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1 A crash course on fermions

A systematic analysis of the representations of the Lorentz group is beyond the scope of these
lectures. Here we shall simply recall some basic facts about the spinor representations and the
two-component notation.

The Lorentz group is the set of matrices A such that

AanmnAn,g = Nag, (1-1>

where

Nag = diag(—1,1,1,1). (1.2)

Its Lie algebra contains six hermitian generators: there are three J;, corresponding to rotations,

and three K;, describing Lorentz boosts. These generators close the following Lie algebra
[JZ‘, J]] = ’iﬁiijk [J“ KJ] = ’iﬁiijk [K“ Kk] = _ieijkjk (13)

This algebra possesses a quite simple mathematical structure that becomes manifest introducing
the following linear combinations

1
JE = 5 (i £ 1K), (1.4)

In terms of the generators (1.4), the Lorentz algebra roughly separates into the direct sum of
two conjugate su(2) subalgebras
I, I = e 10 =0, (1.5)

where Ji(i) are not hermitian, being Ji(+)T = JZ-(_). Technically, the algebra of the Lorentz
group is a particular real form of the complexification of su(2) @ su(2). At the level of finite
dimensional representations, however, these subtleties can be neglected and we can classify the

representations in terms of the two angular momenta associated to the two su(2)
(j1,72) where j1, j2=0,1/2,1,...,n/2,... withn € IN. (1.6)

Since J; = J) 4+ J() | the rotational spin content of the representation is given by the sum rule

of the angular momenta

J =1j1 — jols 11 — Je| + 1, -+, 71 + Jol. (1.7)

In this language, the spinor representation can be introduced by considering the universal cov-
ering of SO(3,1), namely SL(2,C). To see that SL(2,C) is locally isomorphic to SO(3,1) is
quite easy. Introduce

o™ = (-1,0"), (1.8)



where o' are the Pauli matrices. Then for every vector ™, the 2 x 2 matrix ™oy, is hermitian
and its determinant is given by the Lorentz invariant —x™z,,. Hence a Lorentz transformation

must preserve the determinant and the hermiticity of this matrix. The action
0" > Aoz, AT (1.9)

possesses both these properties if | det(A)| = 1. Therefore, up to an irrelevant phase factor, we

can choose the matrix A to belong to SL(2,C) and write
Om@™ = Aoy AT = o, AT (A) " (1.10)

This means that we can associate a Lorentz transformation to each element of SL(2, C). How-
ever, + A generate the same Lorentz transformation, and thus the correspondence is not one to
one, we have a double-covering.

Exercise: Show that SL(2,C) is a double covering of SO(3,1) and that it is simply-connected. SoruTion:
[1. Double-covering]: If A and B in SL(2,C) generate the same Lorentz transformation, for any ™ the following equality

must hold
Az o, At = BzmamBT,

Since A and B are invertible, the above condition can be equivalently written as
B 1Ax™o,, = Moy, BT AT!
Choosing =™ = (1,0,0,0), we find B~1'A = BT AT~1 and thus B~1A commutes with all the hermitian matrices. By the

Schur lemma B~1A = «l. Since 4, B € SL(2,C), o? = 1 which in turn implies o = #1.

[2. Simply-connected]: Given any element A of SL(2,C), we can always find a matrix S such that A = exp(S) with
1 1

Tr(S) = 2mik and k an integer. Then the curve A(t) = e*Se *?, where Q = (0 ik
i

>, possesses all the necessary

properties: A(0) =1, A(1) = A and det(A(t)) = etTr(S)g—2mikt — 1,

In this setting we can define spinors as the objects carrying the basic representation of SL(2,C)

(fundamental and anti-fundamental). Since the elements of SL(2, C) are 2 x 2 matrices, a spinor

()

is a two-complex object ¥ = , which transforms under an element MPE of SL(2,C) as
2

¥, = M. (L11)

Unlike for SU(2) and similarly to SU(3), the conjugate representation M™* is not equivalent to
M and it provides a second possible spinor representation. An object in this representation is

usually denoted by 14 and it is called dotted spinor. It transforms as

By = My, (1.12)



The dot on the indices simply recall that we are in a different representation. In the language
of (1.6), we are dealing with (1/2,0) and (0,1/2) representations. [Technically, these are not
representations of the full Lorentz, but only of its proper orthochronus part. The parity, in fact,
exchanges these representations.] Since M is an unimodular matrix, we can construct a two

invariant antisymmetric tensors
€a3 and €48 with €12 = €5 = —1. (1.13)

Exercise: Show that eqp and €, 5 are nvariant tensors.

SoLuTioN: Consider, for example, €,3. One has

€af ' €ap = MQPMIBPG,,U = det(M)eag = €ag-

Their inverse € and €3 , defined by
€ape”’ = 67 edpepﬁ = 5@, (1.14)

are also invariant tensors. Moreover, (1.13) and (1.14) can be used to raise and lower the indices

of the spinors

X*=exs X" =€"%5  Xa = eapx”

Xa = €45 (1.15)

Exercise: Show that ¢'™ = wﬁj\/lgm and Y'¢ = q/_JBM;—ld

SoLuTION: Consider, for example, ¥'*. One has

,¢'/o¢ — €aﬂ,l/)lﬁ — €aﬂMgJ’¢g — EpJM;1a¢U — M;Md’p,

where we have used that the invariance of the tensor €®?, i.e. Map/\/lﬁacaﬁ = €P?, in fact implies Mﬁ"eo‘ﬁ = EPGM;M.

Therefore (see exercise above) we can easily define spinor bilinear which are invariant under

Lorentz transformations

VX = V%0 = €PYsxa = —€Pxaths = ¥ xaths = XPs = XV

B o O (1.16)
VX = vax® = €Mhaxy = —exgta = U0 = 97 = x.
Here we have used that spinors are Grassmannian variables and thus anticommute.
We shall also define an operation of Hermitian conjugation such that and given by
(o) =%ar  (xa)'=(xa) and  (Yaxs) = (hwd). (1.17)



This implies, in turn, (x)" = xa¥® = 2.
Notice that choices (1.11)-(1.12) and the eq. (1.10) fix the nature of the indices of ¢™. In this
notation eq. (1.10) reads

Mo MG o = MM o (1.18)

From the group theoretical point of view, (1.18) states that the matrices 0" realize a one-to-one
correspondence between the vector representation (v") and an object with two spinorial indices
(Vag = Umoly ). Such object is called bispinor. [ In terms of Lorentz representations, eq. (1.18)
simply says ”(1/2,0) ® (0,1/2) = (1/2,1/2)” ]

vect. rep.
It is useful to introduce a second set of matrices, which are obtained by raising the indices of

Jm

gme — edﬁeaﬁa%. (1.19)

Explicitly they are given by
" =(1,-0) (1.20)

and satisfy the relation
M MGG = M MGIBP 0Pt = PPN P M P = AT (M)a" . (1.21)
We have also the following relations

(c™a" + c_Tnam)d‘B = —2nm”5g (c™&" + "™ P = 2P, (1.22)

which can be easily proved.

Relations with Dirac spinors: The connection between the above representations and the
usual four component notation for Dirac and Majorana fermions is easily seen if we use the
so-called Weyl form of y—matrices:
0 o™ 1 0
. L 0.1.2. 3
"= with 45 = iv"y 7*y° = (1.23)
<6m 0 ) 0 —1.
With this choice, the standard Lorentz generators separate into the direct sum of the two two-
dimensional representations. In fact
symn Z[ . n] . %(O_ma_n _ o_na_m)aﬂ 0 . (Umn)aﬁ 0
— "}/ =1 . 1 .
4 T 0 %(Oﬁmo.n . 5.no.m)a. 0 (6mn)aB

(1.24)



The upper representation corresponds to the undotted spinors, while the lower one to the dotted

spinor. Therefore the four component Dirac spinor in two-component notation reads

Up = (g‘;) , (1.25)

Uy = (ﬁ) : (1.26)
X

where (xo)' = Xa. Consequently, the Dirac Lagrangian takes the form

while the Majorana spinor is given by

Lp =Up(iy"0m + M)Up = (b*Xa) . b =

ig™B,, Mo PP (1.27)
=)o Ot + X" O X + Mpx + My,
while for Majorana fermions we have
i I M M
Lar =5X0" 0 X + X" Omx + XX+ 5 XX =
(1.28)
——m M M __ .
=X0""OmXx + 5 XX + 5 XX + total divergence.
The Weyl action is simply obtained by setting M = 0 in (1.28).
Exercise: Show that the following spinorial identities hold
1 1 a1 1
XX = =5ex" xaxs = Seasx” XX = e XaXp = — X (1.29a)
1
Xo"RXO"X = =50 TCR X = X" =0 (1.29b)
Xo" ) = —pa"x (1.29¢)
7.0, o 1 7 =mco 1 7= —mada 7 1 7= m 1 7m
PIX = §XUm"/}U = —§¢0mXU XaW¥s = §7ﬁ0mX%a = —§X0m1/1%a (129d)

(Important technical exercise!!)

SoruTIioN: The identities (1.29a) can be proven in the same way. Consider e.g.

1 1 1
x*x” *(50‘55 — 878X X7 = aeaﬁfapxpx" =€ PxPxp = —5€ Oy
Instead, for the identities (1.29b) we can write
1 1 ; 1 1
XO_ XXU X = _Xaxﬁxaxﬂo_:xnao_gﬂ ZX2X26aﬂ6aﬂo';na /’gﬂ ZX X o_aaa_nococ — ZXZXQT\I_(O_ma_n) — _inmnx2>22
(1.29¢):

Xo_nd_] — Xa,LZ)do_Zd — eﬂtﬁedﬂxﬁ,&gogd — 76ﬁﬂt6ﬁé¢,lz)ﬁo_gdxﬂ _ 71;[§6nﬁﬁxﬁ — 71;’&’”)(

méa pamely PpEx* =

(1.29d): The spinorial bilinear P¥x® is 2 X 2 matrix and thus it can be expanded in the basis &
Ay d™& Multiplying both sides of this identity by o”®*% and taking the trace, we find

_ 1 _
—xo"p = Ay Tr(c™c"™) = Ap = 5)(0"1/1.

The second identity can be proved in the same way.




Constructing any Lorentz representation: Consider the generic representation (%, 5).It

can be constructed by means of the two fundamental representations (1/2,0) and (0,1/2). Since

the two labels denoting the representation behave as angular momenta, we can write that

m n
(m/2,n/2) = [sym(g)u/z, 0)| ® |sym (X)(0, 1/2)]
i=1 i=1
This means that a field in the representation (%, ) has m undotted indices o, ...,y and n
dotted indices &g, ..., &y,
Xaq...am;6e...0u (1.30)

Moreover there is a total symmetries in the indices a; ... a,, and in the indices &; ... dy.
For example the representation (1/2,1/2) is described by the field xqa4. This is a 2 X 2 matrix

and it can be expanded in terms of the matrices o' :
Xoa = VinOge- (1.31)

This shows that the representation (1/2,1/2) corresponds to the four vectors.

2  From the Coleman-Mandula theorem to the supersymmetry

algebra in D=4

The quest for a Lie-group unifying Poincare invariance and internal symmetries in a non trivial

way came to an end with the advent of the Coleman-Mandula theorem.

Theorem: Let G be a connected symmetry group of the S—matriz and let us assume that the

following 5 conditions hold

e ASSUMPTION 1:(Poincaré Invariance) The group G contains a subgroup isomorphic to the

Poincare group.

e ASSUMPTION 2: (Particle-finiteness) All the particles are representations with positive
energy of the Poincaré group. Moreover for any M there is a finite number of particles

with mass less than M.

e ASSUMPTION 3: (Weak elastic analyticity) The scattering amplitudes are analytic func-
tions of the energy of the center of mass, s, and of the transferred momentum, t, in a

neighborhood of the physical region with the exception of the particle-production thresholds.



e ASSUMPTION 4: (Occurrence of scattering) Given two one-particle states |p) and |p’),

construct the two-particle state |p,p’). Then

Tlp,p") #0

for almost any value of s.

e ASSUMPTION 5: (Ugly technical hypothesis) There exists a neighborhood of the identity
in G, such that every element in this neighborhood belongs to a one-parameter subgroup.
Moreover, if x and y are two one-particle states whose wave-functions are test functions
(for our distributions), the derivative

1d
-— ty) =(z, A

-7 (2 9()y) = (2, Ay)

exists at t = 0, and it defines a continuous function of x and y which is linear in y and

anti-linear in x.

Then, G is locally isomorphic to the direct product of the Poincaré group with an internal
symmetry group. The algebra of the internal symmetry group is the direct sum of a semisimple
Lie algebra and of an abelian algebra.

The proof of this theorem is quite technical and it is far beyond the scope of these lectures. Here,
to understand the origin of the theorem, we shall present a simple argument which illustrates
why tensorial conserved charged are forbidden in interacting theories. Consider a spin 2 charge
Qmn, which we shall assume traceless (Q = 0) for simplicity. By Lorentz invariance, its matrix

element on a one-particle state of momentum p and spin zero is

<p|an|p> = A(pmpn - énmnp2)~ (2.32)

Next, consider the scattering of two of these particles described by the asymptotic state |p1, p2).
If the conserved charge is local (the integral of a local density), we can safely assume that for

widely separated particles it holds

(p1, P2|Qun|p1, p2) = (P11QmnlpP1) + (P2|Qun|p2)- (2.33)
Then the scattering is constrained by the following conservation laws
1 1

A(prmpin + PomPon = 1w (D7 + P3)) = APhnPln + PomPon = S (07 + 1)) (2342)

Pim + P2n = Pl + Pon- (2.34b)

The only possible solutions of these equations are forward or backward scattering. There is no

scattering in the other directions. This contradicts assumptions 3 and 4.



Exercise: Show that the only solutions of (2.34a) and (2.34b) are forward or backward scattering.

SOLUTION: Since we are assuming A # 0 and p? = p2 = p/2 = pi2 = m?, the above equations are simply

PimPin + P2mP2n = P/1mp/1n + pIQmPIQn
Pim + P2m = p’lm + p’2m'

In the center of mass reference frame, we can write p1 = —pa2, E1 = E2 = E, 1;’1 = —];’2 and E{ = E, = E. Thus the first
equation implies

PLbl; =Py, with j=1,...,d—1 = f=+p,.

Summarizing, the Coleman Mandula theorem states that all the conserved (bosonic) charges,
except the Poincare ones, commute with translations and possess spin zero. Therefore they
cannot constrain the kinematics of the scattering, but only the internal conserved charges. All

the multiplets for this symmetries will contains particle with the same mass and spin.

A natural question is if we can avoid the conclusion of this no-go theorem in some way. To
explore this, let us look very carefully at possible situations where the hypotheses of the Coleman
Mandula theorem break down. Naively, one might think that the ugly technical hypothesis is
the natural candidate to be the loop-hole to elude the theorem. However this is not the case. In
fact there are more interesting possibilities which are covered by the theorem and which are not

due to the failure of the “ugly technical hypothesis”

e The theorem assumes that the symmetries are described by Lie algebra: i.e. the commu-
tator of two symmetries of the S—matrix is again a symmetry. From the point of view of
QFT, we are implicitly assuming that the conserved charges are bosonic objects, namely
they carry an integer spin. Then the above theorem states that the only possible spin for
the charge of an internal symmetry is zero.

The structure of a QFT is richer. Next to bosonic objects, we have also fermionic quanti-
ties which obey anti-commutation relations; this fact naturally endows the algebra of fields

with a graded structure:

[bosonic, bosonic] = bosonic [bosonic, fermionic] = fermionic

{fermionic,fermionic} = fermionic.

In mathematics these structure are known as graded Lie algebras or more commonly as
superalgebras. Is it possible to construct an interacting quantum field theory where the
symmetries of the S—matrix close a graded-Lie algebra? A positive answer will imply
the existence of conserved fermionic charges, evading in this way the Coleman Mandula
theorem. In the following, we shall show that this is actually possible and this will lead

us to construct the supersymmetry algebra and the supersymmetric theories.

10



e There is a second possible loop-hole in the Coleman Mandula theorem: it assumes to deal
with point particles. Actually we can consider more general relativistic theories containing
objects extended in p spatial dimensions (p—branes). These extended objects can carry
conserved charges which are p—forms, Q[m,my...m,]- We shall not have the time to discuss

this second possibility in the present lectures.

2.1 Graded Algebras

Before proceeding, we need to recall some basic facts on graded algebras. To begin with, we
shall define a Z5 graded vector space V. It is a vector space which decomposes into the direct

sum of two vector subspaces
V=255 (2.35)

All the elements in Sy have grading zero and they are called bosons or even elements, while
all the elements in S; have grading 1 and are called fermions or odd elements. Between two
elements of S is defined a bilinear graded Lie-bracket operation or a bilinear graded commutator

[-,-}, which satisfies the following properties

e For all z and y in S the grading of the bracket [z,y} is 7, + ny| mod 2, where 7, and 7,

are the grading of x and y respectively
o [z,y} = —(=1)"™[y,x}
o (—1)™="e[x, [y, 2}} + (=)™ [y, [2,2}} + (=1)""™ ][z, [z,y}} =0  (SuperJacobi).
The graded structure entails that
[S0,5] C &y {51,551} CSo [So, S1] € 5. (2.36)

In other words Sy is a standard Lie algebras. Moreover, since S; is invariant under the (adjoint)

action of Sy, the fermionic sector carries a representation of Sy.

2.2 Supersymmetry algebra in D=4: LSH theorem

In this section we shall address the question of constructing the most general superalgebra
containing the Poincare algebra as a subalgebra of the bosonic sector Sy. We will begin by
focussing on the fermionic sector S;. It carries a representation R, in general reducible, of the

Lorentz group. Let us decompose R as the direct sum of irreducible representations

n-@n(55) S

=1

11



where r; denotes the multiplicity of the representation (m;/2,n;/2). We shall assume that the

representation R is closed under hermitian conjugation: this implies that the representations

(%, %) and (%, %) appear in (2.37) with the same multiplicity'. The generators transforming
mg; Ny

in the representation (%, %) (m; > n;) will be denoted with the symbol

! I=1,...,r, (2.38)

Q1...Qm; 50 .Gy

1

where the indices «; and ¢; run over the values 1 and 2 and Qal Q. : G

is totally sym-

metric both in the indices ay...ay,, and ¢&q...¢&,;. The hermitian conjugate generator of
1

o1 51 i, 1S indicated with

Qs
dl...dmi Q1.0

I=1,...,m. (2.39)

It obviously transforms in the representation (%, %) (m; > n;). We shall now consider the

anticommutator
I Al
{Qasam, .16, » Qs i, 01, - (2.40)

The result of this graded Lie bracket must generically transform in the following direct sum of
Lorentz representations
mmM@mFW%WW) (2.41)
272 272 =il /2 ’

However, if we choose all the indices equal to 1, the anticommutator

{Q{---al,imi’Q{--i,lml} (242)

can only belong to the representation of maximal spin

24
o (2.43)

<m¢ +mn; mi+ nz>
This can be checked by computing the eigenvalue of the z—component of J(+) and J(=): we find
% in both cases.
Thus the result of the commutator (2.42) can only be a bosonic generator with this spin. How-
ever, due to Coleman-Mandula theorem, the bosonic generators have either spin 0 or belong to

the Poincare group,
Mpn € (1,0)® (0,1), P, € (1/2,1/2). (2.44)

'Because of the definition (1.4) JT = J(=). At the level representation this implies that

(m> n)T = (nv m)

12



Consequently, the anticommutator (2.42) can either vanish or be proportional only to the mo-

mentum F,,. If (2.42) vanishes and the representation of the graded algebra is realized on a

Hilbert space of positive norm, we must conclude that Q{...l jd = Q{l 1., =0 This, in
. . I AT . . I ’ JI
turn, implies Qg ..q, 416, = Qayodraras, = 0 8I0C€ @y o 4106, a0d Q4 4. ay.a, Delong

to irreducible representations. Therefore we are left only with the second possibility, i.e. P,,.
Then
m; + n; 1
— = 2.45
s (2.45)

which is solved or by m; = 1/2 and n; = 0 or by m; = 0 and n; = 1/2. Since the two
representations are hermitian conjugate one to each other, we can just consider the first choice.

Thus the only admissible fermionic generators are
(QL, QL) with I=1,...,N. (2.46)

The above analysis also fixes the form of the anticommutator {Q%,QZ}. In fact, the Lorentz
implies

{QL, QL =V ol Py, (2.47)

where V17 is an hermitian matrix. In fact by taking the hermitian conjugate of both sides in
(2.47), we find
VI o P = {Q4, Q) = Vo P, (2.48)

By means of an unitary redefinition of the generators Q! = U’ JQ‘] , we can bring V!’ into
diagonal form and write

{QL. QLY = M\6" ol P (2.49)

Since the anticommutators {Q1, Q{ } and {Q¥, Qé } are positive definite, the numerical factor A;

are positive and we can rescale the generators® so that
{QL, QY = 26" ol P (2.50)

Next we shall examine the constraints on the commutators between fermionic generators and
translations. Since the generators P,q = P00l belong to the representation (1/2,1/2) and
the supersymmetry charge Q! transforms in the (1/2,0), the result of the commutator will
transform in the representation (1,1/2) & (0,1/2). In the absence of bosonic generators in the

representation (1,1/2), the only possibility is

[Poa, QF) = KT jeapQ- (2.51)

It is sufficient to perform the following rescaling QL — ’\%Qé QL — 4/ %Q_i

13



The presence of the invariant tensor e,z in (2.51) ensures that the r.h.s. of (2.51) is a singlet

with respect to the first SU(2) of the Lorentz group. Similar arguments lead us to write
[Pad7 Qé] = KI JEQBQia (252)

where K ;=—(K 1 7)* since Q = Q. The possible choices for the matrix K7’ s are completely
fixed by the abelian nature of translations. In fact this implies that K7 s can only vanish (see

exercise below).

Exercise: Show that K* y =0.

SOLUTION: Since translations close an abelian algebra, the graded Jacobi identity allows us to write

0=26""[Py4, [Pacs Pppll = [Pys [Pac: {Qp QI NI = [Py, Qs [Pac, Q1Y + [Py {QF, [Paas Qp1 =
=K preapPypAQL QY + K preap[Pys, {Q), QLY =
=K preap{Q [Pap QR + K7 areapd @)y [Papy Q1Y + KT preap{Q, [Pys, Q71+
+ KT yreap{@) [Py QYT = K7 3 K7 seapenpdQA", Q5 + K yreas K Msepad Q) Q51+
+ K" yreapK? se5,{QL QF} + KT preapK e, {Q7, Q3) =

:2I_<JM6MSKI Sed[’Eﬁ'PPaB + QRJMGQ,',KN[Iq;aPpB + 2K1M6apRJSGBﬁ§MSP5d + 2KIMEQPI_<MJEB(5¢P5/5'

Setting & = B=1,a=p=1and p = p = 2 in the above equation, we find 0 = 4(KKT)IJP11, which, in turn, implies

(KKT)!Y = 0. Since KT ; = —(KT ;)*, the previous condition is also equivalent to (KK')!/ =0 = K =0.

