored the coupling constant through the usual change Aµ 7→ Aµg. If we

introduce the renormalized quantity

AR
µ = Z

−1/2
A Aµ and gR = Z−1

g g, (A.406)

eq. (A.405) reads

Fµν(A) =Z
1/2
A ∂µAR

ν − Z
1/2
A ∂νAR

µ + gRZAZg[AR
µ ,AR

ν ] =

=Z
1/2
A

(
∂µAR

ν − ∂νAR
µ + gRZ

1/2
A Zg[AR

µ ,AR
ν ]

)
.

(A.407)

This expression will have a gauge covariant form in terms of the renormalized quantities, as

required by the classical symmetry, if and only if the following Ward Identity holds

Zg = Z
−1/2
A . (A.408)
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This relation reduces the computation of the β−function of the theory to the computation of

the wave-function renormalization, which is a much simpler problem. In fact,

gB = gR(µ)µεZg = gR(µ)µεZ
−1/2
A ⇒ β(gR) = −εgR(µ) +

1
2
gR(µ)µ

∂ log ZA

∂µ
. (A.409)

It is worth mentioning that the β−function is not the only information that one can extract

from Γ[0,A]: one can also build S−matrix of the whole theory. This topic is however beyond

the scope of these notes.

A.1 β−function

To illustrate the use of the background field method (BFM), we shall now compute the one-loop

β−function for a gauge theory with an arbitrary matter content.

Because of the Ward Identity (B.462), we need to focus our attention on the quadratic part

Γ[0,A]. At one loop, this is determined by the vertices in the action which are quadratic in the

quantum field Qµ
10.

A.1.1 Gauge-contribution

In the gauge sector this term are given by

LY M+g.f. = −1
2
FµνFµν −

(
DµQνDµQν −

(
1− 1

ξ

)
(DµQµ)2

)
− 2gFµν [Qµ, Qν ] + O(Q3),

(A.410)

and they produce the following contributions:

Vertices with one A−line: We have just one vertex quadratic in the quantum field Q and

with one A−line. It yields

Igauge =
1
2

∫
d2ωpdd2ωk1d

2ωk2

(2π)4ω

d2ωqdd2ωr1d
2ωr2

(2π)4ω
δ2ω(p + k1 + k2)δ2ω(q + r1 + r2)×

×Aa
λ(p)Al

λ(q)Gabc
λµν(p, k1, k2)Glmn

ρστ (q, r1, r2)〈Qµ
b (k1)Qν

c (k2)Qσ
m(r1)Qτ

n(r2)〉0 =

=
∫

d2ωpd2ωqd2ωk1d
2ωk2

(2π)4ω
δ2ω(p + k1 + k2)δ2ω(q − k1 − k2)×

×Aa
λ(p)Al

λ(q)Gabc
λµν(p, k1, k2)Glmn

ρστ (q,−k1,−k2)∆
µσ
bm(k1)∆µσ

cn (k2) =

=
∫

d2ωqd2ωk1

(2π)4ω
Aa

λ(−q)Al
λ(q)Gabc

λµν(−q, k1, q − k1)Glmn
ρστ (q,−k1, k1 − q)∆µσ

bm(k1)∆µσ
cn (q − k1),

(A.411)

10The terms which are linear in the quantum field can be dropped by assuming that the background field A

satisfies the e.o.m.
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where the vertex Gabc
λµν(p, k1, k2) is implicitly defined by the identity

VAQQ =− 2gµ2−ω

∫
d2ωx

(
∂µQν [Aµ, Qν ]−

(
1− 1

ξ

)
(∂µQµ[Aν , Q

ν ]) + 2∂µAν [Qµ, Qν ]
)

=

=− igµ2−ω

2
fabc

∫
d2ωpd2ωk1d

2ωk2

(2π)4ω
δ2ω(p + k1 + k2)Aλ

a(p)Qµ
b (k1)Qν

c (k2)
(

(k1λ − k2λ)ηµν+

+
[
k2µ − pµ +

k1µ

ξ

]
ηλν +

[
pν − k1ν − k2ν

ξ

]
ηλµ

)
≡

≡
∫

d2ωpd2ωk1d
2ωk2

(2π)4ω
δ2ω(p + k1 + k2)Aλ

a(p)Qµ
b (k1)Qν

c (k2)G
λµν
abc (p, k1, k2)

(A.412)

We choose to work in Feynman gauge (ξ = 1) where the vertices can be rewritten in the following

simple form

VAQQ =− igµ2−ω

2
fabc

∫
d2ωpd2ωk1d

2ωk2

(2π)4ω
δ2ω(p + k1 + k2)Aλ

a(p)Qµ
b (k1)Qν

c (k2)×

× (
(2k1λ + pλ)ηµν − 2pµηλν + 2pνηλµ

) (A.413)

and the propagator is given by

∆µν
ab (p) =

δabδ
µν

p2
. (A.414)

The contribution is then given by

∫
d2ωk1

(2π)2ω

Gabc
λµν(−q, k1, q − k1)Glbc

ρµν(q,−k1, k1 − q)

k2
1(q − k1)2

=

=
∫ 1

0
dt

∫
d2ωk1

(2π)2ω

Gabc
λµν(−q, k1 + tq, q(1− t)− k1)Glbc

ρµν(q,−k1 − tq, k1 − q(1− t))

[k2
1 + t(1− t)q2]2

(A.415)

In expanding the above expression we can drop all the terms which are linear k1λ and we can

perform the substitution k1λk1µ 7→ 1
2ω δλµk2

1

− g2µ4−2ω

4
fabcf lbc

∫ 1

0
dt

∫
d2ωk1

(2π)2ω

[−2
((

(1− 2t)2ω − 4
)
qαqλ + 2(k1 · k1 + 2q · q)δαλ

)]

[k2
1 + t(1− t)q2]2

=

=− g2µ4−2ω

4
fabcf lbc

∫ 1

0
dt

Γ(1− ω)((1− t)tq·q)ω−2

22ω−1πω
×

× (
(ω − 1)

(
(1− 2t)2ω − 4

)
qαqλ + 2(((t− 1)t + 2)ω − 2)q·qδαλ

)
=

=− g2µ4−2ω

4
δalC2(G)

(
23−4ωπ

3
2
−ω(7ω − 4) csc(πω)(q·q)ω−2 (q·qδαλ − qαqλ)

Γ
(
ω + 1

2

)
)

=

=− g2µ4−2ωδalC2(G)
5 (q·qδαλ − qαqλ)

48π2(ω − 2)
+ O

(
(ω − 2)0

)
,

(A.416)
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where C2(G) is the quadratic Casimir of the adjoint representation. Therefore the divergent

part is

−5g2µ4−2ωC2(G)
48π2(ω − 2)

∫
d2ωq

(2π)2ω
Aλ

a(−q) (q·qδαλ − qαqλ) Aα
a (q) (A.417)

The contribution originating from the vertex with two A−lines vanishes since it is proportional

to the integral of 1/k2
1.

A.2 The ghost contribution

To complete the analysis in pure gauge theory we have to consider the ghost contribution. We

have again two different type of vertices:

Ghost Vertex with one A−field : In momentum space it reads

2igµ2−ω

∫
d2ωx (c̄[Aµ, ∂µc]− (∂µc̄)[Aµ, c]) =

=− gµ2−ω

∫
d2ωp d2ωq d2ωk

(2π)4ω
δ(p + q + k)c̄a(p)cb(q)Ac

µfabc(qµ − pµ) ≡

≡
∫

d2ωp d2ωq d2ωk

(2π)4ω
δ(p + q + k)c̄a(p)cb(q)Ac

µSµ
abc(p, q, k).

(A.418)

The ghost contribution to the effective action is then given by

1
2

∫
d2ωp d2ωq d2ωk

(2π)4ω

d2ωp1 d2ωq1 d2ωk1

(2π)4ω
δ(p1 + q1 + k1)δ(p + q + k)×

× c̄a(p)cb(q)Ac
µSµ

abc(p, q, k)c̄l(p1)cm(q1)An
νSν

lmn(p1, q2, k1) =

=− 1
2

∫
d2ωq d2ωk

(2π)4ω
Ac

µ(k)An
ν (−k)

Sµ
abc(q,−k − q, k)Sν

ban(−q, q + k,−k)
q2(q + k)2

.

(A.419)

The loop integral to be computed is

− 1
2

∫ 1

0
dt

∫
d2ωq

(2π)2ω

Sµ
abc(q − tk,−k(1− t)− q, k)Sν

ban(−q + tk, q + k(1− t),−k)
[q2 + t(1− t)k2]2

=

=
1
2
g2µ4−2ωδcnC2(G)

∫ 1

0
dt

∫
d2ωq

(2π)2ω

(
−kµkν(1− 2t)2 − 2q·qδµν

ω

)

[q2 + t(1− t)k2]2
=

=
1
2
g2µ4−2ωδcnC2(G)

∫ 1

0
dt

Γ(1− ω)
(
(ω − 1)kµkν(1− 2t)2 + 2(t− 1)tk·kδµν

)

(4π)ω((1− t)tk·k)2−ω
=

=
g2µ4−2ω

2
δcnC2(G)

41−2ωπ
3
2
−ω csc(πω)(k.k)ω−2 (kµkν − k · kδµν)

Γ
(
ω + 1

2

) =

=
g2µ4−2ω

2
δcnC2(G)

kαkλ − k.kδαλ

48π2(ω − 2)
+ O

(
(ω − 2)0

)

(A.420)
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Therefore the divergent part is

−g2µ4−2ωC2(G)
96π2(ω − 2)

∫
d2ωq

(2π)2ω
Aλ

a(−q)(q.qδαλ − qαqλ)Aα
a (q) + O

(
(ω − 2)0

)
(A.421)