Summarizing, we have shown that
[Pai, Qp] = [Pac, Q) = 0. (2.53)

Consider now the anticommutator of two fermionic charges

{Q4,Q3)- (2.54)

Lorentz invariance requires that the result of (2.54) only belongs to the representation (0,0) and
(1,0) , since (1/2,0)®(1/2,0) = (1,0)®(0,0). Concretely, the r.h.s. of the anticommutator (2.54)
must be a linear combination of the bosonic generators of spin zero, denoted by B' (internal
symmetries), and of the self-dual part M,z = o0 Mmn of Lorentz generator M™". Therefore,

we shall write
{Qéa Qé} = GQBCIIJBZ + YIJMQB- (255)

As Q! commutes with Pp,, Y/ must identically vanish. We are left with

{QL. Q) = capCl' B = eapz’’. (2.56)
Taking the hermitian conjugate of (2.56), we find

{Q4, Q) = e 3Cl " B = eapzt’. (2.57)
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Next, we shall consider the commutator [B;, Q%]. Its result must transform in the representation

(1/2,0) of Lorentz group, therefore
(B, QL] = (S)" Q% (2.58)

The Jacobi identities for [By,, [B;, QL]] and {QZ, [B;, QL]} imply that —(S;)! ; must provide a
unitary representation of the internal symmetries. Taking the complex conjugate of the com-
mutator (2.58), we also find [By, QL] = —(57)! QL.

Exercise: Show that —(S;)! | provides a unitary representation of the internal symmetries.

SOLUTION: The Jacobi identities for [Bm,, [B;, QL]] implies
0 =[Bm, [B1, QL] + [B1, [QL, Bl + [QL, [Bm, Bil] = (S1)" 1(Sm) " rQE — (Sm)" £(S)* rQE + ic;,,," (Sk)! rQE =
= ()7 L(Sm)" k= (Sm) LSV g + i1 ()T 1) QF,

where we have used that the bosonic generators B; close a Lie algebra: [Bj, Bym] = iclkakA Since the generators Qé are
linearly independent, the matrices —(S;)! , Mmust provide a representation of the internal symmetries. The Jacobi identity

for {Qé, [B;, QL]} implies that the matrices S; are hermitian and thus the representation is unitary:

0={Q%. [B, QLY — [B1, {Q4, @4} — {Qa [Q4, Bil} = 2((S)" 5 = (57)” 1) Paci.

Now, we have all the ingredients to characterize the bosonic generators ZM = C’lLM B! and
ZﬁM = CILM*BZ appearing in the r.h.s of (2.56) and (2.57). To begin with, the Jacobi identities
for [B;, {QL, Qé}] require that ZXM generators form an invariant subalgebra (i.e. an ideal) of

the spin zero bosonic sector
0 =[By, {Qa- Q33 + {Q0, [Q3 Bil} — {Q3, [B. QA]} =

=eap ([Bi, 2] = (S1)” 2™ = (S)" x2"7). (2.59)

Moreover, the generators Z!7 commute with all the fermionic charges: [QX, Z!/] = [Z1/,QM] =

0. In fact from Jacobi identity

0 =[Q}, {Q4 Q5 N + Q4. {QF, QLY + [QF . {QL, Q4}) = eaplQF , 2] (2.60)

it immediately follows that [QX, Z1/] = 0. Instead if we set [QX, Z1/] = HEI7QE, the Jacobi

identities
0= {Qg]v [ g? ZIJ]} - {Qg’ [ZIJ7 Qy]} + [ZIJ7 {Qg{ja Qé(}] = 2H]\[§IJPO¢O'M (2'61)

implies HE!/ = 0 and thus [Z7, QY] = 0. A simple but very important consequence of this
property is that
1
(217, 7" = §6aﬂ[ZIJ,{Q§,Q§4}] =0. (2.62)
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In other words, the generators ZX™ do not only form an invariant subalgebra, but this invariant
subalgebra is also abelian! Moreover, from the Coleman-Mandula theorem, we know that the
bosonic generators of spin zero close a Lie algebra that is the direct sum of a semisimple Lie al-
gebra and of an abelian algebra €. Therefore ZM ¢ ¢, since the other component is semisimple
and

(Z¥M B = 0. (2.63)

Thus, Z¥™ and (in the same way) ZfM ) commute with all the generators of the graded Lie
algebra. For this reason, they are called central charges. They will play a fundamental role in
the second part of these lectures. Note that the central charges cannot be arbitrary; eq. (2.59)
provides a strong constraint on their form, (S;)”  Z1% + (S))! ,Z%7 = 0. Namely, they must
be an invariant tensor of the representation given by 5.

Let us summarize the result of this section: we have argued that the most general graded algebra
in D = 4, whose bosonic sector contains the Poincare algebra and respects the Coleman-Mandula

theorem, is given by

[P, Po] =0 [Map, Prn] = i(0amPs — om Pa) (2.64a)
Doy W] = i M =F i iy = Wi lsn, = W 00, (2.64b)
[P @& = [P, Q51 = 0 [P Bi] = [P, Z"7] = 0 (2.64c)
{Qa, QY =20V o P {QY,QF} = eap 2™ {QF, Q)Y = ¢;5Z2"Y  (2.649)
[Z"M, Q2] = (2", Q4] =0 (Zz"M, ZM] = 2", B =0 (2.64¢)
[Bi, Bn] =ic,,"Br (B, QL = ()" 1QL (B, Qi =—(S)" Q% (2.64f)

where ZIM = CFM Bl ¢ ZJLFM = CIM+pBl.
It is worth mentioning that this is not the most general superalgebra, if we admit the presence

of extended objects as well. The anticommutator of the supercharges can contain

{QM,QNY = 20MN o Py + ZMNom {QN, QY } = €apZ™N + oy ZMIN (2.65)

ad

where ZMN and ZMN are respectively traceless and symmetric in the indices M an N. The
first central extension can appear in a theory containing strings, the second one in a theory

containing a domain wall.
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3 Representations of the supersymmetry algebra

3.1 General properties

In this subsection, using the general structure of the susy algebra we shall establish some basic

properties of supersymmetric theories:

1. Since the full susy algebra contains the Poincare algebra as a subalgebra, any representation
of the full susy algebra also gives a representation of the Poincare algebra, although in
general a reducible one. Since each irreducible representation® of the Poincare algebra
corresponds to a particle, an irreducible representation of the susy algebra in general

corresponds to several particles.

2. All the particles belonging to the same irreducible representation possess the same mass.
In fact the Poincare quadratic Casimir P,, P is also a Casimir of the supersymmetry
algrebra, since [P, Q] = [P, Q] = 0.

3. An irreducible representation of the susy algebra contains both bosonic and fermionic
particles. In fact, if [Q2) is a state, Q|Q) and/or Q|Q) is also a state. The difference in spin
between |Q2) and Q|Q) (or Q|)) is 1/2.

4. An irreducible representation of the susy algebra with a finite number of particles contains
the same number of fermions and bosons.
Proof: Let us denote the fermionic number operator with Ng. It counts the number
of particles with half-integer spin present in a given state. Starting from Npg, we shall
define the operator (—1)V#, which is 1 on bosonic states (state of integer spin) and —1 on
fermionic states (state of half-integer spin). The defining property of this operator implies

that it commutes with all the supersymmetry charges, ¢.e.
DY + QY (-1 =0 e (-1)"QF + Qi (-1 =0. (3.66)

Consider the subspace W generated by the states of fixed momentum p,,. Since we are
dealing with representations containing a finite number of particles, this subspace is finite

dimensional and on this subspace we can compute the following trace
Tryw (P (—1)"F) = Trw (1) {Q4, Q4}) = Trw ((-1)"F(Qa.Q4 + Q4Q%)) =
= Trw (-QL(=1)"" Q4 + Qo (=)™ QF) = 0.

This, in turn, implies

(3.67)

P Trw (1)) = pm(np — np) =0, (3.68)

3Here, we obviously mean the representation with p? > 0 and p° > 0.
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namely the number of fermionic (np) and bosonic (ng) particles is the same.

5. The energy of a supersymmetric theories is greater or equal to zero. In fact the susy

algebra allows us to write the hamiltonian of theory as follows

1= P = HQLQI +{QL Gl = JHQL @D + (@ @, (369

where we used that ( {72)T = _{ 5- Consequently the Hamiltonian is positive

wiaks) = [[leIw] + (11 + [|QH) P + |@hwl[F] =0 (3:70)

Let |2) be the vacuum of a supersymmetric theory. If supersymmetry is not spontaneously
broken, the vacuum is annihilated by all the charges @ and @, and thus the vacuum energy

vanishes:

@laie) = ¢ [[[QI)F + (1010 + [l + Q4] F] =0. @)

Vice versa, if the vacuum energy is different from zero eq. (3.71) implies that there is
at least one supersymmetric charge, which does not annihilate the vacuum. Namely, the
supersymmetry is spontaneously broken.

A remark about this result is in order. In (3.71) there is no sum over the index I; this
entails that supersymmetries are either all broken or all preserved. In this reasoning there
is however a potential loop-hole, which can be used (and it has been used) to evade such a
result. In fact this type of argument assumes implicitly that Poincare invariance is present
in the system. If one now considers other systems where part of the Poincaré invariance

is preserved and part is broken, a partial breaking of the supersymmetry can also occur.

3.2 Representations without central charges

In this section we wish to construct all the possible unitary representations of the supersymmetry
algebra. To achieve this goal, we shall use the Wigner method of induced representations. This
method consists of two steps: (a) Firstly, we choose a reference momentum p™. We find the
subalgebra G, which leaves p" unaltered, and construct a representation of this subalgebra on
the states with momentum p™. (b) Secondly, we (literally) boost the representation of the
subalgebra H up to a representation of the full susy algebra. In the following we shall enter
into the details of this second part of the procedure, since it is very similar to the one for the
Poincare group.

Since the M? = —P,, P™ is a Casimir, we can consider the case of massless and massive repre-

sentations separately.
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3.2.1 Massless representations

In a representation where all the particles are massless (M? = —P? = 0), a natural choice as
reference momentum is provided by p,, = (—F,0,0, E). The subalgebra G then contains the
following elements:

Lorentz. The Lorentz transformations preverving the above reference momentum are generated
by J = M2, S1 = My — Mys and Sy = Mgy — Mos. These three operators close the algebra
of the Euclidean group FEs in two dimensions. However, in any unitary representation with
a finite number of particle states, the generators S; and So must be represented trivially, i.e.
S1 =53 = 0. Therefore the only surviving generator is J, which is identified with the well-known

helicity of the massless particles.

Exercise: Show that the the reference momentum p,, = (—FE,0,0,E) is preserved by three generators

J = Mo, S1 = My — Mi3 and S = Moo — Mas, which close the algebra of Es.

SOLUTION: Consider a generic combination of the Lorentz generators w™"™ My, . It will preserve the reference momentum
if and only if
0= WM [P", Mmn]|th) = —2iwrn Pultp) =  w™pp = BE(W™ —w"0) =0.

3 _ 01 23 _ _ 02

This condition constrains the form of the coefficients w™"”. On finds w9 =0, w!3 = —wW01, —w"?, namely the most
general element of the Lorentz algebra which leave the momentum py, intact is w™"™ M,n = w0t (Mo1 — M13) + wOQ(Moz —
Mas) + wl2M1s. This element is a linear combination of the generators J = M2, S1 = M1 — M13 and So = Mgz — Moz,

which close the following algebra

[J,S1] = i(Mo2 — Ma3) =Sy [J,S2] = —i(Moy — My3) = —iS1  [S1,S2] = —iMy2 + iMi2 = 0.

This is the algebra of the euclidean group in two dimensions.

Exercise: Show that S1 and Sz are represented trivially (S12 = 0) in any unitary finite dimensional

representation.

SOLUTION: We choose a basis for the vector spaces carrying the representation so that J|A) = A|A). If we define S+ =
S1 £ 152, these operators satisfy the commutation rule [J, S+] = [J, S1 £ ¢S2] = iS2 £ .51 = £S+. This implies

JSEIN, p,o) = (AEn)ST|X, p,0).
The representation will contain an infinite number of states with different values of J unless there exists an integer n such

that S} = 0. Since Sj_ = S_ and [S4+,S_] = 0, Sy is a normal operator and it can be diagonalized. We must conclude

that S, =0 =S_ =251 =25, =0.

Supersymmetry charges: All the supersymmetry charges preserve the reference momen-

tum p,,, since they commute with the generator P,,. In this subspace, their anticommutation
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relations take the simplified form

@hal =2t (7 ) was (7O ) camst (1)

{Qéa Qé} = {Qé? Qg} =0. (3.72b)

Internal symmetries: All the generators B; obviously leave the momentum p,, unchanged.

Now, we shall construct a unitary representation of the subalgebra G. Let H be the Hilbert

space carrying the representation. We shall choose a basis of H so that J is diagonal
JINp,0) = A\ p,0), (3.73)

i.e. a basis formed by states of given helicity. In (3.73), p denotes the reference momentum, while
o stands for the other possible labels of the state. The action of the supersymmetry charges on
this basis can be easily determined by proceeding as follows. Consider first Q4 and Qé Since
{Q1, Q‘QI } vanishes and (Qé = (QH)T) in any unitary representation, Q4 must be realized by the

null operator. Then we are left with the reduced algebra
{1.@fy =485 {Q1,Q{} ={Q}.Q{} =0 (3.74)

If we define the operators

1 1 5
ol = \/ﬁ {7 (aI)T _ EQ{ (3.75)

the above algebra becomes that of NV fermionic creation and annihilation operators
{a’, (a)T} = 6", {d,a’} = {(a"),(a”)T} = 0. (3.76)

The representations of this algebra are constructed in terms of a Fock vacuum, namely a state
such that
al\ Q=0 perI=1,...,N. (3.77)

Since [J, (a’)T] = 3(al)T, the Fock vacuum can be also chosen to be an eigenstate? of the helicity
J:

JIN, Q) = AA, Q). (3.78)
All the other states of the representation can be generated by acting with creation operators on

the vacuum. A generic state will be of the form

[T 1) = (@) (@) 16, ), (3.79)

I

“Because of the commutation relation [J, (a’)T] = %(al)‘L7 the fermionic operators a’ map eigenstates of J into

eigenstates of J.
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where n runs from 1 to N, the numbers of supersimmetries. The states, by construction, are
completely antisymmetric in the indices (I,.). Therefore their total number is finite and it can
be determined as follows. Let us fix the number of creation operators acting on the vacuum to
be n. Then a simple exercise in combinatorics shows that the number of states containing n
creation operators is (]7\{ ) Now the total number d of states is obtained by summing over n the

previous result
N /N
d:§ ( ):(1+1)N:2N. (3.80)
n
n=0

The above states are associated to representations of fixed helicity. In fact, as
[7, ("] = S (aD)F, (3.81)
we find that
JI; -5 1) = J(all)T...(aln)”Q’/\) =[J, (aII)T ...(aln)T”Q’)\) PG5 L) =

= (A+g) TR Y (3.82)

Moreover, since adding a creation operator simply raises the helicity by 1/2, the representation
will always contains 2V ~! bosonic states (states of integer helicity) and 2V~! fermionic states

(states of half-integer helicity), independently of the helicity possessed by the Fock vacuum.

A systematic classification of the states belonging to a given representation can be given by
means of the so-called R—symmetry, the group of transformations which leaves invariant the
anticommutators of the spinorial charges. In mathematical terms this is called an automorphism
of the supersymmetry algebra. In some cases this automorphism can be also promoted to be an
internal symmetry of the supersymmetric theory.

The U(N) transformations a! — Ul;a” and al’ ; — UL all provide a natural automorphism
for the fermionic algebra (3.76). At the infinitesimal level, this R—symmetry is generated by
M1 = [a'! a’]. Since these generators commute with the helicity J ([.J, M®9] = 0), the states
of fixed helicity carry a representation of this R—symmetry. For example, the states of helicity
A + n/2 realize a representation R, which is the totally antisymmetric tensor product of n
anti-fundamental representations of U(N): R = A, (N).

Although the R—symmetry group introduced above is a powerful tool for organizing the states
of the representation, it is not the largest automorphism of the fermionic algebra. In fact, if we
define g1 = (a’ + (a”)") and gy 7 = i((a’)T —al) for I =1,..., N, the fermionic algebra can be
rewritten as follows

{qa, @} = 20ap with a=b=1,....,2N. (3.83)
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This is the Euclidean Clifford algebra of dimension 2N, whose largest automorphism is the
SO(2N), generated by Ry, = i[qa, q). Any irreducible supermultiplet will also carry a repre-
sentation of this automorphism. However, this automorphism cannot be an internal symmetry
of an interacting supersymmetric field theory, since its multiplets contain particles of different
helicity, [J, Rqp) # 0. This possibility is forbidden by the Coleman Mandula theorem, SO(2N)
being a bosonic symmetry.

The largest automorphism which preserves the helicity of the states is given by the U(N) dis-
cussed previously, and in fact this R—symmetry can be realized as an internal symmetry of an

interacting supersymmetric field theory.

Exercise: Show that the largest isomorphism commuting with the helicity is U(N).

SOLUTION: The most general operator M acting linearly on the fermionic algebra must be a bilinear in a! and a!!, namely

M = spyla’,a’] +rrsla’t, a”f] + wrsla’f, a”).

1
This operator commutes with the helicity generator J = 3 Z a’Tal + A1 if and of if s;; = r;; = 0. We are left with
I

M = wryla’t,a”]. Tt is easy to check that these operators generate U(N).

Some relevant examples: N=1 SUPERSYMMETRY: The generic supermultiplet of N =1 is

formed by two states: a vacuum of helicity A and one excited state of helicity A + 1/2
I\, Q) a’|\, Q). (3.84)

For N = 1, the R—symmetry is simply U(1) and thus we can associate to each state an
R—charge. The form of the U(1) generator is determined up to an additive constant, which can

be identified with the charge of the vacuum. It is given by R = Z a'Tal 4+ nl. The charges of

I
the above two states are n and n + 1 respectively.

The multiplet (3.84) is not CPT-invariant; in fact the state CPT|\, §2) has helicity —\ and R-
charge —n and thus it cannot belong to the above irreducible multiplet. CPT-invariance is a
mandatory symmetry of relativistic local quantum field theories, therefore we cannot construct
a theory containing just the multiplet (3.84). This difficulty can be easily circumvented by
considering a reducible representation. We shall add to (3.84) the multiplet generated by the
vacuum | — A+ 1/2,Q) e with R—charge —n — 1. Then the total (reducible) supermultiplet is
CPT-invariant and is given by

| —A—1/2,Q) all = X—1/2,Q) 1A, Q) a’|\, Q). (3.85)

(=n—1) (=n) (n) (n+1)

The possibile C PT—invariant N = 1 multiplet are summarized in the table below
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(0,-1/2

mult. chirale

mult. vettoriale

(1,-3/2) S T e e e S B |
(3/2,-2) y SN T P I P P N I R

mult. supergravita

Next we consider the case of the N = 2 supermultiplets. We choose a Fock vacuum |\, €2)
with helicity A. Under the R—symmetry group U(2), it possesses an R—charge n with respect
to the U(1) and it transforms in the trivial representation of the SU(2). Then the generic
supermultiplet is

1
A, ) (a")T|A, Q) Sers(a) @)1\, Q). (3.86)
(1,n) (2,n+1) (1,n+2)

In the notation (-,-), the first entry denotes the representation of the SU(2) of R—symmetry,
while the second one is the U(1) R—symmetry. We have two singlets of SU(2), one of helicity
A and one of helicity A + 1, and a doublet of SU(2) of helicity A\ + 1/2.

Let us illustrate some very important examples:

(A): For A = —1 we have a singlet of helicity —1, a doublet of spinors of helicity —1/2 and finally
a singlet of helicity zero. This multiplet is not CPT-conjugate. To have a multiplet which is
closed under CPT, we shall add the multiplet generated by a vacuum of helicity 0. It contains
two singlets with A = 0 and A = 1 respectively and a doublet with spin 1/2. Summarizing, we

have the so-called N=2 VECTOR MULTIPLET:

e One massless vector
e Two massless spinors forming a doublet of SU(2)
e Two massless scalars, which are singlets of SU(2)

Sometimes it is convenient to break this multiplet into multiplets of the N = 1 supersymmetry:
1 (N=2 vector multiplet) = 1 (N=1 vector multiplet) @ 1 (N=1 chiral multiplet).

(B): For A = —1/2, the supermultiplet contains a state of helicity —1/2, an SU(2) doublet
of helicity 0 and a second singlet of helicity 1/2. Such irreducible representation might appear
CTP-conjugate, but this is not the case. In fact, the two particles of spin 0 have to be represented
in terms of two real fields if they are CTP self-conjugate. However two real fields cannot be an
SU(2) doublet. Again we can overcome this difficulty by adding a second multiplet of the same
type. The total content of the supermultiplet is the
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e Two spinors
e Two complex scalar forming an SU(2) doublet

This supermultiplet is known as HYPERMULTIPLET. In the language of N = 1 supersymmetry

the hypermultiplet corresponds to 2 x (N=1 chiral multiplet) .

(C): Finally we shall consider the case of a supersymmetry N = 4. We shall choose a vacuum
of helicity —1, the only vacuum yielding a consistent field theory in the absence of gravity.
Moreover it will transform in the trivial representation of R—symmetry SU(4). Then the states

of the multiplets are

| —1,Q) ()| - 1,9) (") (a”)i| - 1,9)
(-1,1) (71/2721) (0,6)
1 1 (3.87)
gﬁlJKL(aI)T(aJ)*(GK)Tl -1,9Q) EﬁlJKL(aI)T(aJ)T(aK)T(aL)T! -1,9Q)
' (1/2,4) ' (1,1)

In the notation (-,-) the first entry is the helicity of the state, while the second one de-
notes the relevant representation of SU(4). This multiplet is CTP-selfconjugate and is called

N=4 VECTOR MULTIPLET :

e A massless vector which is singlet of SU(4)

e Four massless spinors transforming in the fundamental of SU(4)

e 6 real scalars transforming in the 6 of SU(4): Recall in fact that 4 A4 ~ 6. The 6 corresponds to
an antisymmetric two-tensor ®;; of SU(4). This representation is real since for an antisymmetric

tensor ®;; we can define the following SU(4) invariant reality conditions

1 1
Py = §GIJKL((I)T>KL @y = _§€IJKL<(I)T)KL-

For example we could use the first one to define our six scalars.

This multiplet in terms of the N =1 or N = 2 multiplets decomposes as follows:

1 (N=1 vector multiplet) @& 3 (N=I1 chiral multiplet)
1 (N=2 vector multiplet) @ 1 (N=2 hypermultiplet)

The number of supersymmetries present in a consistent field theory cannot be arbitrary. In
fact consistent field theories cannot describe particles with helicity strictly greater than 2. This

requirement translates into the following constraint

A+N/2<2 A>-2 = N<8, (3.88)
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namely the maximal number of supersymmetries is 8. If we neglect the gravitational interaction,

the maximal helicity allowed in a field theory is 1 and thus we have the more restrictive limit
A+ N/2<1 A>-1 = N<A4 (3.89)

For completeness, before considering the massive multiplets, we give a table of the most common

supergravity multiplets

N —2|-3|-1|-2| of 3] 1| 3| 2
1| 1] 1 - 1|1
201121 - 1] 2|1
40 1464|246 4|1
8 1| 8 |28|56 |[70|56 |28 8 |1

3.2.2 Massive representations
For massive particles the natural choice for the reference momentum is p,, = (=M, 0,0,0).

Lorentz. The Lorentz transformations preserving this reference momentum are those gener-

ated by J; = Mas, Jo = M3y , J3 = Mjs and they close the SU(2) algebra of spatial rotations

[Ji, Ji] = i€iga i (3.90)

Supersimmetry charges. Since the super-charges commute with the momentum, they all
leave the reference momentum unaltered. The fermionic algebra in the rest frame takes the

simplified form
- M 0 o
{Qé,Qé}zzé“< . M>=2M6”6ad, Qe Q3 ={Q& Q% =0. (391

Internal symmetries Again all the generators B; do leave the momentum unaffected.

The Hilbert space carrying the representation of the massive supermultiplet can be decomposed
into the direct sum of representations of the group SU(2) of the spatial rotation. Namely, we

shall write

H =P nH, (3.92)

Fach subspace H; carries a representation of spin s and ng is the number of times that this

representation appears in the above decomposition. For each H,, we choose a basis such that
|s,5.,{i}) con J?|s,s,,{i}) = s(s+1)|s,s.,{i})  J3|s,5.,{i}) = s.|s,5.,{i}),  (3.93)
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where the additional label {i} denotes the other possible properties of the state. We are ready
now to investigate the action of the supersymmetry generators on this basis. To begin with, the
supersymmetry charges transform as follows under action of this SU(2)

1 _
—§(Qloi)d. (3.94)
In other words the charge @ transforms in the fundamental of SU(2) 2, while @ in the anti-

Q= 5@@Na Q=

fundamental 2. For SU(2) these two representations are equivalent and thus we shall drop the

distinction between dotted and undotted indices. If we redefine the charges as follows

I _ 1 1 It 1 oA
Aq = \/m@a? e (aﬁ) \/WQ ’ (395)

they will satisfy the algebra

{ag, (@)} =005 {ag, a5} = {(ag)', (a3)'} = 0. (3.96)

)

Again, the supersymmetric charges will close the algebra of fermion creation and annihilation
operators. Eq. (3.96) has an obvious automorphism: it is invariant under the U(N) transfor-
mations a! — U’ Ja] and a!f — U *IJ(LIT. Since this automorphism does not act on the Greek
indices, it will commute with the spin and thus all the states of a given spin will realize a
representation of the group U(N). In other words U(N) must be a part of the R—symmetry
group.
Any representation of this fermionic algebra can be constructed starting from a set of Fock vacua
defined by

a|,iy=0 V I=1,....N a=1,2. (3.97)

This set of vacua |€2,7) must carry a representation of the spatial rotation. In fact
I . T . 1 I .
a,, Jk |2, 1) = [ag, Ji]|Q, 1) = i(aka )al,3) = 0. (3.98)

We choose the subspace of vacua [Q2,7) to support an irreducibile representation of spin s and

consequently we shall use the notation
|s,s.,€) con s, =—s,...,s. (3.99)

In general the space of Fock vacua can also carry a representation R of the R—symmetry group.

In this case we shall use the following notation for the vacua
|s, sz, R, §2) (3.100)
Then the representation of the supersymmetry algebra is generated by all the states of the form
(I a0); -+ 5 (s an)) = (@) - (al2 )]s, 52, B, ), (3.101)

a1
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where n run from 1 to N, the number of supercharges. The state, by construction, is completely
antisymmetric in the indices (I, ;). In the following, we shall consider the case where the
vacuum has spin 0 and is invariant under R—symmetry.

The classification of massive multiplets is more involved than the massless case. A way to
determine their properties and to classify them systematically is to use the R—symmetry group.
The largest automorphism of the algebra (3.96) is not U(N). Let us redefine the basis of the

algebra as follows
D= (af+(ah)) TV = (ah+(ah)h) T2 =i(af —(ah)l) DY = i(ah—(ah)T). (3.102)
These hermitian operator will close a Clifford algebra of dimension 4N
{rM TNy = 26N con M,N=1,...,4N. (3.103)

Therefore the largest automorphism is the SO(4N), generated by A" = %[FR,I‘S]. This au-
tomorphism is particularly useful for determining the dimension of the multiplet. In fact the
Clifford algebra possess only one irreducible representation of dimension 22V, which corresponds
to the spinor representation of SO(4N). The states of this spinor representation can be decom-
posed into two sets of different chirality. These two sets are the eigenspaces of the projec-
tors 1/2(1 + D*N+1) where T*V+1 = T[2Y, TL. If we choose a vacuum with fixed chirality (
N+ Q) = (—1)%]Q)) the eigenvalue of T*N*! will simply distinguish between states with an
even and an odd number of fermionic creation operators, namely between bosonic and fermionic
states®. Since both the chiral subspaces have dimension 22V~! all the massive supermultiplet
will have the same number of boson and fermions.
If the vacuum has spin s and it carries a representation R of the R—symmetry group the
dimension of the multiplet is

22N % (25 + 1) x dim(R). (3.104)

The automorphism is not suitable for an actual classification of the states belonging to the

multiplet. Since it does not commute with the spatial rotation generated by

1N iN 1N

Ji=5 ) (a)las+ (a3)far, Jo=—5 (a))la; — (ap)lal, J3 =5 (ah)Tay — (a3)'a5,
=1 =1 =1
(3.105)

its multiplets contain particles of different spin and thus it cannot be promoted to be an internal

symmmetry of a quantum field theory. For our goal, it will be more effective to consider the

®Observed that
F4N+1‘(Ilv a1); 5 (In, an)) = (_1)S+n|([17 ar);--; (In, an))-
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largest automorphism which commutes with the spin. This automorphism becomes manifest

when we use the following basis for the fermionic algebra

¢, =a e CEN — (o9 ()N = eoég(ag)Jr Ve=1,...,N; (3.106)
This operators close the algebra
{ak, 5"y = C"Meop, (3.107)

and satisfy the reality condition (¢%)" = C*Migyq™, where the matrix C is given by

O _]ln n
(CEMy = . (3.108)
]lan 07

A redefinition ¢& — UL, ¢ preserves the form of the algebra (3.107) if UCUT = C and the
reality condition if U* = —C'UC. These two conditions imply

Ut =U(W0T = -UcUTC =-C*=1 = Uisa2N x 2N unitary matrix .  (3.109)

The 2N x 2N unitary matrices preserving the quadratic form C' form the group USp(2N),
namely the unitary symplectic group. This is the relevant R—symmetry. The fact that this
automorphism commutes with the spatial rotations becomes even more manifest if we write the

RIM of this R—symmetry in terms of the fermionic operator qr. We find RAM =

generators
sePlgk, qé/[], i.e. they are built out of singlets of SU(2).

Therefore in a massive supermultiplet all the state of the same spin can be arranged in a
representation of the group USp(2N). Now, we shall illustrate this in some examples with

N =1 and N = 2 supersymmetries.

N =1 Case: Consider a Fock vacuum of spin zero and invariant under R—simmetry. The
states of this multiplet are

) aldd|) ahlQ). (3.110)

The first two states have spin 0 while the third has spin 1/2. In order to see how these states
can be arranged in multiplets of USp(2) ~ SU(2), let us write explicitly the generator of the
R—symmetry

1 1
Jy = ieaﬁ[qi,qﬁ] = 2(611)T(612)Jr J_ = *Gaﬁ[q(llaQ}a] = 2aiaz

2 (3.111)

1
Js = gfaﬁ[q;qg] = (a1)ay + (ag)az — 1.
It is immediate to see that aE\Q> is annihilated by all these generators and thus it is a singlet.
Moreover J;|Q) = 2a§a£|ﬂ) and J,a];agm) = —2|Q), then the two spin 0 states are a doublet
of USp(2). The subgroup associated with the Ur(1) is generated by .Js.

We can summarize the above result in the following table
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2 states of spin 0 | 2 states of spin 1/2
) | (a)f(a2)]) | {al]Q), a0}
Ur(1) | —1 1 0

USp(2) doublet singlet

N =2 Case: Next we consider the case of the supersymmetry N = 2. We shall consider again
a vacuum of spin zero and invariant under R—symmetry. Starting from this scalar vacuum, we
can build the following states by acting with the supersymmetry charges:

(a) 4 states with one supercharges: spin 1/2: . = (al)7|Q)

(b) 6 states with two supersymmetry charges: (aé)T(aé)”Q). This states decompose in

1
spin 0: T = e (ag) (ap)!|) TV =T,

(3.112)

. 1
spin1: Vyg= 561J(aé)T(aé)T|Q> Vap = Vaa.

(c) 4 states with three supercharges: spin 1/2 : xff = %eueo‘ﬁ(a(fﬂ(aé)f(ag)T|Q>
(d) 1 state with four supercharges: spin 0: ¢ = eaﬁep"eIKeJL(aé)T(aé)T(aff)T(ag)T|Q).

The R—symmetry group USp(4) acting on this states is generated by
1

Y = S((@Dhaf) + (@D ad) Y = S lalaf) 6T =

2 2 ~el(al)f, (a})T]. (3.113)

2 «
The operators H!/ generates the subalgebra U(4) and in particular the subgroup Ug(1) can be

associated to
S=> 20" = ((a})la] + (a})Ta} + (a?)Ta} + (a3)Ta3 — 2). (3.114)
i=1

With these choice the R—charges of the different states under the Ur(1) are

-1 1
spin 1/2: 4y Xq

The property of transformation under the SUr(2) are instead given by

2

_ 0 0
spin O : 772 T 9

spin 1 : Vag-

sing.

spin 1: Vag-

sing.

T4 spin 1/2: ¢}, X
Exploiting the explicit form of the generators of USp(4) is not difficult to show that the state

tripl. sing. doubl. doubl.
spin O :

with the same spin carry an irreducible representation of R—symmetry group: spin 0 5, spin
1/2 4, spin 1 1.

We can summarize the results in the following table

5 stati di spin 0 | 8 stati di spin 1/2 | 3 stati di spin 1

n T ¢ {Xé’ wclv} Vag
Ur(l) | =2 0 2 (1,-1) 0
USp(2) 5 4 1
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The case with N supersymmetry charges is more involved and we shall not discuss it here in
detail. However one can show that the following result holds:
If our Clifford vacuum is a scalar under the spin group and the R-symmetry group, then the

irreducible massive representation of supersymmetry has the following content
22V = [N/2,[0]] @ (N - 1)/2, 1] @ (N = 2)/2, 2] & ... [(N = k)/2,[k]] --- ® [0, [N]], (3.115)

where the first entry in the bracket denotes the spin and the last entry, say [k] denotes which

k" —fold antisymmetric traceless irreducible representation of USp(2N) this spin belongs to.

3.3 Representation with central charges

In this section we shall briefly analyze the question of how to construct the representation of
the supersymmetry algebra in the presence of central charges. We fix as reference momentum
pm = (—M,0,0,0) (P? = M?). The only modification with respect to the case considered in

the previous section occurs in the fermionic algebra, which now is given by

I Ay _osta (M0
{Qa @z} =20 (0 M) (3.116)

{Qa,QF Y = eapZ™ QA QF} = ep(Z2)MY {2, Q0 = {Z"V, Q1) = 0. (3.117)

Here ZMV is a complex matrix, antisymmetric in the indices (M, N).

Given any unitary matrix U, the transformations Q! — UIJQJ, Q — U*IJC_QJ, ZMN —
U ]\I/{zU AgZRS and Z"MN — U *%U *]gZ*RS leave the form of the fermionic algebra unaltered
and they can be used to simplify the form of the matrix Z. The lemma 4 in appendix D states

that the matrix U can be chosen so that
Z'=e® D, (3.118)

for an even number of supersymmetries or

Z' = <€®D O) , (3.119)

for an odd number of supersymmetries. Here D = diag(z1,...,2k,...) and € is the 2 x 2
antisymmetric matrix ¢02.
In the following we shall focus on the case of even N; the case of odd N can be investigate in a

similar manner.
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The form of the matrix Z suggests to arrange the indices (M, N) in a different way. We replace
M and N with two pairs of indices: M + (a,m) and N +— (b,n). The lowercase roman indices
(a,b) run from 1 to 2, while the indices (m,n) run from 1 to N/2 and distinguish the different
blocks of the matrix Z’. In this basis the anticommutators of the charges have the following

form

{ gm’ (an)T} — 25mn6abégM { gm’Q%n — eab(gmnzneaﬁ

) , (3.120)
{7 (QF)T} = €6 enp Z" {Z2",Q}={z".Q"} =0.
Let us now define the operators
0l = QN s @] B = = [QE — ean(@F)] (3.121)
@ ﬂ @ ap\%g «a \/5 @ ap\w g
These operators close the algebra
ap'sag }=0""6032M + Z), bt b =6""00s(2M — Z,,
{ag’,ag'} a( ) {va 05} a( ) (3.122)
{a,b} = {aT,b} = {a, bT} ={a,a} = {b,b} = {aT,aT} = {bT,bT} =0
Since the {a,a'} and {b, b} are positive objects, consistency requires that
Zy>-2M e Z,<2M Vn = |Z,)<2M VYn (3.123)

When this bound strictly holds for all the Z,,, this algebra is isomorphic to the one considered
in the massive case up to a total rescaling. Therefore all the results of the massive case apply.
A new phenomenon appears when the bound is saturated. Let us assume, for example, that
there is a value k such that Z, = 2M. Then the anticommutator {b’c , ka}, which is a positive
definite quantity, vanishes identically and the operators b* and b*' must be represented as the
null operator. In this way, we have effectively lost one of the supercharges. If the bound is
saturated by g central charges, we will loose ¢ supercharges and only N — g supercharge will be
realized non trivially. In particular this means that the multiplets do not have dimension 22V
but they are shorter. In fact their dimensions will be 22(N~9) These short multiplets are known
as BPS—multiplets.

add something on massive hypermultiplets
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4 The Basics of superspace

In the following we shall address the problem of realizing the representations of the supersym-
metry discussed in the previous section in terms of local fields. There are many approaches to
this question, that however can be more conveniently handled using the so-called superspace.
In these lectures we shall describe the construction of the N = 1 superspace in some details, but
we shall not consider the extensions to higher supersymmetries (a part from some remarks on
the N = 2 superspace).

The notion of superspace was firstly introduced by Salam and Stradhee and the mathematical
idea behind its construction is the concept of coset. Let us recall what a coset is. Consider
a group G and a subgroup H of GG, then an equivalence relation can be defined between the
elements of G

g1 ~ go if there is h € H such that g1 = g2h. (4.124)

Such relation separates G into equivalence classes. The set of all equivalence classes is called
(left) coset and it is denoted with G/H. [ Analogously one can define the right coset: g; ~
g2 if there is h € H such that g; = hge.] Since an element of the coset is an equivalence class,
we shall denote it by choosing one of its elements, e.g. g, and we shall write [g]. On the elements

of the coset, it is naturally defined a right action of the group G: for any k € G
Klg] = [kgl. (4.125)

It is trivial to check that this action does not depend on the representative g.

If G and H are topological groups the coset G/H is called an homogeneous space. Summarizing,
given a group G we have constructed a space where an action of this group is naturally defined.
Let us illustrate this abstract procedure with a pedagogical example: the construction of the
Minkowski space starting from the Poincare group.

Consider the quotient of the Poincare group with respect to the Lorentz group. Since any
element of the Poincare group can be decomposed uniquely as the product of a translation and

a Lorentz transformation,
T(w,z) = exp(iz™ P,,) exp (;wm”an) , (4.126)

the coset is the set of equivalence classes [exp(iz™ P,,)] . Namely each point in the coset is defined
by four real coordinates . Now, let us compute the action of the Poincare transformations on

these coordinates

Translations:

exp(ia™ Pp,) exp(iz™ Py,) = exp(i(z™ + a") Py,) 2" 2" = 2™ +a". (4.127)
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Lorentz Transformations: A = exp (%wm"an)

exp (;wabMab> exp(iz™ Py,) =

= exp (;wabMab> exp(iz™ Py,) exp (—;w“bMab> exp <;w“bMab) .

= exp (ixm exp (;w“bMab) P, exp (—;w“bMab>> =

. /
= exp (iz™A"  P,) "™ = AT 2",

(4.128)

where we used that exp (%w“bMab) P exp (—%w“bMab) = A" P,,,. Therefore this procedure has
produced a four-dimensional space isomorphic to R* where the Poincare transformations act in
the usual way. We can safely say that this is the Minkowski space.

To construct the superspace we shall proceed similarly, defining the the N = 1 superspace to be

the following coset
N =1 Poincaré supergroup

SuperspaceN=1 = (4.129)

LorentzGroup
For us the N = 1 Poincare supergroup will be simply defined as the exponential of the super-
algebra constructed in the previous lectures. To exponentiate the fermionic sector, we have to
introduce a set of grassmannian coordinates, which play the role of the infinitesimal parameters
of the transformation. In N = 1 we have a supercharge @, and its hermitian conjugate Qq,
thus we shall introduce the fermionic coordinates §* and 6%. This will allows us to form the

hermitian bosonic combination
0Q + 0Q = 60°Qq + 0,Q%, (4.130)

which we can exponentiate to yield a supersymmetry transformation. Then, any element of the

supergroup can be parametrized as follows
exp (—z’x“PN +i(0Q + 5@)) exp <;w“”MW> . (4.131)
Therefore the elements of the coset (4.129) are given by
exp (—iz" P, +i(0Q + 6Q)) . (4.132)

Namely, the N = 1 superspace is defined by four bosonic coordinates which span an R*, and by

a pair of fermionic coordinates (A%, #%) which are related by complex conjugation.
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The action of a supersymmetry transformation on these coordinates is easily computed as follows

exp (i(eQ + €Q)) exp (—iz™ Py, +1i(0Q + 0Q)) =
=am<—mmﬂn+ﬂw+oQ+%9+@Q) ;@Q+fQLWQ+HQﬂ)=
= exp (—mm m (0 +6)Q + (0 +6)Q) — 16 “{Qa, Qa}0* + 9"‘{%, Qate® ) = o
= exp (—i(z™ 4 i00™€ — iecc™0) P, +i((0 + €)Q + (0 +€)Q)) -
We have thus obtained
™ 2™ = 2™+ i00™E — iea™h (4.134a)
00 =0+¢ 00 =0+¢ (4.134b)

The action of translations and Lorentz transformations can be computed in a similar manner

and one obtain

Translations

2" M =2 —ad™ 0 =6 00 = (4.135)

Lorentz Transformations
B a = AT 9T =00 0t = FAT) 0 (4136)

Notice that all the transformations are in agreement with the indices carried by the coordinates.
Together with the usual bosonic derivatives 9,,, we have two graded (right-)derivatives acting

on the Grassmann coordinates as follows
0

P _. .
—_— « pu— Q —_— @ p— (-x 4'1
8959 03 8550 5ﬂ (4.137)

Here ‘graded’ means that these derivatives obey the anti-Leibnitz rule, e.g.

$192) = G0 (62) + (~1)F00 g, 02, (1139

aaﬁ( 1597

4.1 Superfields

The standard field can be seen as function over the Minkowski space. We can now define the

superfields in a similar way: they are functions over the supespace, i.e.

Dy (x,0,0). (4.139)
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The index « is a Lorentz group index. In general a superfield can carry a representation of the
Lorentz group. Since 6 and 6 are anticommuting coordinates, the superfield will be a polynomial
of finite degree in these variables. The coefficient of this polynomial are standard functions over
the Minkowski space and they can be identified with the standard fields.
In the following, to avoid useless complications we shall drop the Minkowski index and consider
a scalar superfield. This kind of superfield will be sufficient for our goals.

We define the action of supersymmetry transformations on a superfield as follows
ei“umHEQHEQ@(x, 0, é)e_i“mpm_“Q_ng = ®(z — a+i00€ —iech,0 +¢,0 + ). (4.140)

This definition mimics the analogous definition of translations on standard fields: it just acts on
the coordinates of the superfield.

At the infinitesimal level the supersymmetry transformations (4.140) are given by

)‘lin. ine

0

5P = —i[®,eQ] = ®(x —icch, 0 +¢,0) — ®(z,0,0
0

=€ wé(w, 0,0) —icc™00,P(x,0,0) =€ <890‘ —i(o 9)a8m> O(x,0,0) =
= €“Qa®(7,0,0) = Qo = % —i(0™0) O, (4.141a)
5e® = —i[®,eQ] = Bz +i60€,0,0 + &) — (2,0,0)], . =

0 _ _ 0 .
= €a 7 P(x, 0, 00" €0, ®(1,0,0) = | — o= ' ")6Om | €°®(x,0,0) =
€ 20, (2,0,0) + 100D, ®(x,0,0) < 555 +1i(0c™) a0 )e (x,6,0)

= QE(I)(J?, 9, é) = Qd = 0(30‘ + 73(90"”)(10,” (414113)

The action of translations is instead simply given by

5a® = —i[®,a™ Py = ®(z — a,0,0) — ®(x,0,0 = —a" 0y, ®(x,0,0) (4.141c)

)‘lin. in a

We can check the consistency of this approach by computing in two different ways the commu-

tator [d, d¢]: from the algebra

[0c, 6] ®(x,0,0) = —[®, [€Q, eQ]] = —€*[®, {Qu, Qa }|E* = —2e0™E[®, P, = —2ie0c™e0,® |
(4.142)

and from the actual representations (4.141a) and (4.141b)
[0, 6@ (2, 0,0) =(€QeQ — €QEQ)P = —e(QuQu + QuQs)E*® = —2icc™€D,, P, (4.143)

This check also shows that the differential operator representing the supercharges satisfies the

anticommutator

{Qas Qa} = 207050 (4.144)
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4.2 (Covariant) Derivative on the superspace

The derivative introduced at the end of the introduction does not commute with the super-
charges. This means that these derivatives break the covariance under supersymmetry transfor-
mations. To develop a formalism which is manifestly invariant under supersymmetry transfor-

mations, we must define a new derivation D (and D) such that
[0¢, D] = [0¢, D] = 0. (4.145)

A brute force computation shows that all the graded derivations with this property are obtained

by taking linear combinations of

D, = % +i(0™0)00y, and Dy = azd —i(00™)%0,,. (4.146)
These derivations close the following algebra
{QomDa} = {Qa)Do}} = {Qo’nDa} = {QdaDd} =0. (4‘147)
and
{Da, Da} = =2i0040m  {Da, Dg} = {Ds, Dy} = 0. (4.148)

The origin of these two graded derivations can be understood at the level of group theory. In
our construction of the superspace we have used the left coset and consequently we have defined
the left action of the group. However we could have equivalently defined the superspace through
the right coset and used the right action to realize the supersymmetry transformations. We
would have obtained the same superspace with a different form of the supersymmetry charges
given by (D,,Dg). Since the left and right action commute by definition, we must conclude
that (Qa, Qa) and (Dg, Dg) commute as well.