The contribution originating from the ghost vertex with two A−lines vanishes since it is pro-

portional to the integral of 1/k2. Summarizing the gauge ghost contribution we have

−11g2µ4−2ωC2(G)
96π2(ω − 2)

∫
d2ωq

(2π)2ω
Aλ

a(−q)(q · qδαλ − qαqλ)Aα
a (q) + O

(
(ω − 2)0

)
(A.422)

A.3 Weyl/Majorana fermions

Next we consider the contribution of a left Weyl fermion transforming in the representation R

of the gauge group. The interaction for one field is given

−gµ2−ω

∫
d2ωpd2ωk1d

2ωk2

(2π)4ω
δ(p + k1 + k2)Aa

µ(p)ψ̄i(k1)γµT (R)
a

(1 + γ5)
2

ψi(k2), (A.423)

and it yields the following one-loop correction to the quadratic part of the effective action

g2µ4−2ω

2

∫
d2ωpd2ωk1d

2ωk2

(2π)4ω

d2ωqd2ωr1d
2ωr2

(2π)4ω
δ(p + k1 + k2)δ(q + r1 + r2)×

×Aa
µ(p)Ab

ν(q)ψ̄i(k1)γµT (R)
a

(1 + γ5)
2

ψi(k2)ψ̄(r1)γνT
(R)
b

(1 + γ5)
2

ψ(r2) =

=− g2µ4−2ω

2
Tr(T (R)

a T
(R)
b )

∫
d2ωqd2ωk1

(2π)4ω
Aa

µ(−q)Ab
ν(q)Tr

(
γµS(q − k1)γν (1 + γ5)

2
S(−k1)

)
=

=
g2µ4−2ω

2
C2(R)δab

∫
d2ωqd2ωk1

(2π)4ω
Aa

µ(−q)Ab
ν(q)Tr

(
γµS(q − k1)γν (1 + γ5)

2
S(−k1)

)
,

(A.424)

where S(p) is the fermion propagator and it is given by

S(p) =
i

6p = i
6p
p2

(A.425)

and Tr(T (R)
a T

(R)
b ) = −C2(R)δab. The loop integral to be performed is

1
2

∫
d2ωk1

(2π)2ω
Tr

(
γµ(6q− 6k1)γν 6k1(1− γ5)

(q − k1)2k2
1

)
=

=
1
2

∫ 1

0
dt

∫
d2ωk1

(2π)2ω
Tr

(
γµ(6q(1− t)− 6k1)γν(6k1 + t 6q)(1− γ5)

[k2
1 + t(1− t)q]2

)
=

=
1
2

∫ 1

0
dt

∫
d2ωk1

(2π)2ω
Tr

(
γµ(6q(1− t)− 6k1)γν(6k1 + t 6q)

[k2
1 + t(1− t)q]2

)
=

=− 1
2

∫ 1

0
dt

∫
d2ωk1

(2π)2ω

Tr (γµ 6k1γ
ν 6k1)

[k2
1 + t(1− t)q]2

+
1
2

∫ 1

0
dt(1− t)t

∫
d2ωk1

(2π)2ω

Tr (γµ 6qγν 6q)
[k2

1 + t(1− t)q]2
=

=− 2ω−1

∫ 1

0
dt

∫
d2ωk1

(2π)2ω

(2kµ
1 kν

1 − k1 · k1δ
µν)− t(1− t)(2qµqν − q · qδµν)

[k2
1 + t(1− t)q]2

=− 2ω−1

∫ 1

0
dt21−2ωπ−ω(t− 1)t((1− t)tq.q)ω−2Γ(2− ω) (qµqν − q.qδµν) =

(A.426)
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=− 2−ωπ−ω(q.q)ω−2Γ(2− ω)Γ(ω − 1)
(

Γ(ω + 1)
Γ(2ω)

− Γ(ω)
Γ(2ω − 1)

)
(qµqν − q.qδµν) =

=− qµqν − q.qδµν

24π2(ω − 2)
+ O

(
(ω − 2)0

) (A.427)

The divergent contribution to the action is

g2µ4−2ωC2(R)
48π2(ω − 2)

∫
d2ωq

(2π)2ω
Aa

µ(−q)(q.qδµν − qµqν)Aa
ν(q) + O

(
(ω − 2)0

)
, (A.428)

The contribution for right Weyl or massless majorana fermions is the same.