4.2.1 Integration

Given the Grassmann algebra generated by the N anticommuting variable 67, we can define the

integral as follows
al ) )
H I _ e . 4.14

In other words the result of the integral is proportional to the coefficient of the monomial of
degree N in the expansion of the function f(6).
Therefore we shall define the integral of a superfield over the entire superspace as follows

I:/d4xd20d20<b(x,0,0):/d4 0 0 0 9
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The above definition can be rewritten in terms of the covariant derivatives D, and Dg. For
g

example if we replace 30T with Dy, we find the following expression for [

0 0 0

s P )| . 4.151
Y02 ot pp 0| (15D

o 8 8 _
_ 4 Yy s 4 m
I = /d D1 505 P 8§2<1>(x,9, 0) Z/d 20, [(0 0)

The second term is a total divergence and it can be neglected if the fields vanish at infinity.
0 o0 0 - o 0 0 0 -

d*'zDy s ——=®(2,0,0) = [ d'v— -5 ——0(2,0,0). 4.152

/ x 1892 a0 992 (J:a ) ) / 3:801 902 90! 062 (l'a ) ) ( )

If we repeat this procedure for all the odd coordinates we find

Therefore

I= /d4xD1D2DiD2<I>(x,9,§), (4.153)
or, in manifestly Lorentz invariant form,
1 _ _
I= —4/d4xD2D2<I>(:c,9,9). (4.154)

This definition in terms of the covariant derivative seems to be strongly dependent on the order
of the derivatives. In fact, D, and D, do not commute. This dependence is however harmless:
different orderings disagree for terms in the Lagrangian which are total divergences. Namely,
the action does not depend on the ordering.

The measure of integration above is also invariant under supersymmetry transformation. In fact

81 = —i/d4xD2D25€<I>(x,0,9) = —i/d4xD2D26Q<I>(x,0,9) -

_ —i / deQ[D2D2D(, 0, 8)] = —% / da(eD — 2iea™G0,) [D2D2D(z,0,0)] = (4.155)

7

: / 0420y, [cc™GD? D?B(x,0,0)] .

5 Scalar superfield

Consider the scalar superfield, namely a spin zero superfield. We can expand it as a polynomial
in the Grassmann variables #% and #%. Taking into account that all the independent monomials

built out of the # and  are

a no 2/ pa 02(— 0.k mp  p2pa 2 péx 0202
]11, g, g, 91(_9 0a), 61(_0a0 ), 0049, 929, 026, 619, (5.156)

the expansion of the most general scalar superfield is given by

®(z,0,0) = ¢(z) + Ox(z) + (x)0 + F(2)0? + G(2)0% + Vin(z)00™ 0+

)+ ) (5.157)
+ 7(2)00° + 0°0A(x) + 60°6>D(x).
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It contains 8 complex bosonic fieds

4 scalars 1 vector
and 8 ¢ fermionic fields
x(2), M), ¥(z), 7(z). (5.159)

4 Weyl spinors
It is immediate to recognize that this superfield provides a reducible representation of the super-
symmetry. In order to select the irreducible components we must impose some constraints on
the superfield. In the following we shall show two possible ways of reducing this representation:

the former produces the chiral superfield, while the latter yields the vector superfield.

6 On-shell v.s. Off-shell representations

The representations of the supersymmetry discussed at the group theory level are on-shell. This
means that the states satisfy the constraint p? = M?, which is equivalent to the equations
of motion. However, when we try to realize them in terms of local fields governed by a local
Lagrangian, we are forced to relax this assumption in order to develop a manifestly covariant
formalism. This is not peculiar of supersymmetry, but also occurs for the representations of
the Poincare group. Consider, for example, a parity invariant massless particle of spin 1, its
representation only contains two helicity states. Instead, in terms of local fields, it has to be
described by a vector V,,(x), which possesses 4 degrees of freedom. The correct counting is only
restored when the field satisfies the equation of motion and the gauge invariance is used. From
a group theoretical point of view, V,(z) is an enlarged (thus reducible) representation of the
Poincare group, the equations of motion and the gauge invariance work as projectors that throw
away the unwanted d.o.f.

Therefore, in order to write a supersymmetric action we must enlarge the on-shell multiplet

considered in the previous lecture. We will have two possibilities:

e The multiplet is enlarged to a reducible representation of the supersymmetry. In this case
the supersymmetry is realized also off-shell and the formalism is manifestly invariant

under supersymmetry at all stages.

e The multiplet is enlarged only to have a manifest invariance under the Poincare group.
The supersymmetry is recovered only when the equations of motion are imposed (on-shell
supersymmetry), while is broken off-shell. In this setting the number of bosonic and

fermionic d.o.f. does not match unless the e.o.m are satisfied.
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The approach in terms of N = 1 superfields will provide us with an off-shell realization of the
N =1 supersymmetry and a manifestly covariant formalism. However this is a lucky situation.
For extended supersymmetry and supergravities the off-shell representations are not known in

general and only the second possibility is available.

7 Chiral superfield

Given the set of scalar superfields ®, the subset defined by the condition
Dy®(z,0,0) =0 (7.160)

is un invariant subset under supersymmetry transformations. In fact, if a superfield ® solves

the constraint (7.160) also J.® is a solution

Didee®(x,0,0) = Da(eQ + €Q)®(x,0,0) = (eQ + €Q)Dy®(x,0,0) = 0. (7.161)

The general solution of the constraint (7.160) can be determined by introducing the variable
y™ = 2™ + ilc™ for which Dgy™ = 0. If we consider the superfield as a function of y, # and

0, the constraint (7.160) becomes

Ds®(x,0,0) = 82;@(3,, 0,0) = 0. (7.162)

In other words the superfield depends on y and 6, but not §: ®(y,#). This superfield is now a

chiral superfield and it can be expanded either in a polynomial of the Grassmannian variable 6
O(y,0) = Aly) + V2x(y)0 + 6*F (y), (7.163)
or in terms of the original 4 Grassmannian variables

B(x,0,0) —A(x) + 10000, A(z) — %HUméﬁanéamanA(a:)—F

+V2x(2)0 + ivV200™00,, x ()0 + 0*F(z) = (7.164)

V2
This superfield describes two complex scalar fields A(x), F'(x) (4 real bosonic fiels ) and a Weyl

_ 1 4
=A(z) + V2x(x)0 + 6°F (z) + i00™00,, A(x) 020, x0 ™0 + 10?9?@4(@.

spinor x(z) (4 real fermionic components): it contains twice the number of components that
are necessary to describe the chiral multiplet. However we cannot further reduce the degrees of
freedom by imposing a non-dynamical constraint. The unwanted fields will disappear from the
game when we shall impose that the fields satisfy the equations of motion. For this reason the

chiral superfield is said to provide the off-shell chiral multiplets.
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Let us consider the action of the supersymmetry transformations on the chiral superfield. This
action is given by
5ee® = (eQ + €Q) . (7.165)

Note that the supersymmetry charges for a chiral superfield can be written in a very simple

form because of its particular dependence on the variables z, # and . We have

0 ~ 0
Qo= — and Q4= 2i(0c™)y=—— . 7.166
067 | 05 (65™) |, 05 (7.166)
Thus
0 . . 0 . _
becd = | & 5o + 260" 5 1 ) 2(y.0) = V2ex(y) + 260F (y) + 2i(00™€)0m A(y)+
+ 20V2(00) D (1)0 = V2ex(y) + 260F (1)) + 2i(00™E) D Aly)+ (7.167)
— V20?0, x0™Me.
In components, the above transformations read
S cA(x) = V2ex(z) (7.168a)
SeeXal(r) = iV2(0™E)0OmA(x) + V260 F(x) (7.168b)
bcF(x) = —V/2i8,,x0™E = \/2iea™ O . (7.168c)

When the spinor field x is on-shell, i.e. it satisfies the equation of motion "0, x = 0, the scalar

field F'(x) becomes invariant under supersymmetry d.F'(z) = 0. Consistency requires that

0= 6 e0eeF(x) = V2ie6 ™ Ombeex = —2(66™) O ((07C)alnA(x) + (aF (7)) =

_ _ (7.169)
= —2(66™0"(0mO0nA(x) + €6 (O F () = —2(—e(0A(z) + 6™ (O F(x)),

namely

OA(x) =0 OmF(z) =0. (7.170)

The field A(z) is on-shell as well, and F' is a constant non propagating field. Summarizing, A
and y are the only degrees of freedom which survive on-shell: this is exactly the content of the
chiral multiplet when discussed at the level of representation theory.

The set of all chiral superfields is closed under multiplication. In fact

D(P; Py, - @i, Pi,) =0, (7.171)

since Dg is a (graded) derivation and it respects the (graded) Leibnitz rule. Moreover, any

polynomial or function in the chiral fields is still a chiral field.
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The chiral superfield ®(z, 0, ) is a complex object and thus we can define its hermitian conjugate
®T(z,0,0). This superfield is no longer chiral, because y — 7" = 2" — i#o™0 and 6 — 0 under

hermitian conjugation. However, it satisfies the constraint
Do ®'(2,0,0) =0, (7.172)

which is the hermitian conjugate of the constraint (7.160). A generic superfield ® satisfying the

condition D,® = 0 is called anti-chiral superfield. Its expansion is given by

®(y,0) = B(y) + V2 A@)0 + 6°H (y), (7.173)
or, in terms of the original variables,
B(x,0,0) =B(x) — i00"00, B(z) — %Haméeonéamanl?(m) +VIN)i—

—V2i05™00,, ()0 + 62 H () = (7.174)
V2

The supersymmetry charges for the antichiral superfield then take the simplified form

_ 0 B 9
Qa = _2i(0m9)afm and Qd = - .
ay g»eye_ 89a g7979_

_B(2) + VA(2)0 — i00"00, B(x) + B H(z) + 292?53(@ + L 820679,

(7.175)

Consequently, we can easily compute the supersymmetry transformations for an antichiral su-

perfield and find

be:B(z) = V2X(x)E (7.176a)
Seira(x) = iV2(e0™) 40 B(x) + V265 H (z) (7.176b)
beeH (z) = V2iea™ I\ (). (7.176¢)

7.1 An action for the chiral fields

The next step is to write an invariant action for the chiral multiplets. This action must be an
integral over the whole superspace of (super-)Lagrangian density, which depends on the chiral
super-fields &1 (I is an index running over all the possible chiral superfields appearing in our
model). This Lagrangian, however, cannot be simply a function of the chiral superfields ®'. In
fact

/ dzd®0d?0F (®1) = —% / d'zD?*D*F(o!) = —% / d*zD*D (a;;gf)

D%A> = 0.
(7.177)
In order to obtain a non-vanishing result, the Lagrangian density must depend on both chiral

and anti-chiral super-fields, namely £ = K(®!T,®7). For the moment we shall consider the
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simplest choice for a function of this type: £ = —%@I t®! where ®f with I =1,..., N represent

N chiral superfields and ®'T their hermitian conjugates. Then the action is given by
1 ~ 1 _ 1 _
—4/d4xd29d29 <<I>I<I>”) - m/d4xD2D2(<I>I<I>”) = 16/d4ch2[(D2<I>I)<I>”] =
=T d*z[([D?, DY®")®!T 4 2([Dy, DY@ DY®!T + D?®! D21,
(7.178)

The graded commutators appearing in the above expansion can be easily evaluated and we find
[D4, D% = 4i(D6™)40,,  and  [D?, D?] = 160 + 8i(Dc™D)d,,. (7.179)
Thus, the action reads

—i / died?0d%0 (cbf <I>”> - % / 2160708 + 8i(Do™) 40, ®! DY®! + D23! D?¢1T)—

(7.180)
It can be rewritten in terms of the usual fields by means of the following identities
I Al T Y
¥lygp = A'(@) ® Moso = AT(@)
Da®'|y_5_4 = V2xa(@) Da®"|,_s_ o = —V2xk () (7.181)
D!, _;_, = —4F!(x) D!, 5 )= —4F(x)
and one finds
1 _
-3 / d4wd?8420 (qﬂq)”) - / da[ATOAT — il o™, %) + FIF!T) =
(7.182)

_ / A2 ATOAT — (¢ 5™ o) + FLF].

This is the correct free action for N complex scalar fields and N Weyl fermions. The N complex
scalar fields F! do not propagate and they identically vanish on the equations of motion. They
can be dropped if we require that the supersymmetry is realized just on shell.
The next issue is how to introduce interactions such as scalar potentials and Yukawa couplings
and to preserve supersymmetry. This cannot be done by simply adding more complicate func-
tions of ®' and ®'f. These kind of terms will lead to derivative interactions, which are, moreover,
generically non renormalizable. This type of interactions can be instead obtained by integrating
a function of the chiral super-fields (but not of the anti-chiral ones) F(®!) over half of the
superspace

/ dzd*0F(d!) = / d{yiif@f )=

0601 062

1 1 (7.183)
— ffﬁ / d*yDaDpF(®") = = / diyD*F(®7).
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This term is manifestly Lorentz invariant. Its invariance under supersymmetry transformations
is a little more subtle. The transformations generated by €@ preserve (7.183), since they cor-
responds to take an additional derivative with respect to 8. The transformations of the form
€Q correspond instead to take a total divergence of the integrand and so the action is again
invariant.

The analogous integration can be defined on the functions of the anti-chiral superfields

g o 0 1 N
d*zd*0F (") = —/d4 F(@) = —/d4 D*F(oh). 7.184
[ dtaor @) v L F@) = - [aDrF@). (s
Since the Lagrangian must be real, a candidate interaction term for the chiral superfields is
/ d*zd?0F (@) + c.c. = / d*zd*0F (1) + / d*zd®0F* (o) (7.185)
The first and the second integral, when written in terms of the standard fields, yield
OF (AK) OF (AK)
4. 12 K 4 J I I
o) = — — —2————F 1
/d xd“0F (D) /dx(aq)la(bjx X 55T , (7.186a)
- OF*(ATE) OF*(ATE)
4 278 mtKY 4 JoT I
/d cd?0F* (d1E) = —/d T (WX X —QWFf , (7.186D)

Therefore the supersymmetric action for a system of N chiral multiplets is given by
1 _
S=-; / d4wd?8d20 (q>1<1>”) 5 / dad20F (D) + / diad?F (1) =
18]—'(14 ) 5 1 OF(AK)
2007007 X X T T g0l

19F*(ATK) ey OF*(ATR) 4
~2aatgen X X T g 1T

= / d'z [A”DAI — (150X ) + FIFT — F'—  (7.187)

The introduction of the interactions has preserved the property that the fields F! and their
conjugates are not dynamical. We can eliminate them by means of their equations of motion,

which are solved by

OF*(ATE) OF (AK)
I__ It _
Then the action takes the following form
o 1 0F(AK) 1OF*(ATK) _, . |0F(AK) |
_ 4 It Al cpel=mg Iy _ * Jor 4t JoI
o= / A | ATDAT =i 0mX) = 5 551557 X X~ 3 gatigen X X oD
F-terms
(7.189)
and it is invariant under the supersymmetry transformations
beeAl(x) = V2ex! (2) (7.190a)
0 AK
Seexl(x) = iV2(0™E) aOm Al (v) — V2eq i f ( ). (7.190Db)
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The potential for the scalar fields A’ is manifestly positive definite. It is the sum of the square
absolute values. This property follows directly from the supersymmetry algebra, as shown in
(3.69). The absolute minima of this potential (vacua) are therefore determined by the system

of equations
| OF(AK)
o0d!

If this system of equations does not admit a solution the supersymmetry is spontaneously broken.

F = 0. (7.191)

If we limit ourself to renormalizable interactions, the most general super-potential is a polynomial

at most cubic in the chiral superfiedls
1 1
F(®) = \®' + imU(IJI(I)J + ggIJKqﬂqﬂch. (7.192)

Then the most general supersymmatric action with particles of spin less than 1 and with renor-

malizable interaction is

 Iem 1
S = /d4m [A”DAI —i(x'a™ox!) - §(mIJ + 2917k AF)x x 7 -
N (7.193)

Lo« . I 2
—5(my+ 2077 ATV = D I+ mig AT + g ATAR|T
=1

7.2 Non-linear sigma model

As long as we want to formulate a fundamental quantum field theory, i.e. valid at all scales,
renormalizability is a guiding principle. Then the most general Lagrangian containing only
chiral superfields has the form discussed in the previous section. It contains a kinetic term
given by —%gﬁ”qﬁl , and a superpotential which is at most cubic in the chiral superfields. In-
stead, if we consider our supersymmetric theory as an effective model the constrains imposed by

renormalizability must be relaxed and we can write a more general action
S = / de / d*0d20K (o1, ") + / d'z / d*0F (o) + / diz / d2OF*(p!h). (7.194)

The function K(¢'T, ') must define a real superfield, and this will be the case if KT(2!T, 21) =
K (2!, 2') and F is an arbitrary function.
The expansion of this action in terms of component fields requires a lengthy and tedious analysis.

Firstly, we shall consider the case of vanishing superpotenzial F', and we shall evaluate the
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integral over the Grassmann coordinates of the kinetic term K (¢!, ¢7). We find

/ d?0d*0K (o1, o1 = %DQD%K;) = fiDaDd(DdDa(lC)) + total div. =

=— %(aLafé 7O KD®" DY@ Dy’ Do ®! — 4007005 K0, @5t Doyt 6™ DB —
+ 00,0k KDY®XT Dy’ D*®! — 9,0,0KD*®K D?*¢”t D, ® + (7.195)
+ 4i8;0,KD® ™8, D’ — 8;0,KD*¢”T D*®T — 4i0;0,;05x KDDX c™ DD 5, dT —
— 8Tr(0™5")0;0;K0, D17 0,7 — 4i9;0;K8,, DD o™ D®1) + total div..
It is convenient to introduce the following notation: J; +— d57, ®IT o1, 9;0,K — Kr7,
910;0kK — K, 5, 10,0k K — Kfjr and 8;0;0x0.K — K;;7. Then

/ d20d20K (D7, ¢7) =

=_ i(/cILJKDaq%DdéRDchﬂDa@f — 4iK; 7 Om®E DB 5™ DB —
+ K75 DK D& D20 — Ky ;DX D287 D@7+ (7.196)
+ 4iK; ;DD ™8, D7 — K, ;D207 D2®T — 4iK ;. ;DOK e DB 5, —
— 8Tr (06K ; 70,87 0,y ® — 4iK; 70, DD e DD’ + total div..
This expression, by construction, contains only terms of grading 0. Therefore can be written in

terms of the component fields by means of the following table

@1}92520 = AI(:U) él’a:':o - Al(x)

Da®'|, 5o = V2x4(2) quﬂT oo = V() (7.197)
27 — I YT

D20,y = —4F!(2) D2l| = —4F!()

where the same notations used for the superfields were also applied to the component fields.

/ d*0d*0K (DT, ¢1) =
1 - -
=- Z(—‘UCILJKXLXIXJXK + BiICIJRamAKXJ5mXI+
+ 8K XX P4 8K e X P+
— 8iK X 0Oy — 16K, 7F F7 + 8ik e 1Ko O AT +
+ 16K, 70, A7 0" AT + 8iK; 70mX 0™ x”) + total div..

(7.198)

It is convenient to eliminate the auxiliary fields F! and its complex conjugate FI by means of

the equations of motion

K—op — 16K 7F 4+ 8K e x5 X = 0
I1 J-K 1 Llogr J. K (7.199)
K KrjrX'X F = §’C KrigX'x,

= Fl =

N = <A
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where KT = KT are the inverse of K 77- Then we find
/ d20d20K (D!, ¢7) =
[(ICIL - K*K, JrKar)x"x'x’ 'K — 20K 5z 0m AKX ™ + 20K px 0 O~
= 2K e XK O AL — 4K, 70, AT 0 AT — 2iK, jamxfamxf] + total div. =
[(’C[L - K4 KA TRKz, IIXEXRI R = 20K 5 0m AR5 X! 4 20Ky o™ Oy —
— 2K e XKo" O AT — 4K, 50, AT 0" AT+
+ 20K, 7% 0™ O + 20K, 7Om AP o™y + 20K, ; J—amAfoamXJ] + total div. =
= [(K17i — KK 4 52K 1 i) X X XS = 20155 0m AR5 0™ X! 4 46K 13 o™ O
— 4K, 70, A7 0" AT 4 2iK ;7 70m ALXIUW + total div. =
= (]C]LJK KAAKA JRK A, XX’ K+ 41K 75 O AR\ Tgmyd 4 4K x o™ OmX —
— 4K, 0, A7 a"Af} + total div. =

=|Krjg — K AR sk KX x'x’ 'K+ 4ik 0™ (O + KT g 0n AR )
— 4K, ;0,47 a"Af} + total div..
(7.200)

This Lagrangian can be written in a manifestly covariant form if we interpret the function IC as
the Kaehler potential for the complex manifold spanned by the scalars (A’, Al ). We have then
the following identifications

(a) the complex metric is given by
G;7=010;K Grj=Gr;=0. (7.201)
(b) the corresponding Christoffel symbol are
Lryk =0 Trjr=0 Tf = %(ajGjK + 0k Gy — 01G k) = 0,0k 01K
Uy = %(@Gm +0kGry—01Gyr) =0 If i = %(@Gm +0KGry = 01G ) =0
e %(a,am OG- 01 g) = D,0KOK.
(c) We shall also need the following component of the curvature

Rty =0l iy — OnLrim + gAAFA,EMPA,NI + QAAPA,EMFA,NI - gAATA,LNFA,Mﬂr
+ gAAFALNFA,MI =Oml iy — QAAFA,LNFA,MI =
=010 OLONK — QAAFA,ENFA,MI'
(7.202)
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Then (7.200) takes the following form

/ ROROK(T, 51) =

=Ry 71X "X XTXE + 4G 5 0™ (0mX” + Th0n AN — 4G 170, A70" AT + total div..

(7.203)
We can then write the following action as
1 B .
1 / d*x / d?0d*0K(®, ¢1) =
(7.204)
a |1 LT Jan I
:/dx|:4RLJIKXXX +ZGIJXO' D GIJ({“)A('?A]
If there is also a superpotential, the additional contributions are
/ d*zd*0F (%) = / d*z (Fryx'x" — 27F"), (7.205a)
5 / d'sd?9F (%) = —3 / dia (f‘l—jx -2 }Ff). (7.205b)
These terms modify the equation of motion for F! and FI
7 1 7R 1 _
,CIJFJ_iKIJK'X X+Fr=0 Ki7F' — §’C1KJXKXI +Fr=0
) (7.205¢)

S _ 1 o
ngxJXK _GglVF, Fl= §F§KXJXK _ GIij’
Then the action in the presence of a superpotential is

1 1 _
/ d*z / 20426 K(®T, ¢") - / d*zd*0  F(@F) += / dzd*0  Fr(@TK) =
Kaheler potential 2 superpotential 2 superpotential

1 - -
:/d4l' |:4RLJIKXLX X X +ZGIJX g Dm)_CJ - GIjanAJanAI *V V f

1 ; _
—5 ViV XX = GYV RV JF} :

(7.205d)
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Exercise: Prove eq. (7.195).

SoOLUTION: If we expand the derivatives acting on the Kinetic term, we find

D2D?(K) =D*D%(Dg Do (K)) + total div. =
=D*D%(8;8;KD5¢” T Da®! + 0;KDg Do ®') + total div. =
=D®D%(8;8;KDs¢p”t Da®! — 2081 Ko™ 8m ®T) + total div. =

=D%(8;0;0x KD*®XT D¢’ T Do®! — 8;8;KD%¢7 T Do @' —

— 018;KDa¢” 1 DE D@ — 2i8;8,;K0™, DY@ 9, 1) + total div. =
=DY(0;0;0x KD*®KT Dyt Dy®! — 8;0;,KD?¢7t D@l +

+818;KD%¢7 T Dy Do ®! — 208185 Ko™, D& 8, ®7) 4 total div. =
=D%(8;8;0x KD*®XT D¢’ T Do®! — 8;8;KD%¢7 T Do dT -

— 4i8;8;K0™, DY@ 9, 1) + total div. =
=(81,0;0;0x KD*®F D @K1 D4 ¢/t D@ + 0;8,;0x KD DY®F T Dyt D &1 —

— 818;0xk KD T DDy ¢" T Do ®” + 81870 KD ®KT Dy’ t D2 ! —

— 0100k KD*®K D2¢p7 T Do ®T — 8;0;,KD*D?¢”" T Do ®! — 9;8,KD?*¢” T D2®T —

— 4107190 Ko™, D®K D4&1 9, ®1 — 4i9;8;K0™, D> D& 9,,, &1 4-

+ 419781 Ko™, DD 8, D*®T) + total div. =
=(81,818;0k KD*®" D45t Dy ¢? T Do ®T — 48180, KOy 5T D7 6™ DO —

+0;0;0xk KD*®KT Dy ¢t D?®T — ;0,0 KD*®K D?¢p7T D, +

+ 4i0;0;KD® 6™ 8,, D¢’ — 8;0,KD?¢7 T D2 T —

— 419180k KDE 6™ DB 8,,, &1 — 8Tr(0™5™)8; 87K &1 O ®T +

— 4i0;87K8m DD o™ DDT) + total div..

7.3 First implications of supersymmetry: SUSY Ward Identity

In the following we shall examine the first consequences of the N = 1 supersymmetry at the
quantum level. In particular we shall show how supersymmetry can constrain the dependence
on the space-time coordinates and on the couplings present in the theory. For our goals it is

more natural to write the supersymmetry transformations (7.168) in operator language

[AT(2), Qa] =iV2x} () (7.206a)
(A" (), Qa] =0 (7.206b)
{x6(2), Qa} = — iV2e5,F' () (7.206¢)
{x5(@),Qa} = — V207530, A () (7.206d)
[F!(x), Qa] =0 (7.206¢)
[F1(), Qa) =V2(0mx"0™)a- (7.206¢)



Here A’(z), x!(z) and F!(x) can be thought as elementary fields or they can be composite

operators which span a chiral super-multiplet. Then let us consider the following Green function

(AT (1) -+ AT (a0))o (7.207)

m

g 0 e find

and let us the derivative 9, with respect to 1 and contract with V20

— V2T IR (T (AT (1) - AT (w0)))o = —V20T (T(O AT (1) - - AT (20)))o + eq. t. comm. =
= V20T (O AT (1) -+ AT ()0 = (T (1), QYA (w2) - A ()0 =
= (0Q5T (2 (1) A™ (2) - A7 (,))]0) + (O[T (xl (1) A2 (3) - - A" (2))Q/0) = 0.

(7.208)

This follows immediately from the fact the Q4 annihilates the vacuum and from the vanishing
of the commutator [A?, Q] and of the extra equal time commutators arising from 9, acting on

the #—functions of the time-ordering. Since ¢™ are set of independent matrices, we have
(O AT (21) - - AT (2,))0 = 0, (7.209)

i.e. the correlation function does not depend on x;. In the same way one can show that this
correlator does not depend on any of the coordinates x;. Taking the limit of large separation

among the fields, we can apply the cluster property and we can conclude
(AT (1) - AT ()0 = (AT )o(A)g - - (AT)o. (7.210)

The next step is to see how the supersymmetry constrains the dependence of the above correla-
tion functions on the couplings appearing in the superpotential. Suppose that our superpotential

contains a term of the form

A / d*zd*0®q + h.c. (7.211)
where @ is a composite chiral superfield. We want to analyze the depence on A of the above
correlator

0 __
ﬁ(T(Ah (21) - A (z,)))o = (T(/ d*xd?0Dg AT (1) - - - Al ()0 =

(7.212)
— [ AT Fo@ A @)+ A @)

Here Fjp is the highest component of the antichiral supermultiplet ®q.
Since Fy(x) = —%ﬁ{@d,id}

O (AT (1) - AT ()0 =

o d*3(T({Qa, X* YA (21) -+ AT (2)))o = 0 (7.213)

1
_2\@
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For the same argument given in the other case. Therefore this correlation function can depend
only holomorphically on the coupling appearing in the (microscopic) superpotential. Exploiting
also the other WI we can conclude that given any composite chiral superfield ® its expectation

value on the vacuum (®)g is an holomorphic function of the couplings.

7.4 Renormalization properties of the WZ and NLS model: Non-renormali-

zation theorems

In this section we shall try to investigate the property of WZ and NLS models under renor-
malization. We shall look at this question from a modern point of view, namely in terms of
low energy (or Wilsonian) effective action. For a given physical system, it is a local © action,
but potentially with an infinite number of couplings, which is suitable to descrive the relevant
degrees of freedom below a certain scale of energy given by a cut-off u.

In high energy the typical example of this situation is realized by the the chiral effective action
for QCD, theories describing the strong interactions at energy below Agcp in terms of pions.
This example also illustrates the common feature in the effective theories that low energy degrees
of freedom (pions) are very different from the degrees of freedom of the fundamental theory.
Given the theory at scale g, the effective theory at lower scale p is obtained by integrating out
all the fluctuation in the range of energy p < E < pg. The resulting action can be expanded as

a (potentially) infinite sum of local operator
S, = / 'z S (1) Oi(x). (7.214)

This local expansion is meaningful on length scale of the order 1/u and it describes the processes
in a unitary way up to energy less than u. The effect of integrating out the modes the modes
between p — dp and i can be described by an infinite set of differential equations governing the
couplings in (7.214)

dgi

M = Bi( gk 1t)- (7.215)

If there is a point gg in the space of coupling such that ﬁi(gg, w) = 0, we shall call this point
fized point. With this value of the couplings the theory does not change with the scale. Such
a theory is naturally called scale invariant theory. Suppose now to expand the above equation
around the fixed point g9. At the lowest order, we find

dg;im = ggﬁ; (93> 1) (95 (1) = 93)- (7.216)

5We shall explain below in which sense we are using the adjective local
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We can always redefine our basis of local operator so that the matrix 3;; (¢°,p) = gfj (gg, W) is

diagonal 3;;(g°, 1) = A\;8i;, then the above system is easily solved

dgi(p)
dp

A

Mol - = e =d+ (L)« (7.217)
when when we decrease p, if A; > 0, g;(u) is driven to g9, then the eigenvalue is said to be
IRRELEVANT in the IR; if A; < 0 g;(u) is driven away from g, and ); is called RELEVANT; finally
if \; =0, g;(u) is fixed at g9 and \; is MARGINAL.

Consider the case when the fixed point in the IR is a free theory (gaussian fixed point). This,
for example, occurs for any theory containing only scalars, spinors and U(1) fields if the the
interactions are sufficiently small (Coleman-Gross Theorem). A free theory is scale invariant

when we choose the following scaling for the fields

3/2
" o o .
¢ <uo>¢’ 4 <uo> G (uo)v“ (7.218)

Then any operator built out of these fields will scale with its mass dimension A;, i.e. O;(z) —

siAi(’)i(m). Therefore the scaling of the interaction associated to this operator O;(z) in the

/ d*z0;(z) — <“)Ai4 / d*z0;(x). (7.219)

effective action is

Ho

We immediately see that in the infrared the operator with A; > 4 are irrelevant, those with
A; < 4 are relevant while A; = 4 are marginal. [Strictly speaking, we are assuming that the
quantum fluctuations are not not so large to destroy the free scaling. Namely, they are small
enough not to alter the qualitative picture implied by (7.218) and (7.219). However the marginal
operators are in delicate situation. It is sufficient a small perturbation to change their status:
they might become relevant or irrelevant. An operator which is still marginal after the inclusion
of the quantum correction is said exactly marginal.]

The above analysis shows us that the physics in the infrared is dominated by relevant and
marginal operator, while the contribution of irrelevant operator can be consistently neglected.
The fortune and the power of effective action is that the number of relevant and marginal
operators that we can write for a given problem is in general limited. This means that a good
description of our physical system below a certain scale p will only require the inclusion of
limited number of terms in S,,.

In the case of a free fixed point in the infrared we shall choose to parameterize our effective

theory as follows:

S = Spree + Y [ dlou® igi(001 (o). (7.220)
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Here we have factored out the mass dimension of the operator O;(x) and the coupling constants
gi(1) get correction from loops of virtual particles with energy in the range p < E < pup.
Since the integration region is limited the quantum correction does not suffer neither UV or IR
divergences, even in the presence of massless particles. This should be contrasted with the usual
1—PI action which is strongly affected by these divergences.

For the moment we have just considered the case when the far IR is described by a free field

theory, but one can encounter other possibilities:

e Consider a theory where all excitations are massive. When our scale p is below the mass of
the lightest excitation, there is no propagating degree of freedom and the system is frozen.

We have a trivial effective action: there is no propagation to be described.

e There are surviving massless degrees of freedom in the infrared which interact non-trivially.

The effective action in the IR is given by an interacting conformal field theory.
Constraining S,: holomorphicity and symmetries.

holomorphicity: We have just discussed how to construct an action that describes a physical
system below a certain scale u starting from a microscopic theory valid at higher scale pg. If
the microscopic theory is generic and it does not possess any particular property, the resulting
Wilsonian action S, will be a mess containing all sort of terms. There is no systematic way to
predict the structure of S,.

In this respect supersymmetric field theories are quite special. If we assume that the super-
symmetry is not spontaneously broken when p flows in the infrared, the form of S, must obey
to very strict constraints. Consider, for example, a supersymmetric NLSM which describe the
physics at certain scale 1o (microscopic theory), we want to follow its flow when 1 is lowered
to u.

To begin with, we shall assume that the physics at the scale u is still described by a NLS model
(macroscopic theory) with a specified set of light chiral, which is not necessarily a simple subset
of those of the microscopic action at the scale pg. We have no derivation of this assumption.
We can only check if it gives a self-consistent prediction.

Now we want to compare the structure of the superpotentials present in the two actions. On one
side there is Fy, (9, ®1), on the other side we have the macroscopic superpotential F, which
potentially depends on certain superfields ol , describing the light degrees of freedom, on the
couplings g; and g; and on the scale p.

PRrROPERTY 1. [Holomorphicity] The superpotential F,, does not depend on g;, namely it is

an holomorphic function of the couplings appearing in the microscopic superpotential.
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In order to prove this, we shall use a trick let us promote the couplings g; to chiral superfields
Gi, then F, (gi, ®1) — F,,(G;, ®!). The original theory is recovered when G is chosen to be
constant. Since supersymmetry imposes that a chiral superfield can appear only holomorphically
in a superpotential, F,, can depend on G; and not on Gj. Setting G; to be a constant we find
the property 1.

This trick might seems unusual and somewhat strange. However it is just the supersymmetric
version of the familiar technique used in QM to get selection rules. Consider the case of the
Stark effect, where we have rotationally invariant system, the Hydrogen atom, subject to a non-
invariant perturbation o E-Z. The dependence of the energy splitting on the background electric
field cannot be arbitrary. Indeed the simple remark that E can be considered a vector and not
simply three constant in the Hamiltonian produces selection rules for the possible contribution
of E (Wigner-Eckart theorem).

symmetry: R-SYMMETRY. Further constraint on the form of the superpotential F,, can come
from the the bosonic symmetries of the microscopic theory. In supersymmetric theories, a special
role is played by the bosonic symmetries that commutes with the Poincare generators, but they

do not with the supersymmetry charges:

[Be,Qal = (S0)' LQx  [Be, Qél = —(5))" Q& (7.221)

where Sj is an hermitian matrix. In a theory with just one supersymmetry, the above commu-

tation relation reduces to

[Be, Qo) = SiQa [Br, Qa) = —SeQk, (7.222)

with Sy a real number. The By for which S; does not vanish must generate abelian U(1)

symmetries. In fact
[Br, [Bs, Qal]l + [Bs, [Qa, Brl] + [Qa, [Br, Bs]] =0 = f,, FSp=0. (7.223)

This, in turn, implies that the vector { Sk} belongs to the kernel of the Killing form and thus its
entries can be different from zero only in the abelian sector of the bosonic internal symmetry.

Then we can define at most a single (independent) U (1) generator with the following properties

[R,Qa] = Qo  [R,Qs] = Q% (7.224)
The generator R is given by R = —%. This particular U(1) is called R-symmetry.

Determining the action of this symmetry on the chiral superfields requires a small generalization
of our previous approach. In the presence of an R—symmetry the superspace is defined by

N =1 Poincaré supergroup

Superspacen=1 = (7.225)

Lorentz Group x R-symmetry
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Consequently the action of the R—symmetry charges is defined by

exp (iaR) exp (—iz™ Py, +i(0Q + 6Q)) ~
exp (iaR) exp (—iz"™ Py, +i(0Q + 6Q)) exp (—iaR) = (7.226)
=exp (—ia™ Py, + i(e7"0Q + eiO‘H_Q)) ,
and on a chiral superfield it is given by

D (0, y) = d(e70, y)e, (7.227)

where we have assumed that the superfield possesses a global supercharge n. This means that

the component fields transforms as follows

$(x) = ¢ () = e"¢(z) x(x) = X'(2') = " Vx(x)  F(z) = F'(a!) = " F(x)
(7.228)
These transformations are consistent with the following assignment for the R—symmetry charges

of the superspace coordinates
RO)=1, R(#)=-1, R(dI)=-1, R(dF)=1. (7.229)

Recall that df ~ %. Thus, in order to have an action that is invariant under R—symmetry the

superpotential term must carry a +2 R—charge

/ dty / df29 F = R(F)=2 (7.230)

OTHER U(1) CHARGES AND THE CUBIC SUPERPOTENTIAL IN WZ MODEL. Consider the case
of one chiral superfield and the standard superpotential of the Wess-Zumino model defined at
scale g
1 2 A3
Fuo = im,ugczﬁ + gqﬁ (7.231)

We shall promote the mass m to a chiral superfield M and the coupling constant to a chiral
superfield A. Then
1 A
Fuo = 5Mpod? + 30° (7.232)

We shall assume that A — A’ = eA*A and M — M’ = ")\ and & — &’ = e™*®, then
2 2! ! 2/ 1 ! /2 A 13
/d&quH/defuoz/d9(2Mﬁéo¢ +§¢>)=

(7.233)
, 1 ' A
/ 426 |:€'L(2+qM+2n)a A [N0¢2 61(*24’(}/\4’3”)& 3 ¢3

2

Therefore, in order to have an action, which is invariant under R—symmetry we have to impose

that gx =2 — 3n and qp = 2 — 2n.
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Notice that is possible to define an additional U(1) under which the coordinate of the superspace

do not transform and the superpotential is uncharged. It is sufficient to choose g» = —3n and
qyv = —2n. Then we have the following set of charges
Ur(1) | U(1)
P n n

M| 2—-2n| —2n
Al2-3n]| -3n

Can we fix a sensible value of n? We can select n by imposing the Ur(1) does not possess neither

gravitational nor gauge anomaly

gravitational: n+2—-2n+2-3n=4—-4n = n=1

, \ \ ' ‘ (7.234)
gauge : n°+ (2 —2n)° + (3 —2n)° =0, which vanishes for n = 1.
With this choice we have the standard table
Ur(1) | U(1)
P 1 1
M 0 -2
A -1 -3

We want to find the superpotential at a lower scale u. We shall assume that the theory is
described by the same chiral superfield. The superpotential must obey the Ur(1) symmetry and
the additional U(1). Then w hat are the possible invariant monomials that we can construct
with the fields? The invariance of A*MP®" imposes

yn—2n—-2)f—aB3n—2)=0 and yn—2nB—3na=0 = a=+ and f=—v. (7.235)

Thus all the monomials of the form are (%)V are invariant. This, in turn, implies that any

function f (Aﬁq)) will be unaltered by the above transformation.
Since the super-potential must have R—charge 2, let us also find all the monomials with this

property. The constraints are
ym—(2n—2)f—a(3n—2) =2 and yn—2nf—-3na=0 = a= -2+~ and f=3—~. (7.236)

Therefore all the monomial with the right R—charge are AY"2M377®Y = M2 (Aﬁ‘b)t\% M®?2.

The most general superpotential obeying the above symmetries is then

A AP
= Mpud*f ( — = =mu®*f [ — 7.237
Fu = Mp@~f <Mu> Fu = mud”f (m/) (7.237)
Since F,, is an holomorphic we can expand it in a Laurent-series
o0
Fu= Y ap(mp)' FAro>tk (7.238)
k=—0o0

The explicit form of the function f can be restricted if we made the following assumptions
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Assumption 1: Smoothness of the limit A — 0. This assumption imposes k > 0

Assumption 2: Smoothness of the limit m — 0. More correctly we are taking A and m to 0
with the additional requirement that 5 +— 0.The Wilsonian action is regular in this limit and
thus this requires k£ < 1.

With this restriction the above superpotential (7.237) reduces to

Fy = ap(p)mud? + aq () \0>. (7.239)

Then we have the following effective action
1 _
S, = 2/d4z /d29d29Z [BTD+- ..]+/d4x [/ d?0(ao()mud?® + a1 ()AP3) 4 c.c.| (7.240)

In order to determine ag(p) and aj(u), let us compare the prediction of the two theories. If
we consider the limit A — 0, we reach the free theory then the mass in the microscopic and

macroscopic theory have to be the same, this implies
ap(p) = =—2. (7.241)

[Recall that we have to normalize canonically the kinetic term to obtain the mass.] But since we
are approaching a free theory Z = u/u—0 and consequently. ag = 1/2. To obtain a;, we shall
impose that at tree level the two theories must give the same prediction. This immediately fixes
a; = 1/3. Summarizing

1 1
Fu= 5m,@? + gA<1>3. (7.242)

PROPERTY 2. [Holomorphicity| In the WZ model the superpotential F,, is not renormalized.
EXTENSION OF THE PROOF TO ANY SUPERPOTENTIAL. Consider now the case of a generic
superpotential in the microscopic theory F(®;, up). A useful trick it is to replace the above
superpotential with Y F(®;, ug), where Y is a chiral superfield. The original theory is then
recovered for Y = 1. The enlarged theory possesses an Ur(1) symmetry with the following
assignments for the charges

R[Y] =2 and R[®;] =0. (7.243)

Assume now that the superpotential depends on the same set of chiral superfield at the scale u
as well. Then holomorphicity and R—symmetry implies that the superpotential must have the
following form

YW(®;, 1) (7.244)

As Y — 0, we approach a free theory and the UV and IR action must match in perturbation

theory. This immediately implies that

W( @, 1) = F (P, ). (7.245)
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Notice that the hypothesis the the IR and the UV theory are described by the same degree of
freedom appear to be self-consistent. This also is an agreement with the Coleman-Gross theorem
that the scalar/spinor theory are infrared free.

THE KAHLER POTENTIAL. We have seen that the renormalization of the superpotential is
severely constrained, one might wonder whether something special occurs for the Kahler poten-
tial (D, <I>T). Unfortunately the answer is not. There is no particular constraint for dependence
of the renormalized KC(®, ®T) on the coupling of the microscopic theory. Both g; and g; can ap-
pear. For example a simple one-loop computation shows that the wave function renormalization

in the WZ model yields
2
Z =1+ #|g[log <Zg> (7.246)

7.5 Integrating out (and in)

For the moment we have just examined cases where the IR degrees of freedom coincide with the

UV ones. Consider now the following superpotential with two chiral superfields
M
W= S+ %@Hq% (7.247)

We want to integrate out all the modes down to y < M. At this energy the superfield @ is no
longer dynamical and it can be integrated out.
INTEGRATING USING SYMMETRIES. First of all consider the case of Ug(1), the invariance of the

action imposes the following constrains for the charges
qu +2qu —2=0 and ¢y + gy + 29 —2=0. (7.248)
For a generic U(1) we have the following constrain for the charges
v +2qg =0 and ¢y + qm + 24o = 0. (7.249)

Therefore apart from the U;(R), we can define two additional U(1): Ux(1l) and Up(1l). The
solution of the constrains (7.249) depends on two free parameters. The above constraints can
be, for example, by the following assignments of charges (a different choice will not affect the

final result)

Ur(1) | Ua(1) | Up(1)
Dy 1 1 0
oy | 1/2 0
M 0 -2 0
g 0 -1 —2




Consider now the invariant monomial we can construct out of M, g and ®3. The invariance
under Ug(1) selects: M<(g®2)”; that under U4 (1) imposes (%) . Finally, the Ugr(1) fixes

B = 2. Therefore the only possible superpotential compatible with the symmeetries is
g9 4
CLO(M)M(IDO' (7.250)

Comparing the three level perturbation theory we have ag(u) = —1/8. This result can be checked
by integrating out the field ® through its equation of motion

;;;{:MQH+‘;]<I>§:O = @H:—ﬁq% = f:—fz\i[@é. (7.251)
MAKING THE EXAMPLE MORE INTERESTING. Let us consider what happens if we add a cubic
term in (ID%,

F= %qﬁi + gqm@g + %@% (7.252)

We want to integrate out all the modes down to p < M. It appears natural to eliminate ®p
from the dynamical degrees of freedom and write a superpotential only for ®¢. The previous

symmetry extends to this case with this assignment for the charges

Ur(1) | Ua(1) | Up(1)
oy 1 1 0
O 1/2 0
M 0 -2 0
g 0 -1 —2
-1 -3 0

Consider now the invariant monomial we can construct out of M, g, y and ®y. The invariance

under Up(1) selects: M%y®(g®2)7; that under U4 (1) imposes Mfgf%yﬁ(g@%w. Finally, the
2\ Y

Ugr(1) fixes B =y —2: M~2+3y7=2(gd32)7 = ]\;—; (qu>°> .Thus the most general superpotential

M2
compatible with the symmeetries is

_ M <gy¢’3> . (7.253)

The function cannot be determined by symmetry arguments. However it can be obtained by

eliminating the field @ through its equation of motion

OF G0 Yo M gy}
Y M Ip2 4 o2 — Sy =——[14+4/1- ) 254
Then we obtain
M3 39yd; gy gydd
F=—|1- +(1- 1— =20 7.255
3y? [ 2M?2 M2 M2 ( )
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The dependence is the one suggested by the symmetries, but there is an unexpected singularity.
The superpotential F has a brunch cut at ¢3 = ]‘g—;. What is the meaning of this singularity?
Let us compute the mass of ®p

O*F gy}
=~ = M+ yby =FMy/1— 20

M (7.256)

At ¢ = Ag/l—;, the superfield & becomes massless and it should not be integrated out. This
is a lecture that we have to keep in mind: the presence of such a singularity in the effective

superpotential denote the appearance of massless modes around the singularity.