A.4 Scalars

The action for a scalar in the representation S is

S =
∫

d2ωxDµφ(Dµφ)†, (A.429)

with Dµφ = ∂µφ + gAa
µT

(S)
a φ. The vertex with one A-line is given by

g

∫
d2ωxAµ

a(φT (S)a∂µφ† + ∂µφT (S)a†φ†) =

=ig

∫
d2ωpd2ωk1d

2ωk2

(2π)4ω
δ2ω(p + k1 + k2)Aµ

a(p)φ(k1)T (S)aφ†(k2)(k2µ − k1µ) ≡

≡
∫

d2ωpd2ωk1d
2ωk2

(2π)4ω
δ2ω(p + k1 + k2)Aµ

a(p)φi(k1)φ
†
j(k2)V a;ij

µ (p, k1, k2)

(A.430)

1
2

∫
d2ωpd2ωk1d

2ωk2

(2π)4ω

d2ωqd2ωr1d
2ωr2

(2π)4ω
δ2ω(q + r1 + r2)δ2ω(p + k1 + k2)×

×Aµ
a(p)φi(k1)φ

†
j(k2)Aν

b (q)φk(r1)φ
†
l (r2)V a;ij

µ (p, k1, k2)V b;kl
ν (q, r1, r2) =

=
1
2

∫
d2ωqd2ωk1

(2π)4ω
Aµ

a(−q)Aν
b (q)∆il(k1)∆kj(q − k1)V a;ij

µ (−q, k1, q − k1)V b;kl
ν (q,−k1, k1 − q) =

=
1
2

∫
d2ωqd2ωk1

(2π)4ω
Aµ

a(−q)Aν
b (q)

V a;ij
µ (−q, k1, q − k1)V

b;ji
ν (q, k1 − q,−k1)

k2
1(q − k1)2

.

(A.431)

90



Then the loop integral to be computed is

− g2

2
Tr(T (S)aT (S)b)

∫
d2ωk1

(2π)2ω

(qµ − 2k1µ)(qν − 2k1ν)
k2

1(q − k1)2
=

=
g2

2
C2(S)δab

∫ 1

0
dt

∫
d2ωk1

(2π)2ω

(qµ(1− 2t)− 2k1µ)(qν(1− 2t)− 2k1ν)
[k2

1 + t(1− t)q2]2
=

=
g2

2
C2(S)δab

∫ 1

0
dt

∫
d2ωk1

(2π)2ω

qµqν(1− 2t)2 + 4k1µk1ν

[k2
1 + t(1− t)q2]2

=

=
g2

2
C2(S)δab

∫ 1

0
dt

[
(4π)−ω(1− 2t)2Γ(2− ω)qαqλ((1− t)tq · q)ω−2+

+ 21−2ωπ−ωΓ(1− ω)δαλ((1− t)tq · q)ω−1
]

=

=
g2

2
C2(S)δab 41−2ωπ

3
2
−ω csc(πω)(q · q)ω−2 (q · qδαλ − qαqλ)

Γ
(
ω + 1

2

) =

=
g2C2(S)δab

96π2(ω − 2)
(q.qδαλ − qαqλ) + O

(
(ω − 2)0

)

(A.432)

Since the vertex with two scalar and two A−limes yields a vanishing result, the divergent

contribution to the action is

g2µ4−2ωC2(S)
96π2(ω − 2)

∫
d2ωq

(2π)2ω
Aa

µ(−q)(q.qδµν − qµqν)Aa
ν(q) + O

(
(ω − 2)0

)
. (A.433)

A.5 Summary

In a gauge theory with nf Weyl fermions in the representation R and ns (complex) scalar field

in the representation S the divergent contributions is

− g2µ4−2ω

32π2(ω − 2)

(
11
3

C2(G)− 2nf

3
C2(R)− ns

3
C2(S)

) ∫
d2ωq

(2π)2ω
Aa

µ(−q)(q.qδµν − qµqν)Aa
ν(q) =

=
g2µ4−2ω

(4π)2(ω − 2)

(
11
3

C2(G)− 2nf

3
C2(R)− ns

3
C2(S)

)
1
2

∫
d2ωxFµν(x)Fµν(x)

(A.434)

where we have used
∫

d2ωq

(2π)2ω
Aa

µ(−q)(q.qδµν − qµqν)Aa
ν(q) =

=
∫

d2ωx

∫
d2ωqd2ωp

(2π)4ω
ei(p+q)xAa

µ(p)(q.qδµν − qµqν)Aa
ν(q) =

=
∫

d2ωxAa
µ(x)(−¤δµν + ∂µ∂ν)Aa

ν(x) =

=
∫

d2ωx(∂νA
a
µ(x)∂νAaµ(x)− (∂νAa

ν(x))2) =

=
1
2

∫
d2ωxF a

µν(x)Fµν
a (x) = −

∫
d2ωxFµν(x)Fµν(x)

(A.435)
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The wave-function renormalization ZA is then

ZA = 1− g2µ4−2ω

(4π)2(ω − 2)

(
11
3

C2(G)− 2nf

3
C2(R)− ns

3
C2(S)

)
(A.436)

Recalling that

β(gR) =
1
2
gR(µ)µ

∂ log ZA

∂µ

∣∣∣∣
ω=2

= −g3
R(µ)

(4π)2

(
11
3

C2(G)− 2nf

3
C2(R)− ns

3
C2(S)

)
. (A.437)

Below, we give a table summarizing the different contributions to the β−function

Gauge fields Weyl fermions complex scalars
11
3 C2(G) −2

3C2(R) −1
3C2(S)

B Anomalies

The Noether theorem translates the invariance of a classical field theory under a continuous

global symmetry into the existence of a divergenceless current

∂µJµ = 0, (B.438)

which, in turn, implies the presence of a conserved charge

Q =
∫

t=cost.
d3xJ0(x). (B.439)

At the quantum level, the invariance of the theory under a continuous global symmetry is instead

naturally expressed in terms of some Ward identities obeyed by the the correlation functions.