7.6 Spontaneous supersymmetry breaking in WZ and NLS model

We have already stressed that we have a spontaneous breaking of the supersymmetry if and only
if the energy of the vacuum is different from zero. In fact the susy algebra allosw us to write

the hamiltonian as follows

H = P* = L{QL @1} + {5 @1 = (el @D + (@b @by, (r257)

where we used that ( {72)T = Q{ 5- Consequently the Hamiltonian is positive definite

wiEks) = 5 [l + [I@H [ + |5 | + @4 7] = o. (7.258)

Let |©2) be the vacuum of a supersymmetric theory. If supersymmetry is spontaneously broken,

there is at least one (), which does not annihilate the vacuum, then
1 ~ _
(@H1Q) = 7 [N + [IR]|” + |4 + [[Q4)][*] > o. (7.259)

Vice versa if the vacuum energy is different from zero, the above equation implies that there is
at least one supersymmetric charge, which does not annihilate the vacuum. Namely, the super-

symmetry is spontaneously broken.

This condition of spontaneous breaking can be stated by saying that the vacuum expectation

value of the supersymmetry transformation of one of the field is different from zero:
(Q]6(Field)|2) = (Q{eQ, Field}|2) # 0. (7.260)

It would be zero if the vacuum is invariant. The field enjoying this property cannot be a boson
since its variation are fermions and a vev of fermions field will break Lorentz invariance. Then

it must be a fermion. For a theory containing only chiral multiplets, then we must have
<Q|6€75X£($)|Q> = (QiV2(0™8) aOm AL () + V2e, F1(2)|Q) # 0. (7.261)
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The first contribution 9, A’ (x) vanishes for Poincare invariance and we are left with the following

vev (Q|F!(z)|Q2) # 0. Therefore the supersimmetric is broken if and only if
(Q|F(z)|Q) # 0. (7.262)
This condition is equivalent to the requirement that the scalar potential,

V=> |F (7.263)
I

does not possess a minimum of vanishing energy.
Similarly, the supersymmetry is not spontaneously broken if and only there exists a solution of
the system of equations

Fr=0  admits a solution. (7.264)

Let us see investigate the generic spectrum of the theory in the presence of the breaking. We

must write the mass matrices. For the fermions, we find

oF
Mip=(Frj)==———1, 7.265
1/2 ( IJ) (8A[3AJ> ( )
while for the scalars we get
v v ZFKJFKI ZFKFKIJ
M} = | 0404, 9A0A ) _ | K Ko (7.266)
2%V o2V
9A[0A; DA0A; ZFKFKU ZFKIFKJ
K K
A non-supersymmetric vacuum solves
ov _
Fyvie > FixFk =0 butnot F=0. (7.267)
K

This means that Fx is not vanishing and it is a non-trivial element of the kernel of the matrix
Fr;. In other words the fermion ¢ = 3 Fyx; is massless and take the name of goldstino. This
is the hallmark of spontaneous supersymmetric breaking as the goldstone boson is for the usual
bosonic symmetries.

However the spontaneous symmetry breaking cannot produce an arbitrary pattern for the
masses. In fact supersymmetries imposes the following constraint on theory containing scalars

and spinors

Tr (M2) — 2Tr (Mf/2) =23 FFrs -2 FruFis =0 (7.268)
IJ IJ
This mass formula in an abstract way can be rewritten as

STr(M?) = (=1)*(2s + 1)Tr (M7) =0, (7.269)

S
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where STr is called supertrace and M? denote the mass matrix of all degrees of freedom of
the theory bosonic and fermionic. Note that the boson states contribute with a plus sign while
fermion states with the minus sign, but all the states are weighted with the spin degeneracy.

The above supertrace formula also allows us to illustrate the generic pattern of the mass splitting
in the spontaneous breaking. Let us apply the formula to a chiral multiplet. First of all, (7.269)
implies that the two real components (X,Y") of the complex scalar A are no longer degenerate,
otherwise all the states are still degenerate and there is no breaking. Then, if we parameterize

2 2

the spectrum as follows m% = mi + Ay, m2 = mi + Ag, where mj is the square mass of the

fermion, we find
O=m%x+my —2m2 =A1+ 0y = A1 =-Ay=A, (7.270)

see fig. below One of the scalar is always lighter than the fermion: which one depends on the

(XorY) 5
—— m“+[A|
(A, X) /
- > X mz
\— m?-|A|

(XorY)

Figure 1: mass splitting in spontaneous supersymmetry breaking

sign of A. This is bad new for a phenomenological applictation: the selectron cannot be lighter
than the electron.

A remark on the possibility of spontaneously breaking supersymmetry (SSB) is in order. Su-
persymmetry is unbroken if and only if

_OF

Fi(A) = 9%,

(A)=0, with I=1,...,N. (7.271)

These are N complex equation in N complex unknowns and so there will be generically a
solution. Generically means that by making an arbitrary small change in the couplings we move
from a theory with SSB to a theory with unbroken supersymmetry.

Restricting the form of the superpotential by imposing global symmetries improves the situations
only partially. If the global symmetries commute with the supersymmetry charges, the presence
of supersymmetric vacua is still a generic feature. The situation changes if we consider a
potential invariant under R—symmetry, which spontaneously breaks Ug(1). In fact if Ur(1) is

spontaneously broken, there is a charged scalar field, which takes an expectation value different
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from zero on the vacuum. For simplicity, we shall assume that carries R—charge equal to 1 and

we shall denoted with A;. Since the superpotential is Ur(1) invariant we can write it as

Ao AN
The conditions for having a supersymmetric minimum are
of
fUsa,...,UN)=0 8U<(U2"” ,Un) =0, (7.273)

where we have used A1 # 0. These are N equations in N — 1 unknowns. No solution generically

exists. Therefore we have the following net result:

if the superpotential is a generic function constrained only by global symmetries supersymmetry

is spontaneously broken if and only if there is a spontaneous breaking of the R—symmetry.

A FAMOUS EXAMPLE: THE O’ RAIFEARTAIGH MODEL. Consider the WZ model containing

three chiral superfield ®y, ®; and ®, with a superpotential of the following form
F = u®o + md 0y + gOd3. (7.274)

Among the renormalizable superpotentials, this superpotential is completely specified by the Zo

symmetry

P(®g) =®9 P(®1)=-01 P(P2) =—P (7.275)

and the by the following assignment of the supercharges
R(®p)=2 R(P1)=0 R(P)=2 (7.276)

The supersymmetric vacua of the theory must solve the following three equations

F1=mAy +29ApA; =0 (7.278)
Fo=mA; =0 (7.279)

The last equation implies that A; must vanish. Then Fy = p and F; = mAs, thus no su-
persymmetric solution exists. To find the actual vacuum, we have to minimize the potential

V =|Fo> + |F1 2+ | Ff?

av -

— =F12gA1 =0 7.280
94, F1294, ( )
av - - —

07 =Fo29A1 + F129A1 + Fom =0 (7.281)

1

av -

- = = .282
6A2 .7:1m 0 (7 8 )
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Notice tha A; = 0 solve the first and the second equation since F» x A;. We have just
left with F; = 0 = Ay = 0. Therefore there is a set of non-supersymmetric vacua with
(Ap, A1, Ag) = (v0,0,0) parameterized by the vev of Ay. Let us compute the spectrum of this

model around these vacua. The mass matrix for the fermions is

0 O 0
oOF
M pr— —_— p— ¢2
¥ <8A18AJ) 0 2gvy m (7.283)
0 m O

whose eigenvalues are {0,91)0 — /M2 + g2v92, gug + /m? + g2v02}. Thus the square of the
2 2
fermionic masses are {0,m%,,m%,} = {0, (gvg —\/m? + 921)02> , (gvo +vm? + gzv02) }

Reconstructing the mass of the scalars is a little bit more involved. We have the following

mass matrix

0 0 0 0 0 0
0 m +492 2 2gmvg 0 2gu 0
M2 = 0  2gmug m?2 0 0 0 (7.284)
0 0 0 0 0 0
0 2gu 0 0 m —1—492 2 2gmug
0 0 0 0  2gmug m?

If we diagonalize we obtain the following pattern for the scalar masses

2 2
2 2 2 2
p 7 17 p
00 (9”“‘\/4U2+m2+92v8+9u) —4uzv<9w‘ e ‘9“> Ty
0 0 0 0

2
2
<gvo+\/+m2+g2v89u> - (g o+\/+m2+92v8+9u> *%
0

We have two real massless scalars and 4 real massive real scalar. To understand better the

pattern of the breaking, consider, for example, the small p limit, then the above expressions

simplify to

2 2
gu gp
0,0, | mpr1t —F———=| , | M2t ———=—=
( \/m2+g%§> < Vm? + g?vd
and the general pattern becomes manifest. The two massless scalars correspond to the goldston

mode associate to the R—symmetry breaking.
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8 Vector superfield

The name vector superfield is actually misleading. It does not refer to the properties of transfor-
mation of the superfield under the Lorentz group, but to the field of maximal spin present in it.
A more correct, but less used name is real superfield.

To begin with, we shall again consider the scalar superfield and we shall try to reduce the repre-
sentation carried by this superfield following a different path. The generator of supersymmetry

transformation is an hermitian operator:
(eQ + €Q); (8.285)
thus it cannot alter the reality properties of a superfield. Therefore a constraint of the form
V(x,0,0) =Vi(z,0,0) (8.286)

defines another invariant subspace (under supersymmetry transformations). Recalling that
(M)t = XM and (Ao™)T = 1po™ X it is a straightforward exercise to show that the most general
real superfield has the following form

V(x,0,0) =C(z) + i0x () — ix(z)0 + %H(x)GQ - %HT(x)9_2 — Vi(2)00™ 0+

(8.287)
_ _ _ 1 -
+iX(2)06% — i020\(x) + 5929213(35),

where the fields V,,,, C, D are real. The information carried by this super-field is still redundant.

In fact within the set of all real superfields there is the invariant subspace
A(z,6,0) + AT(z,0,0) (8.288)

where A(z,6,0) is a chiral superfield, i.e. DgA(x,0,0) = 0. The real super-fields (8.288) are
somehow trivial: they simply carry a replica of the chiral super-fields already discussed. We
can eliminate this redundancy by introducing the following equivalence relation among vector

super-fields

V(x,0,0) ~V(z,0,0) iff V(x,0,0)—V(x,0,0)=A(x,6,0)+Al(z,0,0), (8.289)

with DgA(x,0,0) = 0. In order to implement this equivalence relation it is convenient to change

the parametrization used for the vector super-field and to write

V(z,0,0) =C(x) + i0x(z) — ix(x)0 + %H(x)GQ _ %HT(:CW V()00 ™4
+i6%0 [5\(93) + éam mx(x)} — i6%0 [)\(az) + %om X (2)| + (8.290)
+ %929’2 <D(a:) + ;DC(x)> :
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In this form the presence of the hidden real chiral super-field is more manifest. Now if we recall
the complete expansion for the chiral super-field A(z, 8, )
1

A(z,0,0) =A(z) + V20 (x)0 + 0> F () + i00™00,, A(z) 7%

1 4
020,1p0™0 + Z0292114(33),

the above equivalence relation in components reads

C(x) ~ C(x) if (x) = C(z) + A(z) + Al(z)

X&) ~ %) i () = x(@) - iVIH()

H(x) ~ H~(:r) if ]~{(£L') = H(z) — 2iF(x) (8.201)
Vin(x) ~ Vi () if Vin () = Vi () — i0m (A(z) — AT(2))

Az) ~ Az) if AMz) = \z)

D(z) ~ D(x) if D(z) = D(x).

This equivalence relation among different vector superfields is reminiscent of the usual gauge
invariance. In particular, in the case of field V;,, it has exactly the form of a U(1) gauge
transformation whose parameter is given by the imaginary part of A(x).
This naturally suggests to use V(z,6,0) to describe the supersymmetric U(1) gauge multiplet.
However the (on-shell) vector multiplet must only contain a vector and a Majorana (or Weyl)
spinor, while the superfield (8.290) appears to accomodate additional scalar and spinor fields.
These degrees of freedom are actually unphysical and they can be eliminated by means of the
the gauge transformation generated by the chiral superfield
A(z,0,0) :%(—C(m) +if(x)) —ix(x)0 — %92H(x) + %Gaméﬁm(—C(x) +if(x)—  (8.292)
i
V2

In fact we find that
V(m, 0,0) =V (z,0,0) + A(z,0,0) + /U(w, 6,0) =

020,,1p0™0 + ée@m(—cm +if(x)).

) . ) 1 (8.293)
= —Vp(2)00™0 + i020X(x) — 020\ (x) + 592021)(:@.

where
Vin(@) ~ Vip(z) i Vip(x) = Vin(@) + 0 f(2), (8.294)
and A and D are gauge-invariant. This choice for the equivalence-class representative is known
as “Wess-Zumino gauge”. It contains four bosonic fields, a U(1) field V;,, (3 = 4 — 1 off-shell
d.o.f) and one real scalar D, and a Weyl spinor A (4 off-shell d.o.f). We cannot further reduce
the representation without using the equations of motion.
The “Wess-Zumino gauge” does not only break the gauge invariance, but also supersymmetry.
In fact
eV (x,0,0) = (eQ + €Q)V (, 0, 0) ¢ Wess-Zumino gauge (8.295)
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or explicitly
eV (x,0,0) = — Vin(2)e0™8 — Vi (2)00™ — i00™Beay M) + 100 ™ONT € — 107N () + 02 EN+
+ BB D(x) + B0 D(x) + £ (e0" 0700y Vin () — 2 67 (B0 0" )04 Vi ()~
_ %9‘292(eamamX(x) + O (2)0™e). (8.296)
Now, let us perform the gauge transformation generated by the chiral supefield
Ay, 0) = — ™0V, (y) — i0%EN(y) = —ea ™0V, (x) — i€ 00000, V;, — i0%EN(z) =
=00™EV,, (z) + %0256”0m68nvm — i0%eN(x)
on the vector superfield V (z,6,8) + 0.V (z,0,0). We find
V! =V (2,0,0) + 6V (2,0,0) + 0y g1 (V + 66V (2,6,0)) =
= (Vin(@) + i€mA — iN)Tme)0o™0 + 620 (5\(:3) — Fjne™e — i€D(m)) —(8:297)
g ()\(x) — o™ Fppy + ieD(x)) 0+ %9292 (D(x) — 0™ A(z) — O A(x)0™e) .

This superfield is again in the Wess-Zumino gauge. Therefore we can define a combination of
the supersymmetry and gauge transformations, which leaves the Wess-Zumino gauge invariant.

It corresponds to the following transformations

OV (x) =i€amA + icom () (8.298a)
oN(z) =0"™eFy, (x) + ieD(z) (8.298b)
§D(x) =ea™ O\ (z) — ea™ O (x) (8.298¢)

These transformations do not close the standard super-symmetry algebra. For example

[6¢, 0€] Vi, =i€0 0" EFrs(x) — €5mED(x) + c.c. — (€ > &) = 2iF (€67 — £57€) =

=200, [V, (€67€ — £67€)] — 2i(e6"€ — £67€)0 Vi
gauge transformation translations

(8.299)

The commutator does not simply yield a translation, but also a gauge transformation. This
is not in contradiction the the supersymmetry algebra. In fact (8.298) are the composition of
a supersymmetry and a field dependent gauge transformation. This additional contribution is
responsible for the new term in the commutator. In this framework local gauge transformations
and supersymmetry merged in a unique giant supergroup and they cannot be disentangled. This
is price to be paid if we want to throw out of the game the fields C, H and .

This analysis suggests a reduced framework for the off-shell description of the gauge multiplet.

We forget about the vector superfield and we consider, as a starting point, a multiplet given by
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(Vin, A, D) endowed with the super-transformations (8.298) and with the gauge V;,, — Vi, + 0 f-
Then one looks for an action that is invariant under (8.298) without any reference to superspace.
A final technical, but very useful remark on the Wess Zumino gauge. In this gauge we cannot

consider arbitrary powers of the vector field. In fact the following equalities hold
. _ _ __ _ 1 .-
V(x,0,0) = —Vin(2)00™0 4 i0*0X () — 020\ () + 5929213(3;)
. _ _ _ 1 _
V2(z,0,0) = Viy(2)00™0V, (z)00™0 = —§vam9292 (8.300)

V3(x,0,0) = 0.

8.1 The action for the abelian vector superfield

We have stressed that the vector superfield has the correct matter content to describe the
supersymmetric version of a U(1) gauge theory. In the following we shall show how to construct
an action for this superfield. This action will describe a U(1) gauge field and a Majorana spinor.
The first step is to construct a superfield carrying only the gauge invariant part of V,: i.e.
the analog of the field strength. This can be obtained by taking a certain number of covariant

derivatived of V. To begin with, let us consider the action of D, on V', then

DoV = Do(V + A+ AT) = D,V + D,A. (8.301)

This remove the dependence on the antichiral part of the gauge transformation. Next, let us

take derivative Dﬁ’

DsDoV = DyDoV + DBDaA =DyD.V + {Dﬁ’ D,}A = DDV — 22’02”‘6(‘9,”1\. (8.302)

It is clear from the above result, that the superfield
1._
W, = —ZDQDav, (8.303)

is gauge invariant. A similar analysis show that

1 _
Wy = —ZDZDQV. (8.304)

is invariant as well. By the definition, the superfielsd W, and W, are chiral and antichiral
respectively. However they are not independent since they are related from the following con-

straint

DaW® = DPWy, (8.305)
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which follows directly from their definition. Finding their explicit expression is a straightforward

exercise and we find

Wa = = () + (5D0) — 5(0™5")u Funls) ) 03+ 00" uM1)
(8.306)

Wd :ij\d(?j) + éﬁ <€d/6'D(g> + %edﬁ(ﬁnam)p ﬁan(g)> + 52(8n)\(y)0")a

Exercise: Show the expressions (8.306) for W, and W,

SOLUTION: Since we are computing gauge invariant quantities we can use any gauge for the field V. We shall choose the

Wess-Zumino gauge and we shall write the superfield in terms of the variable y = = 4 i00 or of the variable §j = = — ifcf
V(x,0,0) = —Vin(y)00™8 + 020X (y) — i020A(y) + %9252 (D(y) — i V" (y)) =
= —Vm(§)05™0 + i020X(7) — i020X(7) + %02672 (D(@) +i0.V"()) -
Then
Va(y,0,0) = DoV (y,0,0) = — Vin(y) (0™0)a + 2i0a0X(y) — 0% Xa(y)+
+8 (D) = 50" Frun(®)) 05+ P00, 3w,
from which we get

1 - 1 - . 1,40 8 - _
Wao =—-D?DoV = —=D?DoV = == — —_V,(y,6,0) =
aT Ty e 47 1< 555 555 Vo 9:6:9)

== () + (D) = 50700 Fun(®)) 05+ 020" 031

In the same way one shows the second result.

It is quite easy to write an invariant action by means of these two chiral fields. Since they
already contain the first derivatives of the fields, the action can be only a real Lorentz invariant

quadratic polynomial in W and W. The only possibility is then
1 1 _ -
S = -3 / d20dizW? — 3 / d20d*zW?. (8.307)
The two contributions are given respectively by

—;/d‘*:chHWQ = ;/d% <W°‘D2Wa — DBWC'(DBWQ)) —
(8.308)

:é / d*z <—4¢Aa"anX +2D? — FYF, — ;e“bcha,,ch>
and
1 4. 1201772 1 4 T D2TTG A Yi7. ( DB
—5 [ dhedow? = - 2 dm(Wd(D W) — D, Wa(DW )) -
(8.309)

) ) .
=3 / d*z <4i<9n)\(x)0”)\(x) + 2D (x) — F 3, F + ;eabchachd> ,
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where we have used that -
Walgomo = —iAa(®) Walgooy = P

DiWalgo—y = €apD(u) = (0™ asFun(a)  DalWa|, = eaD) +ia™) gsFum(a)

D*Wa, o—o = 40"\ (7))a D*Was |, 9—o = —4(OnA(z)0™)s.
Then the action for the vector field is

1 1 o
S =—= / d*0d*zw? — 3 / d20dizW? =

g
_ / 'z <;8n/\(x)0")\(x) - %A(x)a”anX(a;) + %D2(x) - i ab(x)F“b(x)> = (8310)
:/d4$ <—i)\(w)o"6n/\(x) + %Dz(aﬁ) - % ab(x)F“b(x)) .

This action describe a U(1) gauge particle and massless Majorana fermion. The field is not
dynamical. It has an algebraic Lagrangian and it can be eliminated by setting through its
equation of motion which gives D = 0.
The action described in (8.311) is not the most general supersymmetric U(1) action. In fact we
can consider

S = —% / d?0d*zWw? — é / d*0d*aW? — ¢ / d?0d*0d*zV. (8.311)
The additional contribution is known as the Fayet-Ilioupulos term. It produces a linear term
in the D field. At the moment its role can appear pointless, since the D is not dynamical.

However it can and it will have role in the spontaneous of the supersymmetry.

9 Matter couplings and Non-abelian gauge theories

In the following we shall discuss how to couple a gauge vector superfield to a multiplet of
supersymmetric matter. Since there is no fundamental difference between the abelian and non-
abelian case, we shall consider directly the latter one. The procedure will also suggest how to
construct the generalization of the kinetic term to the non-abelian case.

To begin with, we shall consider a chiral superfield ®, namely a superfield such that Dga® = 0,
and we shall assume that each component field transforms in the unitary representation R of a

compact group G, i.e.
P d =UNP=e® con \=\T8, (9.312)
The kinetic term —iqﬂ@ possess is obviously invariant under these global transformations
TP s 1P = 3N AP = Dlere 1 = B, (9.313)

since AT = X\. We want to promote this global symmetry to a local one. In the superspace

language, the constant hermitian matrix A can be thought as a superfield which is both chiral and
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antichiral. In fact for a chiral superfield A(y, 0) satisfying the antichiral condition D,A(y,6) =0

as well, we find
0 = Dy DoA(y,0) = {D¢, Do }A(y,0) = —2i00:0mA(y,0) = A(y,0) = A0).  (9.314)

Consequently the condition Dy A(y, 0) = Dy A(0) = 0 requires that A is independent of 6, i.e. it
is constant.

Then, to have a local transformation we shall replace the constant matrix A with a local superfield
A(z,0,0) = A%(z,0,0)TS. Since a gauge transformation must map a chiral into a chiral superfield

we must impose that

Dy (e @00y 0)) = ¢~ 9M@00(y, 6) DsA(x,6,0) =0, (9.315)
namely DgA(z,6,0) = 0. The superfield A(z, 6, 0) is chiral. Thus

D O'(y,0) = e WP (y, 9) ot — a't(g,0) = of(g,0)e 0. (9.316)
The kinetic term is no longer invariant
1D 1 1 = Pleid W) —irwo) g, (9.317)

since Af(y,0) # A(y,0). We can recover the invariance by exploiting the vector superfield. In

the abelian case V transforms as follows’
V=V =V 4i(Ay,0) — Al(y,0)), (9.318)
and if we write this transformation in exponential form, we find
Vs eV = VAW -AT(y.0) _ —iAT(y.0) V il (y.0) (9.319)
This ensures that the following kinetic term is invariant in the abelian case
L=>oT"d. (9.320)

However we can also extend this result to the non-abelian case in a very simple way. We shall
consider a matrix vector superfield V' = V*T% and we shall impose that this field transforms as

follows

eV 1o eV = e gV it (9.321)

"We have change convention with respect to the previous section. We have used as chiral superfield iA instead
of A.
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under the non-abelian gauge transformation defined by the chiral superfield A(y, §) = A%(y, §)T.
With this choice the kinetic term (9.320) becomes invariant also when considering non abelian
transformation.

What is the relation between (9.321) and the usual gauge transformations for the component
fields?

Let us expand the gauge transformation (9.321) at the linear order in A by means of the following

result on BCH formula
eAeB :€A+£A/2[B+coth(£A/2)B]+O(32)

BoA _ A,—A B A Ae tAB _ €A+£A/2[e*£z4B+coth()3A/2)e*£AB]+O(B2)

e’e” =e’e =ee = (9.322)

:eA+£A/2[—B+coth(2A/2)B]+0(B2)

where £xY = [X,Y] and e™* 4 coth(z/2)e™™ = —1 + coth(z/2). We find

V_ efiATeveiA _ efiAf6V+i2v/2[A+coth(£v/2)A]+O(A2):eVJriEV/Q[(A+A‘L)+coth(£v/2)(AfAT)}JrO(AQ)7

e
(9.323)
which in turn implies
SV =iLyo[(A + AT) + coth(Ly/9) (A — AT)] + O(A?) =
A At (9.324)
—i(A — AT+ [V, z ] 4

At the lowest order the transformation is identical to the abelian one. This suggests that we
can choose the Wess-Zumino gauge also in the non abelian case. Unlike the abelian case, the
relationship between the component fields of V(z,6,0) and A(y,6) in the Wess-Zumino gauge
fixing is nonlinear, due to the complicated form of (9.326). However the end result is the
same: Viyz(x,0,0) is as given in (8.293). Furthermore, as in the abelian case, the Wess-Zumino
decomposition does not fix the gauge freedom. It only constrains the difference i(A — AT), while
the sum (A 4 A") is still an arbitrary quantity that can be used.

Let us analyze how this residual gauge transformation acts on the a vector super-field in the
Wess-Zumino gauge. To preserve the WZ —gauge the only non vanishing component in A — Af

must be
i(A — AT) = 05™60,, f. (9.325)

Then coth(Ly;,,/2) (A — AT = (A — A") because all higher terms in the Taylor vanishes since
they are proportional to #3 or higher powers. Therefore in the WZ-gauge the residual gauge
transformation linearize also in the superfield

A+ At
2

Vwz :Z(A - AT) +1 |:VWZ7 :| + O(A2) (9.326)
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Expanding this transformation, we find that V,, is a non abelian connection, while D and A
transform in the adjoint representation. Therefore the known and usual rules of transformation
will become manifest only in the Wess-Zumino gauge. For a generic vector superfield, the gauge
transformation are realized in a higly non-linear way.
This analysis exhausts the discussion of the coupling with chiral superfields. But we are still
missing an action for the non abelian gauge superfield. There are many ways to construct this
action, but we find very instructive to follow as much as possible the pattern used in the non
supersymmetric case.
The fist step is to construct gauge covariant derivatives V 4 with A = (o, &, m). They are defined
by the property

Va(e M) = =AWy , () (9.327)

Since the gauge transformation are realized by chiral field we have the immediate identification
Vi = Dg. (9.328)
We cannot identify V, with D,. In fact
Do(e7 M WNg) = D (e AW 4 AW DD £ 7AW D (D). (9.329)
However this mismatch can be easily resolved by defining the covariant derivative as follows
Va=e"VDye". (9.330)
In fact

, , ) - o . .
V., = e V' DV @ = e e Vel D e eV eihe e = eV D" @ = AV, .

(9.331)
We shall define V; by setting
(Va, Va} = —2id’ V. (9.332)
The super-connection is then defined by
Aa=1i(Va—Dy). (9.333)
We have
As =i(Vs —Dg) =0 (9.334a)

A =i(Va — Do) =i(e™V (Dae")) =i (DaV — %[V, D, V] + %[V, [V, D V]| + - > (9.334b)

1 . 1 . _
Ay :1(5'?a{va, Vd} — 84) = fa'?aDd.Aa (9.334C)
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Given the covariant derivatives, it is straightforward to define the curvature in the usual way
Fap =i[Va,Vp} —iT{3Ve (9.335)

TEB is called supertorsion tensor. Its presence is due to the fact that the standard derivatives

(D, Dg, 9¢) do not commute. The only non-vanishing contribution is Tf;d = —2iafm. Then
ng :i{Dd, Dﬁ} =0
Fop =i{e "V Due" eV Dge"} = e7V{D,, Ds}eV =0
Faﬁ- =i{Va, VB} — 20’27'va =0 (due to the definition of V,,)

: , i35 = _ 1 = =
Féd :Z[vﬁ’vd} =1 |:<8l — 4O'fﬂDB.Ag> ,Dd:| = —EJ?ﬂDdDﬁAﬂ = (9‘336)
1 _ 33 = 1 _B8=9, _ 1 W
:§edﬁafﬁD2.A5 = gedﬁ'afﬁDZ(e VDge") = —iedﬁa?ﬁWB
: f L oo Y = 1 g
Foo =]V, Vo] = (Fra)' = | —5€,50, Ws | = ~5%apt W,

Therefore there are only two non vanishing component. Their content can be given in terms of
two spinor chiral superfields
1= _ 1 _
Wa = —1D2(6*VDaeV) Wy = —ZDQ(e*VDdeV), (9.337)
which transform covariantly under gauge transformations

Wy = W = e MW, e Wy — Wi = e~ Mt (9.338)

These two quantities reduce to their abelian analog in the abelian limit.
It is now straightforward to write an action for the non abelian case. It is formally identical to
the abelian case

S = —3% / d?0d*zTe(W?) — 3% / d?0d*zTr(W?), (9.339)

where the chiral and antichiral W, and W, are given by (9.337). Moreover the trace is taken
with the following normalization Tr(797%) = 5.
Let us write this action in terms of the component fields present in the vector super-field. In
order to have an action with a finite number of terms, we shall work in Wess-Zumino gauge,
where eV =1+ V + %VQ

We = —%D%Dav — %[V, D,V]) = —%DQDQV + %Dz[v, D,V] (9.340)
The first contribution is the same of the abelian case, while the second one contains the non

abelian corrections. Therefore it is sufficient compute only the latter. Since

VDoV — (Do V)V =%[Vm, Vil ()(6"5™0) o0 — i[Vin, (6™ N)a] (y)6%62, (9.341)
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we find

0 0 1 " i e
3€ s 375 555 (V- PaV]) = =4 Vi, Val(4) (077" 0)c + 5 [Vin, (0 Nal ()6

2
(9.342)

When we add these two contribution to the abelian part, we find the natural non abelian

gD2([VD V) =

generalization
Wa = —ida(y) + [5%( ) — 2(0 ")’ Frn(y) | 05 + 67 (6" DuN) (9.343)

where

Wil and  Fan = 0V + 0pVi + = [Vm,V] (9.344)

Dn: n
8+2[

Then the action
S =— 1 d*z /dzﬁTrW“W)—i—cc
- / dta [ POT: (126°D(y) ~ (0"0°0)" Fra )] [20aD(0) ~ (™5 0)a Fnl)] -

— 419%;“19 A) +cco=

1 -
== d*z / d*00°Tr (—2F 0 F™ — 2i€""" Fys Frppy + 4D? — 4iA0™ Dy A) + c.c. =
1
ST d*zTr (B F™ + i€ Fros Frp — 2D? + 2iA0™ Dy ) . + c.c. =

1 1 : _
_ / diz [8Tr(anFm") + {Tx(D?) ~ %Tr()\o—”l)n)\)
(9.345)

The action contains a non abelian gauge field, a Majorana spinor transforming in the adjoint
representation coupled to the gauge field and finally a non dynamical field D, that can be
eliminated through its equation of motion. For a pure supersymmetric gauge theory we have
simply D = 0.

Note that the action with the correct normalization is obtain after the rescaling V +— 2V. Then

S = / d*z [—;T&"(anFm”) + Tr(D?) — iTr(Ae"Dp ) (9.346)

Couplings to Matter: Let us investigate now the form of the coupling for the chiral super-
field, namely we want to expand the matter action
1 = 1 _
S=-7 / dixd?0d*0[dTeV @) = 6 / d*zd*D*D?[®teV @] =
(9.347)

1 _ 1 _
=1 d*zd’D*D*[®T®] + 6 / d*zd*D*D? [TV ] + 16 / d*zd?D?D*[®TV2 9]
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The complete expansion of this action is quite tedious. The first term is the free one and it
has been already discussed when we have considered the chiral superfield. The second term is
quite lengthy, however it is sufficient to keep track of the terms whose final contribution will be

proportional to 626%. We find
ot (2,0,0)V (. 0,0)®(z, 0. 6) :%9252 (ilATV™ 2)0m A(r) — 0, ATV A] + 50" Vi +
+V2iATA\x + ATDA — \/52')25&1) +lower terms. (9.348)
The second term is quite easy to be expanded
%(I)T(:c, 0,0)V2(x,0,0)®(x,0,0) = —iATvmva92é2 + lower terms. (9.349)

All the contribution can be collected together to find the action

/d“:p [— (8mAT — i;ATVm> <8mA + i;VmA> —ixa™ <am + Z;Vm> X+

, ) (9.350)
VA —
+ —= (AT — A4 +ATDA] :
Again the correct normalization for this action are restored when V — 2V, i.e.
/ d [ (9, AT —iATV, ) (9,4 + iV, A) —ix5™ (O + iVin) x+
(9.351)
+ zf 2(ATAx — AxA) + ATDA} :
We can complete this action by adding the kinetic term for the gauge field
/ d'e [ (8,41 —iATV,) (BuA + 1V, A) —iX0™ (B + Vi) X+
+ zxf 2(ATAx — AxA) + ATDA+ (9.352)

1 _
=5 Tr(Fpn F™™) + Tr(D?) — z’Tr(Aa"DnA)] .

Note that if we integrate out the field D in (9.352) by means of its equation of motion, we find

a quartic contribution to the scalar potential. In fact
1 1
D'+ AT*A=0 = D=-AT'A = Vp= 5(ATTGA)(ATTaA) = ;DD (9.353)

Therefore in terms of superfields, the correctly normalized supersymmetric action for a gauge

field coupled to a set of N chiral superfield &' transforming in the representation Ry is

/d4 /d2 7TY (WEWa) — 32m Wa /d4 /d29d2925 Vu, (1)~

-1 / d'xd*0d%0» "[@"1e?Vr ] + 5 / dxd?0F (@) + 3 / drzd?0F (@),
I

(9.354)
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where W, = —éDZ(e*ZVDae ), V=Vvare

aqj and Vg, = VTg . Moreover we have allowed for

a complex coupling 7, which we shall parameterize as follows

_ Oyn | 4w

This will produce an additional term which is given

Oy v
1672

Oy M

Tr d*zdiTr(Fp F™) = —

d*zTr(Fpn F™), (9.356)

namely a §—term. The sum over s runs over all the U(1) factor and it takes into account the
possibility of adding Fayet-Iliopulos term.
NOTE: The coefficient can be a little bit simplified if we change the normalization in the

definition of the Grassmannian integral. Up to now

1 1
/ d?06° = —§D292 = =560 (D (Da’07)) = =€, D*(07) = D07 = 2. (9.357)

We may choose to redefine the normalization of the integral so that [ d?06% = 1 and [ d*66* = 1.

With this new normalization the above action takes the form

/d1 /d2 T (WOW,) — o WaW /d/lr/dzedzé)Zg Vi
T

— / d*zd?0d%0 Z[@%QVRJ ol + / dtzd*9F (o) + / d*zd*0F* (1),
I

(9.358)

This action will naturally contain a potential for the scalar which is a simple extension of the

one for the WZ model. Its general form is

1
V= § |F12 + 3 § DD, (9.359)
I a

This means that the equation for a supersymmetric vacua are now

Fl=0 D*=0. (9.360)
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9.1 General action for the N=1 matter-gauge system

The action that we have written in the previous section is not the most general Lagrangian for
the matter-gauge system with N = 1 supersymmetry. A part from the superpotential all the
other terms are the ones obeying to the criterium of renormalizability. We want to drop this
constraint and look for a more general action.
To begin with, let us consider the matter action. We already know that the most general action
is provided by
— /d4kd29d2§K(¢>”, o). (9.361)

We shall assume that this action possesses an global invariance of the form

ol s e ®! and  ofT i @l (9.362)
We want to promote this global invariance. For a local transformation

o't s @It s @I W0) £ lTIAwO), (9.363)

instead
T2V o plt (DITeiAT(y,G)e—iAT(y,9)62V6iA(y,0) — @lte2V it w0) (9.364)

Therefore we can have local gauge invariance with the minimal substitution
—/d‘*x/d?ed?éf((@”,cbf) - —/d4x/d29d2§K(<I>”62V,<I>I). (9.365)

The kinetic term for the gauge fields can be also generalized. Construct with the chiral fields W
and ®! a scalar superfield H(®!, W), which is invariant under the gauge transformations. Any
function H yields an action with at most two derivatives on the gauge fields. However we shall
not choose a generic H. We shall focus out attention on H = G“b(q))W;‘Wba, where a and b are

indices in the adjoint representation. Then

1 2 ab Lo ~ab s
B(DYWEW,e = —= DG (R)WEW,5) =
_ 1 a ab Iyrra ab 16] _
= G177 (GI (®) Do ®' Wi Wi, + 2G™(®) Do W, Wbﬁ) -

__ 1
6442
—2G%®(®) D, & DWW, 5 4 2G3 () DD D, WEW,y5 + 2G (D) D2WE W5+

(G%((I))DQCDJ Da® WEWy5 + G2(3) D2B W W, 5—

+ 2G°(®) D W) Dawbﬂ) -
| ) ) )
=~ gigz (20 @D W)W — DaW [, D W] — 2G5, (@) x Aat
+AGTP (D) F ANy + 4iv2GP (R)x N Dy — 4V2G7(0)x" am"/\bFa,mn> :

(9.366)
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The first term will reproduce the N =1 SYM action with the color indices contracted with the
standard matrix G,,. The other are the new couplings between gauge fields and matter: there
are four fermion interactions, Pauli couplings and further coupling with the auxiliary fields.
The expansion of the matter part we shall give simply the old result for the NLS model with all
the quantities covariantized with respect to the gauge group.

We can easily write the potential for the scalar once we have integrated the auxiliary fields. It

is of the usual form

— ]_ _
V =G FIF + §Re(Gab)’1(AIT“K;)(AIT”KI) (9.367)

10 N=2 gauge theories

An N = 2 gauge theory reads in the N = 1 Language as N = 1 theory coupled to a chiral
multiplet in the adjoint representation. An N = 1 theory with this properties is given by

_ [ 29[ T a T ron] [ A 20 2002V
S = /d x/d 0 [lﬁmTr(W Wa) = o= Te(WalV )] /d 2d20d200e2V U, (10.368)

where U is chiral field in the adjoint. If we define D, A = 9, A+ [V, A], DipA = O A +i[Vin, Al

and Dp,x = 0ux + [V, X], in components the above action reads

< 1
/ d*xTr [—2(DmA)T D™ A = 2iX0" D x = 2iA6" DA = 5 Frnn F™ + D?+

(10.369)
where we have used the following definition (Tc?dj)bc = —i fupe for writing everything in terms of

commutators. The additional and unusual factor 2 are due to the normalization of the generators
Tr(T°T°) = 162,
This action is invariant under N = 2 if and only if there exists an SUg(2) invariance under

which the fermions form a doublet. Let’s define (\!) = (), x), then

er AN AT = e s (MA + M AT) = 26y AN T,, Ty) = 2(A N2 — NN [T,, Ty =

(10.370)
= AN (T, T] = 4NN O[T,, Ty) = 4{\, x}.
Then we can rewrite the above action as follows
- 1
/ dzTr [—Q(DmA)TDmA — 2N ™D, N — 3 Frn " 4 D+
) (10.371)

- %(ATGU{)\I, A} — e AN N 1A) + 2D[A4, AT] ],
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which is manifestly SU(2) invariant and therefore is N = 2 supersymmetric. Notice that the an

N = 2 gauge theory possesses a scalar potential
V = Tr([A, AT]?), (10.372)

and supersymmetric vacua given by [A4, AT] = 0 (see Fawad).

We now consider the possibility of adding matter. A massless hypermultiplet contains two
massless spinors of opposite helicities. Since these two spinors belong to the same supermultiplet
must couple to the gauge field in the same way, namely they mast transform in the same
representation. This means that N = 2 theories are vectorlike. At the level of N = 1 superfield
content, this means that if a N = 1 chiral superfield transforming in the representation R, an
N =1 chiral superfield transforming in the conjugate representation R is present as well.
Therefore we can write N = 1 gauge interactions between the vector gauge multiplet and the
chiral superfield and this is the easy part. The not obvious part is to write the most general
superpotential which would give origin to an N = 2 theory. We have at our disposal, apart from
the matter chiral superfields, the chiral superfield describing the N = 2 additional gauge degrees
of freedom. We shall denote the matter superfield in R representation with ¢, and with ¢* those
in the R representation. The gauge gauge chiral superfield is written as Ve =Wy (T A)“b, where

(TA)“b are the generators in R ® R representation. The superpotential is we have
F =g + b0 + LU — mead® + gpa 4o, (10.373)

where we limited ourselves to renormalizable interactions. We can allow for small generalizations.
If the R representation is reducible the mass and the cubic coupling might not be diagonal.
Moreover if R is a real representation we can allow for cubic couplings of the type d**°¢,¢po., but
these last couplings will be ruled out by requiring the invariance under N = 2 supersymmetry.
If we now expand, after a lengthy calculation, a manifest SU(2) invariance is recovered if an
only if

by =0"=clt=0 g=1. (10.374)

We remain with the following superpotential for the N = 2 theory
F = —mpad® + ¢a V%o, (10.375)

What about N = 47 In the language of N = 1 is given by a gauge multiplet coupled to tree
chiral superfields in the adjoint representations. Again we have to fix the superpotential. We
directly start from the previous result and we shall call all the superfields ¥; since they cannot

be distinguished. Then m is equal to zero since we deal with a massless multiplet. Moreover
(U9)'5 = WA(TH) T = —iWa 7. (10.376)
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We are left with
F = ifAPOW g UypUae = Tr(01[Ty, Us)). (10.377)

One can verify that this supepotential gives origin to a theory with an SU(4) invariance and

thus with an N = 4 supersymmetry.

Comment on massive hypermultiplets transformation and the appearance of the

Central charge.

10.1 N=2 superspace: the general form of N=2 supersymmetric gauge action

In the following we shall discuss some features of the N = 2 superspace in its simplest and naive
form, neglecting all the technical details and in particular the effect of the central charges. A
systematic presentation of the topic would require a set of dedicated lectures.

When we try to generalize the construction of the NV = 1 to the N = 2 superpace, almost all the
steps works in the same way. The main difference is that everything acquires an SU(2) index

which keeps track of the R-symmetry :

(6.6) — (9.9) (10.378a)
@Q) — (@,Q" (10.378b)
2 2
D — I pnl
(D, D) (l% D ) (10.378¢)
/d29 > /d291d292 (10.378d)

All these quantities will enjoy the same properties of the N =1 case.

A generic N = 2 scalar superfield will be a function of z, #/ and 67 and it is a singlet of SU(2).
We shall denote it by ®(x,87,6!). This superfield will contain a huge number of components.
In order to reduce the number of components, as we did in N = 1 case, we shall impose a

constraint, which preserves supersymmetry and R—symmetry. The natural choice is
DIw(z,6%,6") =0, (10.379)

we shall call the solutions of (10.379) N=2 chiral superfield , since they are the obvious general-

ization of the N = 1 chiral superfield. The above constraint is easily solved by introducing the

8There are differences related to the presence of central charges. The presence of the bosonic coordinates
associated to these generators leads to superfields which contains an infinite number of fields. One usually can
impose consistently that the superfields do not depends on these coordinates. For this reason, we shall neglect
the role of the central charges from now on. This implies that the representation of all the quantities is identical

to case N = 1 apart from the appearance of the SU(2) index.
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coordinates
z=x+1i0l 00, (10.380)

which satisfies D!z = 0. Then the above condition becomes

) _ _

ﬁ\lf(zﬁ],&[) =0 = U(z,6,0") =V(z,6"). (10.381)
The field content can be obtained by analyzing all the derivatives D! of the superfield at §/ =
0,6/ =0

1 1
Vlg_grg = 0(x)  Da¥|s_gi_y = Na(2) DéDéMeI:e’I:o = S Fn(z)ogg + 56‘%301](33)

2
1 1
—e;yDID/ DXV =xl(x) “exesn(D'D7)(DXDM)W = Z(x)
2 ot 1 o1=g1=0
(10.382)
Therefore the content of the N=2 chiral superfield is
(6(), Z(x), C" (@), \o(2), Xa (), Fran () (10.383)

This superfield seems a natural candidate to describe gauge fields, since it naturally contains an
object transforming as a field strength. However, at the moment F,,, is not the curl of a vector
field, it is an arbitrary complex quantity. This means that we have to reduce the representation

by imposing another constraint. The right condition is
DI'D’w = DI D7y’ (10.384)

We can write down a solution of this constraint if we shall break the SU(2) covariance: first of

all we shall write (#7) = (0, é) and subsequently we shall expand the superfield ¥ in power of 6:
U(z,00) = ®(z,0) + ivV20(z,0) + 0*F(z,0). (10.385)

The superfield ¥ solves the constraint (10.384) if W, is the chiral field strength superfield of a
vector N = 1 superfield V' and F' is given by

F(z,0) = / d2091(z — i000, 0, 0)e2 (==1000.0.0) (10.386)

where ®7(z,0,0) is understood as the one given in (7.174). Then the whole action of N = 2
theory is simply obtained by taking

Sy—o = /dzd2ed2é(qﬂ) = /dzd29<1>(z,9)F(z,0) +/dzd20Wa(z,9)Wa(z,9) -

o (10.387)
= / dz / d?0d%00" (z — 050, 0,0)e?V z71090.0.0) % 0) + / dzd?0W (z,0)Wa(z,6).
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We have also the obvious generalizations
Sy = / d=d20d26G/(W) — / 020G 3 (BY IV (2, 0) W (2, )+
+/dzd29Ga(z,9)Fa(z,0) = /d2d29Gab((I))Wa(Z, YW (z,0)+ (10.388)
+ / dz / d*0d%0 [@T(z—i005,0,5)62v(z_w”§’9’§) " Ga(2,0),

where G, = g—qﬁ and G, = %.