We must have

〈0|T∂µJµ(x)
N∏

i=1

Φi(xi)|0〉 = −
N∑

i=1

δ(x− xi)〈0|TδΦ(xi)
∏

j 6=i

Φj(xj)|0〉. (B.440)

Here δΦ(x) denote the variation of the operator Φ(x) under the symmetry. Obviously, the

simplest Ward identity to be satisfied is

〈0|∂µJµ(x)|0〉 = 0. (B.441)

Consider, now, a theory of a massless Dirac fermion coupled to a U(1) gauge field Aµ. Its action

is given by

S = i

∫
d4xψ̄γµ (∂µ + ieAµ) ψ. (B.442)

At the classical level, this action, a part from the obvious U(1) vector symmetry, is also invariant

under axial transformations, namely

ψ 7→ eαγ5ψ ψ̄ 7→ ψ̄eαγ5 . (B.443)
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Classically, we have the conserved current

Jµ
A(x) = ψ̄(x)γ5γ

µψ(x). (B.444)

Is this current still conserved at the quantum level? To answer this question, let us check

perturbatively the Ward identity

〈0|∂µJµ
A(x)|0〉 ?= 0. (B.445)

In four dimension, because of the presence of γ5, the first non trivial contribution is

WI =
(ie)2

2

∫
d4y1

∫
d4y2Aα(y1)Aβ(y2)∂µ〈TJµ

A(x)ψ̄(y1)γαψ(y1)ψ̄(y2)γβψ(y2)〉 =

=
(ie)2

2

∫
d4y1

∫
d4y2Aα(y1)Aβ(y2)∂µ〈Tψ̄(x)γµγ5ψ(x)ψ̄(y1)γαψ(y1)ψ̄(y2)γβψ(y2)〉 =

=− (ie)2
∫

d4y1

∫
d4y2Aα(y1)Aβ(y2)∂µTr

(
γµγ5S(x− y1)γαS(y1 − y2)γβS(y2 − x)

)
.

(B.446)

The evaluation of this amplitude corresponds to the celebrated AVV-diagram drawn in the

figure below.

JV
α

JV
β

JA
µ

Figure 2: The AVV−diagram

A rigorous evaluation of this diagram can be very delicate because of the necessary regularization

procedure. Here we shall just sketch the procedure of the computation. The first step is to use

the momentum space, where

S(x− y) =
∫

d4p

(2π)4
i 6p

p2 + iε
e−ip(x−y). (B.447)

Then

WI =− (ie)2i
∫

d4k1d
4k2

(2π)8
Aα(k1)Aβ(k2)ei(k1+k2)x(k1µ + k2µ)×

×
∫

d4p1

(2π)4
Tr

(
γµγ5 i 6p1

p2
1 + iε

γα i(6k1+ 6p1)
(k1 + p1)2 + iε

γβ i(6k1+ 6k2+ 6p1)
(k1 + k2 + p1)2 + iε

)
.

(B.448)
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Let’s check the Ward identity:

=− (ie)2
∫

d4k1d
4k2

(2π)8
Aα(k1)Aβ(k2)ei(k1+k2)x×

×
∫

d4p1

(2π)4
Tr

(
(6k1+ 6k2+ 6p1− 6p1)γ5 6p1

p2
1 + iε

γα ( 6k1+ 6p1)
(k1 + p1)2 + iε

γβ (6k1+ 6k2+ 6p1)
(k1 + k2 + p1)2 + iε

)
=

=− (ie)2
∫

d4k1d
4k2

(2π)8
Aα(k1)Aβ(k2)ei(k1+k2)x×

×
∫

d4p1

(2π)4

[
Tr

(
γ5γα( 6k1+ 6p1)
(k1 + p1)2 + iε

γβ(6k1+ 6k2+ 6p1)
(k1 + k2 + p1)2 + iε

)
− Tr

(
γ5γβ 6p1

p2
1 + iε

γα(6k1+ 6p1)
(k1 + p1)2 + iε

)]
=

=e2

∫
d4k1d

4k2

(2π)8
Aα(k1)Aβ(k2)ei(k1+k2)x×

×
∫

d4p1

(2π)4

[
Tr

(
γ5γα( 6k1+ 6p1)
(k1 + p1)2 + iε

γβ(6k1+ 6k2+ 6p1)
(k1 + k2 + p1)2 + iε

)
− Tr

(
γ5γα 6p1

p2
1 + iε

γβ( 6k1+ 6p1)
(k1 + p1)2 + iε

)]
=

=e2

∫
d4k1d

4k2

(2π)8
Aα(k1)Aβ(k2)ei(k1+k2)x×

×
∫

d4p1

(2π)4

[
Tr

(
γ5γα( 6k1+ 6p1)
(k1 + p1)2 + iε

γβ(6k1+ 6k2+ 6p1)
(k1 + k2 + p1)2 + iε

)
− Tr

(
γ5γα 6p1

p2
1 + iε

γβ( 6k2+ 6p1)
(k2 + p1)2 + iε

)]
.

(B.449)

If we perform the change of variable p1 7→ p1 + k1 in the second term of the integrand, the two

terms cancel yielding a vanishing result. However this conclusion is naive. The original integral

(B.462) and the integral (B.449) are linearly divergent and a shift in the integration variable is

not a legal operation. Consider the following example

I =
∫ ∞

−∞
dx(f(x + a)− f(x)), (B.450)

where f(x) is a regular function such that limx→±∞ f(x) = finite. Then

I =
∫ ∞

−∞
dx

∞∑

n=1

an

n!
f (n)(x) =

∞∑

n=1

an

n!
[f (n−1)(∞)− f (n−1)(−∞)] = a(f(∞)− f(−∞)). (B.451)

Recall that for a regular function limx→±∞ f(x) = finite ⇒ f (n)(±∞) = 0 ∀n ≥ 1. Notice that

for a logarithmic divergent integral f(±∞) = 0 and therefore the translation in the integration

variable is legal. This result can be easily generalize to a n−dimensional integral and we find
∫

dnx(f(x + a)− f(x)) = lim
|x|→∞

a · x
|x| f(x)Sn−1(|x|), (B.452)

where Sn(|x|) is the volume of n−dimensional sphere of radius |x|. An additional factor i

is present in (B.452) if the integral is performed over the Minkowski space due to the Wick

rotation. Therefore an apparently vanishing integral can produce a finite result because of a

linear divergence. Let us apply this result to our integral (B.449). Performing the trace over
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the Dirac matrice, the above expression takes the form

WI =4ie2

∫
d4k1d

4k2

(2π)8
Aα(k1)Aβ(k2)ei(k1+k2)xεαµβνk2ν×

×
∫

d4p1

(2π)4

[
(k1µ + p1µ)

[(k1 + p1)2 + iε][(k1 + k2 + p1)2 + iε]
− p1µ

[p2
1 + iε][(k2 + p1)2 + iε]

] (B.453)

and we can directly apply (B.452)

WI =4ie2

∫
d4k1d

4k2

(2π)8
Aα(k1)Aβ(k2)ei(k1+k2)xεαµβνk2ν lim

|p|→∞
1

(2π)4
(2π2)ip3 k1 · p

p

pµ

p4
=

=− 4e2

∫
d4k1d

4k2

(2π)8
Aα(k1)Aβ(k2)ei(k1+k2)xεαµβνk2ν

1
8π2

kσ
1 lim
|p|→∞

pµpσ

p2
=

=− e2

8π2

∫
d4k1d

4k2

(2π)8
Aα(k1)Aβ(k2)ei(k1+k2)xεαµβνk2νk1µ =

=− e2

8π2

∫
d4k1d

4k2

(2π)8
ei(k1+k2)xεµανβk1µAα(k1)k2νAβ(k2) =

e2

32π2
εµναβFµν(x)Fαβ(x),

(B.454)

where we have set lim
|p|→∞

pµpσ

p2
=

1
4
ηµσ. This result is partially ambiguous: since we have lost the

invariance under momentum translation in the loop, the final result will depend on the choice of

the momentum in the initial loop integral. For example if we had begun with the loop integral
∫

d4p1

(2π)4
Tr

(
γµγ5 i( 6p1+ 6a)

(p1 + a)2 + iε
γα i(6k1+ 6p1+ 6a)

(k1 + p1 + a)2 + iε
γβ i(6k1+ 6k2+ 6p1+ 6a)

(k1 + k2 + p1 + a)2 + iε

)
, (B.455)

we would have found an additional contribution of the form

(i)3

(2π)4
2π2i lim

|p|→∞
Tr(γµγ5γ

ν1γαγν2γβγν3)p3 p · a
p

pν1pν2pν3

p6
=

=
(i)3

(2π)4
2π2i4iεµν1αβ lim

|p|→∞
p5 p · a

p

pν1

p6
=

i

8π2
εµαβνaν .

(B.456)

This produces in the WI an additional term given by

WIadd. =− (ie)2i
∫

d4k1d
4k2

(2π)8
Aα(k1)Aβ(k2)ei(k1+k2)x(k1µ + k2µ)

i

8π2
εµαβνaν (B.457)

If we write a = c(k1 + k2)− bk2, the above expression becomes

WIadd. =
e2b

8π2

∫
d4k1d

4k2

(2π)8
Aα(k1)Aβ(k2)ei(k1+k2)xk1µk2νε

µαβν =
e2b

32π2
εµναβFµν(x)Fαβ(x).

(B.458)

There we obtain the following generalized WI

〈0|∂µjµ
A(x)|0〉 =

e2(1 + b)
32π2

εµναβFµν(x)Fαβ(x). (B.459)
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Here the parameter b seems arbitrary. In order to fix b, consider again the triangle graph and
multiply by k1α. The vanishing of this contraction is equivalent to require that the U(1) vector
current is conserved. We find

− ik1α

2

[∫
d4p1

(2π)4
Tr

(
γµγ5

6p1

p2
1 + iε

γα (6k1+ 6p1)
(k1 + p1)2 + iε

γβ ( 6k1+ 6k2+ 6p1)
(k1 + k2 + p1)2 + iε

)
+

+
∫

d4p1

(2π)4
Tr

(
γµγ5

6p1

p2
1 + iε

γβ (6k2+ 6p1)
(k2 + p1)2 + iε

γα (6k1+ 6k2+ 6p1)
(k1 + k2 + p1)2 + iε

)]
=

=− i

2

[∫
d4p1

(2π)4
Tr

(
γµγ5 6p1

p2
1 + iε

γβ( 6k1+ 6k2+ 6p1)
(k1 + k2 + p1)2 + iε

)
− Tr

(
γµγ5(6k1+ 6p1)
(k1 + p1)2 + iε

γβ(6k1+ 6k2+ 6p1)
(k1 + k2 + p1)2 + iε

)
+

+
∫

d4p1

(2π)4
Tr

(
γµγ5 6p1

p2
1 + iε

γβ( 6k2+ 6p1)
(k2 + p1)2 + iε

)
− Tr

(
γµγ5 6p1

p2
1 + iε

γβ(6k1+ 6k2+ 6p1)
(k1 + k2 + p1)2 + iε

)]
=

=− i

2

[∫
d4p1

(2π)4
Tr

(
γµγ5 6p1

p2
1 + iε

γβ(6k2+ 6p1)
(k2 + p1)2 + iε

)
− Tr

(
γµγ5(6k1+ 6p1)
(k1 + p1)2 + iε

γβ(6k1+ 6k2+ 6p1)
(k1 + k2 + p1)2 + iε

)]
=

=
i

16π2
εµβρσk1ρk2σ

(B.460)

If we consider a different choice in the integration variables, we have the following ambiguity:

1
2
k1α

(
i

8π2
εµαβν(a(k1ν + k2ν)− bk2ν) +

i

8π2
εµβαν(a(k1ν + k2ν)− bk1ν)

)
=

=
i

16π2
εµαβνk1α ((a(k1ν + k2ν)− bk2ν)− a(k1ν + k2ν) + bk1ν)) = − ib

16π2
εµβανk1αk2ν .

(B.461)

Summarizing, we obtain

− ik1α

2

[∫
d4p1

(2π)4
Tr

(
γµγ5

6p1

p2
1 + iε

γα ( 6k1+ 6p1)
(k1 + p1)2 + iε

γβ (6k1+ 6k2+ 6p1)
(k1 + k2 + p1)2 + iε

)
+

+
∫

d4p1

(2π)4
Tr

(
γµγ5

6p1

p2
1 + iε

γβ (6k2+ 6p1)
(k2 + p1)2 + iε

γα (6k1+ 6k2+ 6p1)
(k1 + k2 + p1)2 + iε

)]
=

=− i

16π2
(1− b)εµβρσk1ρk2σ.

(B.462)

Therefore the vector current is conserved if and only b = 1, but with this choice the axial

current is anomalous and we have

〈0|∂µjµ
A(x)|0〉 =

e2

16π2
εµναβFµν(x)Fαβ(x). (B.463)

In other words if we require that the vector current is conserved, the axial current is not conserved

and it satisfies the relation (B.463).

The next step is to generalize this result to the non-abelian case, namely a theory of a massless

Dirac fermion transforming in a representation R of gauge group G gauge and coupled to the

gauge field Aµ of the same group G. Its action is given by

S = i

∫
d4xψ̄γµ

(
∂µ + eAa

µT (R)
a

)
ψ. (B.464)
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Classically, we have the conserved axial current

Jµ
aA(x) = ψ̄(x)γ5γ

µT (R)
a ψ(x). (B.465)

We can repeat the analysis and what changes is the group theoretical factor in front of the
anomalous term. In fact

WI =
(e)2

2

∫
d4y1d

4y2A
a
α(y1)Ab

β(y2)∂µ〈TJµ
cA(x)ψ̄(y1)γαT (R)

a ψ(y1)ψ̄(y2)γβT
(R)
b ψ(y2)〉 =

=
(ie)2

2

∫
d4y1 d4y2A

a
α(y1)Ab

β(y2)∂µ〈Tψ̄(x)γ5γµT (R)
c ψ(x)ψ̄(y1)γαT (R)

a ψ(y1)ψ̄(y2)γβT
(R)
b ψ(y2)〉 =

= − (e)2

2

∫
d4y1d

4y2A
a
α(y1)Ab

β(y2)×

×
[
Tr(T (R)

c T (R)
a T

(R)
b )∂µTr

(
γµγ5S(x− y1)γαS(y1 − y2)γβS(y2 − x)

)
+

+ Tr(T (R)
c T

(R)
b T (R)

a )∂µTr
(
γµγ5S(x− y2)γβS(y2 − y1)γαS(y1 − x)

)]
=

= −e2Tr(T (R)
c T (R)

a T
(R)
b )

∫
d4y1d

4y2A
a
α(y1)Ab

β(y2)∂µTr
(
γµγ5S(x− y1)γαS(y1 − y2)γβS(y2 − x)

)
=

= − e2

32π2
εµναβTr(T (R)

c Fµν(x)Fαβ(x)).

(B.466)

Therefore the coefficient of the anomaly is proportional to the group theoretical factor11

dabc =
1
2
Tr

(
T (R)

c {T (R)
a , T

(R)
b }

)
(B.467)

and vanishes when this coefficient is zero. This coefficient vanishes when the representation R

satisfies the condition

Tr
(
T (R)

c T (R)
a T

(R)
b

)
= −Tr

(
T (R)

c T
(R)
b T (R)

a

)
. (B.468)

There is a very simple way to satisfies this condition. Notice that

Tr
(
T (R)

c T (R)
a T

(R)
b

)
= Tr

(
T (R)

c T (R)
a T

(R)
b

)T
= Tr

(
T

(R)T
b T (R)T

a T (R)T
c

)
. (B.469)

If

T (R)T
c = −S−1T (R)

c S, (B.470)

then we find

Tr
(
T (R)

c T (R)
a T

(R)
b

)
= −Tr

(
T

(R)
b T (R)

a T (R)
c

)
= −Tr

(
T (R)

c T
(R)
b T (R)

a

)
. (B.471)

A representation12 which satisfies the condition (B.470) is said real if it is equivalent to a real

representation ( e.g the adjoint representation of SU(2)) and pesudo-real if it is not ( e.g the
11The origin of the anticommutator is due to the fact that the anomaly expression is symmetric in the exchange

of the F µν .
12Recall that we are using antihermitian generators.
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fundamental representation of SU(2)). In general a representation for which dabc = 0 is called

safe representation.

This analysis can be generalized to the case of chiral theory and local symmetries, namely a

theory where the left and the right part of the Dirac fermion transform in different representation

of the gauge group. In this case, by means of the above results, it is not difficult to check that

the absence of anomalous term is equivalent to require13

dL
abc − dR

abc = 0. (B.472)

Here dL,R
abc is the quantity defined in (B.467) for the left and right representation respectively.

C Conventions

Given a compact Lie group G, we shall denote its Lie algebra with G and the generators Ta are

chosen to be antihermitian T †a = −T a. They satisfies

[Ta, Tb] = f c
ab Tc (C.473)

and they are normalized so that

Tr(TaTb) = −1
2
δab. (C.474)

The Jacobi identity implies the following relation between the structure costant

0 =[Ta, [Tb, Tc]] + [Tb, [Tc, Ta]] + [Tc, [Ta, Tb]] = f n
bc [Ta, Tn] + f n

ca [Tb, Tn] + f n
ab [Tc, Tn] =

=f n
bc fanrT

r + f n
ca fbnrT

r + f n
ab fcnrT

r ⇒
f n

bc fanr + f n
ca fbnr + f n

ab fcnr = 0

(C.475)

Useful Traces

Tr(Ta[Tb, Tc]) = f m
bc Tr(TaTm) = −1

2
f m

bc δma = −1
2
fbca = −1

2
fabc. (C.476)

Tr([Ta, Tb][Tc, Td]) = f m
ab f n

cd Tr(TmTn) = −1
2
f m

ab f n
cd δmn = −1

2
fabnf n

cd . (C.477)

13The case where we have just left or right fermions is obtained by assuming that the other sector is decoupled,

that its dabc vanishes
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D Some useful result on antisymmetric matrices

Lemma 1 Every real antisymmetric matrix with determinant different from zero can be brought

into the following form

UXUT =




ix1σ2

. . .

ixnσ2


 . (D.1)

where U is an orthogonal real matrix and {x1, . . . , xn} are real numbers.

Lemma 2 Given two commuting real antisymmetric matrices X and Y with determinant dif-

ferent from zero there exists an orthogonal matrix such that UXUT and UY UT are of the form

considered in the previous lemma.

Lemma 3 Given an antisymmetric unitary matrix Q we can find a unitary matrix U such that

UXUT =




iσ2

. . .

iσ2


 . (D.2)

Lemma 4 Given a complex antisymmetric matrix Z, we can always find an unitary transfor-

mation U such that UZUT takes the following form

UZUT =




iz1σ2

. . .

iznσ2


 ,

if the dimension of the matrix is even or the form

UZUT =




0 . . . 0 . . .
... z1iσ2

0
. . .

... zniσ2




,

if the dimension is odd. In both cases x1, x2, . . . , xn are real numbers
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