N = 2 supersymmetry is a gauged non-linear sigma model, where both the couplings of the

In N=1 langauge the most general gauge theory with a

vector multiplet and the Kaheler potential are determined by one function G.
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A Background Field Method

When quantizing a gauge theory, the classical local symmetry 64, = —D,w possessed by the

Lagrangian?

L= —2;2FWF’“’ (A.389)
is not manifest in the intermediate steps of many perturbative calculations because of the gauge
fixing procedure. Thus an efficient use of the constraints originating from the presence of this
invariance is often difficult. A manifest (and partially fictitious) gauge invariance can be restored
in the perturbative formalism if we introduce a classical background field A, and we split the
original field A, as follows

A=A+ Qu (4.390)

where @, is called the quantum field. The Lagrangian (A.389) written in terms of these two
fields, i.e.

1 v
L= —2—92FW(Q + A)F*(Q + A), (A.391)
exhibits two distinct local symmetries:
e Quantum symmetry:
0qA,, =0
o (A.392)

00Qu=—D,Q—[A,,Q] with D, =0, +[Qu,]
e Classical symmetry:

5.A,=—D,0 with D, =0, -+[A,,]
0cQu =[0, Q]

(A.393)

When quantizing the field @, we are obviously forced to break the quantum symmetry (A.392)
by introducing a gauge-fixing term, however it is not necessary to destroy the invariance (A.393).
This goal is achieved by choosing a gauge-fixing term that is invariant under (A.393). We can

use for example
1

Sor. =7 dz* (D, Q") (A.394)
The ghost action is consequently given by
Sghost = 21 / dz*éD,(Dyc + [A,, ) = 2i / dz*eD (D e+ [Q, c]), (A.395)

In the following, a trace over the Lie algebra generators, which are taken anti-hermitian, is understood where
necessary. Moreover we shall use the Euclidean notation. This is in fact more suitable for a systematic loop

expansion.
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and it is manifestly invariant under (A.393). Summarizing the total action
Stot = Sgauge + Sg.f. + Sghost

is unchanged by the classical transformations and this symmetry is therefore unbroken at the
quantum level if we use a regularization procedure that preserves it, e.g. dimensional regular-
ization.

We shall now explore the effects of this background symmetry on the full effective action I'. To

begin with, we shall introduce
Z|J,A] = / DQ, e St @A) =TQ, (A.396)

This functional generator is invariant under background transformation if we assume that the

current J transforms as follows

5.J = [0, J]. (A.307)

The same invariance obviously holds for the connected generator

WIJ, A] = —log(Z[J, A)) (A.398)
and for the effective action
LQ,Al =WI[J,A]—J-Q where Q= W, (A.399)
once we have chose the following trasformation rule for the classical field Q
6Q = [0,Q). (A.400)

In other words, the full effective action F[Q, A] must be a gauge-invariant functional of the fields
Qu and A, with respect to the background symmetry (A.393) and (A.400).

At this stage, a natural question is how to relate the background field formalism to the usual
one. In order to answer this question, we perform the change of variable QQ — ) — A in the path
integral (A.396). The dependence on the background A disappears from Sgquge, Which becomes
the standard Yang-Mills action for the field ). However it is still present in the gauge fixing

term and consequently in the ghost action. We have then

Z[J, Al = eJ.A/DQpDCDE e_SQG“QE(QH%fd%(D“(Q“_A“))Q)_%f dtoeDyDie—J-Q eJ‘AZA[J].
(A.401)
Here Z[J] is the standard functional generator for Yang-Mills Green-functions, but with the
unusual gauge-fixing %(D 4 (Q* — AF))2. The identity (A.401), in turn, entails

WI[J,Al = —J - A+ WalJ] (A.402)
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and performing the Legendre transform
I[Q,A] =TA[Q + A]. (A.403)

In other words the effective action in the background field formalism is the standard effective
action for a gauge fixing of the form %(DM(Q“ — A#))? evaluated for Quqss. = Q+A.

At this point, there is a second question we should answer: what is the advantage of the
background field formalism? If we had to compute the entire F[Q, A], the advantage would be
insignificant. Actually the presence of the second source, the background field A, has increased
the number of 1-PI diagrams to compute. This morally balances the simplifications coming from
the recovered gauge invariance! However, this is not the end of the story.

For answering many important questions in the quantum theory, it is sufficient to know I'[0, A]:
the generating function of 1-IP Green function with no external Q field. Consider, for example,
the problem of determining the §—function of the theory. Since the same coupling g describes the
interactions of both background and quantum fields, the complete information about f—function
is already present in I'[0, A]. But this is not the only simplification. In fact, since I'[0, A] is
by construction a gauge invariant functional of the background field, a simple argument based
on dimensional analysis entails that the only possible divergent term must have the form of a

divergent constant times
Fu(A)FF(A), (A.404)

with
Fu(A)=0,A, —0,A,+glA, ALl (A.405)

In (A.405) we have restored the coupling constant through the usual change A, — A,g. If we

introduce the renormalized quantity

A=ZPA,  and  gr=2Z,'4, (A.406)
eq. (A.405) reads

Fu(A) =20, A8 — 2))*0,Al + grZaZ,[AR, Al =
1/2 R R 1/2 R AR (A.407)
~2,% (9, A% — 0,AF + grz,° 7, (AR, AfY) .

This expression will have a gauge covariant form in terms of the renormalized quantities, as

required by the classical symmetry, if and only if the following Ward Identity holds

Zy =732 (A.408)
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This relation reduces the computation of the G—function of the theory to the computation of

the wave-function renormalization, which is a much simpler problem. In fact,

dlog Za

_ 1
95 = 92y = gr(Wn‘Zy"* = Blgr) = —egr(i) + gor(mn=—g =t (A409)

It is worth mentioning that the S—function is not the only information that one can extract
from I'[0, A]: one can also build S—matrix of the whole theory. This topic is however beyond

the scope of these notes.

A.1 [(—function

To illustrate the use of the background field method (BFM), we shall now compute the one-loop
[G—function for a gauge theory with an arbitrary matter content.

Because of the Ward Identity (B.462), we need to focus our attention on the quadratic part
I'[0, A]. At one loop, this is determined by the vertices in the action which are quadratic in the

quantum field Qulo.

A.1.1 Gauge-contribution

In the gauge sector this term are given by

£YM+g.f. = _%F/JZ/FMV - <D,LLQVDMQV - (1 - 2) (D“QN)2> - 2gFlw[Q/u Qu] + O(Qg)a

(A.410)

and they produce the following contributions:

Vertices with one A—line: We have just one vertex quadratic in the quantum field Q and

with one A—line. It yields

1 d2w ddek d2wk d2w dd2w d2w
/ P 10 T8 900 T TR 5% (p 4 ky + ko)0% (q + 11 + )X

Tgauge =3 (2m)k (2m)ke

X AK(P)AZ,\(Q)GGAZCV(Z?, k1, kQ)Gi)Tg?(%rl’ 7‘2)<Qg(k1)QZ(k‘z)Q%(Tl)QZ(W»o =

_ / d*pd®? qd® kyd* ko
(27T)4w

x AL (p) AN(@) G (D, s ko) Gl (a, =k, —k2) Ap7 (k1) ALy (k2) =

Apv poT
- / d2wqd2wk1
- (27[.)4w

5% (p+ k1 + k2)6%(q — k1 — ko) x

A () AN @GS (—a: kg — k1) GRat(a. =i, ki — @) Ay (k) Al (g — k),

(A.411)

0The terms which are linear in the quantum field can be dropped by assuming that the background field A

satisfies the e.o.m.
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where the vertex Gii’fy (p, k1, k2) is implicitly defined by the identity

Vaoo = — 291 / Pz (auQu[A“, Q- (1 - 2) (0,Q" (A, Q")) + 20" A”[Q. Qu]> _

_ ig,u2_“’ fabc/ d2wpd2wkld2wk2

5(p + b+ ko) A2 (0) QU (k) Q2 (k) ((ku o)t

(27-‘-)40.)
k kay
+ |:k2,u_pu+2u:| Mw + |: l/_k'lz/_ §:| 77)41) =
d2w d2w]€ dek y
= [ TGS b+ k) AN QL () Q)G (K. o)

(A.412)

We choose to work in Feynman gauge (£ = 1) where the vertices can be rewritten in the following

simple form

7 —w d2w d2wk. d2wk
Vagq =~ 9" e [ EPEIER oy 4 ks 4 1) )RS 1)K )

(2m) (A.413)
X ((2k‘u + DA — 2Puaw + 2P0An)

and the propagator is given by
OapOH”

Al (p) = 5 (A.414)
p
The contribution is then given by

/ Ak G (=g, k1, q — k)G, (g, —k1, kr — q)

27 ) 2w k2(q —k

(2r) . tla—k)? . (A.415)
/ / >k G35 (—a. k1 +tg,q(1 —t) — k)G, (g, —k1 — tg, ke — q(1 — 1))

2 ) 2w (k2 4+ (1 — t)g?)?

In expanding the above expression we can drop all the terms which are linear ki, and we can

perform the substitution kq\kq, — idAuk%

PHT cabe e / " / dky [-2 (120w — 4) gagr +2(k1 - k1 + 24 9)0ar)] _

2m)> [k + (1 — )2
_ 92/-1’4 2 fabCflbc F(l B W)((l B t)tqq)w72 >
0 22w—17rw

X ((w=1) ((1 = 2t)°w — 4) gagr + 2(((t = 1t + 2)w — 2)¢-¢bar) =

2, 4—2w 93—4w 3w (7, 4) eselnw)(a-a) 2 (q- o — o
IH T el () T2 ) ese(m )(;1 0)*"* (¢°¢0ar — Gadr)
4 I'(w+3)

_ .2 4-2wgsal ) (Q'qéa)\ - Qa(D\) __0)\0
=—g°u 0" Co (@) 187w — 2) +0 ((w 2) ) ,

(A.416)
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where Cy(G) is the quadratic Casimir of the adjoint representation. Therefore the divergent

part is

592/11472“}02((;) d2wq N N
TR (w—2) / (22 AL(=0) (@°q0ar — daqr) AG(q) (A.417)

The contribution originating from the vertex with two A —lines vanishes since it is proportional

to the integral of 1/k3.

A.2 The ghost contribution

To complete the analysis in pure gauge theory we have to consider the ghost contribution. We

have again two different type of vertices:

Ghost Vertex with one A—field : In momentum space it reads

2igi~ [ @ (e, 0% - @04 ) =
_ 2—w/ d2wp d2wq dek
:/ d2wp d2wq d*k
(27’[‘)4“’

5(p + q+ k)& (p)c (@) AS, fave(qu — pu) = (A.418)

3(p + g+ k) () (@) Af Sy (9 4, F).-
The ghost contribution to the effective action is then given by

S(pr+aqr+k1)d(p+q+k)x

1/d2wp deq d2wk depl dzwa dekl
2

(27r)4w (2,”)4w
x ¢ (p)c ( )AZSgbC(P,% k)él(Pl)Cm(QOALLSlen(PhQ2,k1) = (A.419)
d*q d**k c n S(’jbc(q, —k—q,k)Sy,.(—a,q + k,—k)
T 2/ (2m)4w Ak} A, (=) q*(q + k)? '

The loop integral to be computed is

_/ dt/ dQWq Sgb tk,—k(l—t) k)SlI)jan( q+tk,q+k(1—t)’—k)

2m)e & +t(1—t)k2]2
—9p)2 _ 2090w
24%5 (G /dt/ d2q k(1 — 2t) a >:
cn 271. 2w q +t( —t)k2]2
ot DL =) (0~ Db (1207 20~ DtkkSw) (4 4o
R e (e) /0 it Dkl 20"+ 2 )
2yt 41-2w 3w )2 v — K- v
_9p 5enCa(G) w2 ¥ csc(nmw)(k.k) : (kuky — k- kéu) _
I(w+3)
= 5 cen©U2 4877‘2((,0—2)
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Therefore the divergent part is

2, 42w 2w
—gggﬂ2(wc_2(§)/(;lﬂ)§wfﬂ< 0)(q-00ax — @aqr)AG(q) + O ((w —2)°) (A.421)

The contribution originating from the ghost vertex with two A —lines vanishes since it is pro-

portional to the integral of 1/k%. Summarizing the gauge ghost contribution we have

_1192M4—2w02(G) / d?wq A)\(
9672 (w — 2) (2m)2w

0)(q @0ax — daar) A5 (q) + O ((w - 2)°) (A.422)

A.3 Weyl/Majorana fermions

Next we consider the contribution of a left Weyl fermion transforming in the representation R
of the gauge group. The interaction for one field is given
9w [ A pd*kid® ks (1+175)
—IK / (2m) 2
and it yields the following one-loop correction to the quadratic part of the effective action
g2ﬂ4 2w / d2wpd2wk1d2wk2 d2wqd2w7“1d2w7"2
2 (2m)dw (2m)4w

S(p+ k1 + ko) AL (p)s (k)Y T Wi(ks), (A.423)

O(p+ k1 + k2)d(q + 71 +72) X

(1+15)

(12%) Y(rz) =

x A% (p) AL ()i (k1 )y T Wi(ka) (1) T .
2, 4—2w d2% g 29 ).
— - ) [ A Al (8t - s ) -
2, 42w

2
2w, 72w
(b [ A A AT (8t - T ().

(A.424)

where S(p) is the fermion propagator and it is given by
S(p) = % - i;; (A.425)
and Tr(7, (R)T(R)) = —C%(R)d4p. The loop integral to be performed is
1/ >k Tr (’Y“(g— KFov” k(1 —75)> _
2] G (4 k2R3
[ [ e (U0 b 0=

2m)2w [k +t(1 —t)q]?
d2“’k1 VAL —t)— )y (ki +t )\
/ dt/ om)2 < 2+ t(1 — )q]? >_
d* k1 Tr (v F1v” F) Ak Te(W ' )
/ dt/ 2% 2+ 11— 0)q® 2/0 dt(l_m/ @02 12+ 4(1— )P

e 1/ dt/ d**ky (2KY'KY — Ky - k16M) — t(1 — t)(2¢Mq” — q - q6™)
27) 2w (k2 +t(1 — t)q]?

(A.426)

=_—owl / dt21*2“’7r*“’(t — Dt((1 — t)tq.q)“’*ZF(Q —w) (quqy — ¢-96w) =
0
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INw+1) IN(w)
F(2w) T(2w-1)

e (g.g)* (2 — w)D(w — 1) ( ) (Gt — 4:400) =

o — 000 (A.427)
_ pdy — 4-Y%uv O ) 0
2w —2) O =2
The divergent contribution to the action is
2, 42w 2w
g u " Ca(R) / d™q 0
Al (— Qo — gtq”) AL -2 A.42
8262 | @)= “(—a)(a-q ¢"q")A5(q) + O ((w - 2)"), (A.428)
The contribution for right Weyl or massless majorana fermions is the same.
A.4 Scalars
The action for a scalar in the representation S is
S = / d***D,¢(D"¢)T, (A.429)
with D,¢ = 0,0 + gAZTCSS)ng. The vertex with one A-line is given by
g / Az AL (GT 30,07 + 0,6T ) =
. d2w dek d2wk
=i / S 0k k) AL TG () b — ki) = (A430)

A2 pd® k1 d2% ks
= / p(%)iw 26% (p + k1 + k) AL (p) i (k)6 () V™ (p, Ky, k)

6%(q + 11 +12)0%(p + k1 + ko) x

1/d2wpd2wkld2wk2 d2wqd2w7“1d2w7”2
2 (2m) (2m)t

X AL(p)gi(k1) ] (ka) Af (a) b (r1) 8] (r2) Vi (p, by, ko) VI (g, ra) =
1/ d2wqd2wk1

AL (—q)AY (@) Au (k1) Akj(q — k1) ViE (=g, k1, q — )V (g, —ki, by — q) =

2 (2m)4w
1 / 42 qd??k, A (gAY )Vi;ij(—q, kg — k)Ve7 (q. k1 — q. — k1)
2 mw a0 k(g — k)2 ‘

(A.431)
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Then the loop integral to be computed is

2 2w
97 n(S)arn(S)b / d*ky (qu = 2k1p) (9w — 2k10)
TI'(T T ) (27.[.)2w ]{32((] o k‘1)2

9 5ab/ dt/ d*ky (qu(1 —2t) — 2k1,) (g (1 — 2t) — 2k1,) _
2 2m)2w (k3 +t(1 — t)q?)?
2 2 J(1—2 Ak k1,
_9 9 (S 5ab/ dt/ d*k1 ququ( ! t)? + 4kq, ke _
2 2m)2 [k +t(1 —t)g?]?
2
:%02(5)5‘"’ / dt [(4m) 7 (1 = 20)2T(2 — w)gagr((1 — t)tg - ¢)* 2+ (A.432)
0

+ 2172 T (1 - w)dan (1 - )tg - )] =

2 12w, 3 —w w2 (. _

_9 (et csc(mw)(g q)1 (4 90ar — Gadr) _
2 I (u) + 5)
2 ab

_9°Ca(5)d _ _ o\0

= 906m2(w — 2) (4-¢0ar — gaqr) + O ((w —2)°)

Since the vertex with two scalar and two A—limes yields a vanishing result, the divergent

contribution to the action is

2,,4—2w 2w
gggﬂ(wc}(;;) / (;iw);]‘”Aa( 0)(a-05"" = ¢"¢")A}(a) + O ((w = 2)%). (A.433)

A.5 Summary

In a gauge theory with ny Weyl fermions in the representation R and n, (complex) scalar field

in the representation S the divergent contributions is

2,,4—2 2w
,L 11 ,QTJ s / A - WY VY AG _
327m2(w — 2) < 3 C2(G) = 57 ColR) = FCo(S) | | s Au(a) (@00 = ") Ayla) =

2, 4—2w 11 2 < 1
_ ”( 02<G>—”02<R>—”02<5>> [ #aFua e

(4m)?(w—2) \ 3 2
(A.434)
where we have used
d?wq a N n U\ AQ
)z A 0@ = ") Ay (g) =
d2wqd2w
2w p+q):cAa At gtg¥) AC _
/d / () 2(0)(q-q8" — q"q") A}(q)
= / d*x A% (z)(—06" + 919" ) Al(x) = (A.435)

_ / 02 2(0, A% ()0 A% () — (9" A%(x))?) =
:;/dQ“’xFﬁy(x)Fé‘”(x) = —/dzwaW(x)F“”(x)
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The wave-function renormalization Za is then

Za—1- % (13102«;) _ 2 ey(R) - "502(5)) (A.436)

Recalling that

1 Olog Za

*QR(N)MT

B(9r) = 5

3 n Ng
e

w=2

Below, we give a table summarizing the different contributions to the S—function

‘ Gauge fields | Weyl fermions | complex scalars ‘

L) —204(R) —10a(8) |

B Anomalies

The Noether theorem translates the invariance of a classical field theory under a continuous

global symmetry into the existence of a divergenceless current
ouJ" =0, (B.438)
which, in turn, implies the presence of a conserved charge

Q= BxJ(z). (B.439)

t=cost.
At the quantum level, the invariance of the theory under a continuous global symmetry is instead
naturally expressed in terms of some Ward identities obeyed by the the correlation functions.

We must have
N N

(0TI (@) [ [ ®ilwi)|0) = = 62 — 2:) (0| T6@ (:) [ | ®;(x5)10). (B.440)

i=1 i=1 i
Here 6®(z) denote the variation of the operator ®(x) under the symmetry. Obviously, the
simplest Ward identity to be satisfied is

(0]8,,7#(2)[0) = 0. (B.441)

Consider, now, a theory of a massless Dirac fermion coupled to a U(1) gauge field A4,,. Its action
is given by

S = i/d4x1/_ry“ (O +ieAy) . (B.442)
At the classical level, this action, a part from the obvious U(1) vector symmetry, is also invariant

under axial transformations, namely

Wi €¥Veh b s e, (B.443)
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Classically, we have the conserved current
Th(x) = )y ¢ (). (B.444)

Is this current still conserved at the quantum level? To answer this question, let us check
perturbatively the Ward identity
(08,7 ()|0) = 0. (B.445)

In four dimension, because of the presence of «s, the first non trivial contribution is

ie)? _ _
wi=U2E [ty [t Au(n) Aa02)0, T T4 500" 000 0m1y00) =

(ie)?
2

= — (ie)? / d*y / d*y2Aa(y1)Ap(y2) 0, Tr (7“755(37 —y)Y*S(y1 — y2)7° S (y2 — x))‘
(B.446)

/ d*y / d*y2Aa(y1) Ap(y2) 0 (T ()Y () (y1) v (y1) b (y2)7 1 (y2)) =

The evaluation of this amplitude corresponds to the celebrated AV V-diagram drawn in the

figure below.

(=
=

R e)

30

[AVAVAVAN

S
e
Figure 2: The AVV —diagram

A rigorous evaluation of this diagram can be very delicate because of the necessary regularization
procedure. Here we shall just sketch the procedure of the computation. The first step is to use

the momentum space, where

_ d'p i iy

Then
o, [ d*kid ks (k1 k2
WI =— (ze) (3 7(27.(-)8 Aa(kl)Ag(kg)e 1 2 (klﬂ + kg‘u) X

d*p 5 10 o it ) 5 i(fat Kot ) )
X/(QW)JH(,W P%-i-ie7 (k1 +p1)2+i€’y (ky + ko +p1)% +ie)

(B.448)
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Let’s check the Ward identity:

4 4
_ (16)2/ d kld kZ Aa(kl)Aﬁ(kQ)eZ(kl+k2)wX

(2m)®
P o (Bt ) 5 (bt kot p) ) _
p? +ie (k1 +p1)2+i67 (k1 + ko +p1)? +ie

4
X / é:;ﬂr <(%1+ fot pr1— $1)7°

= — (ie)’ / d4<sz>4f2 Ao (k) A (ke Frtk)e
/ d*py {Tr <757a(k1+ p) P+ Kot p) > Ty <75’Y’8 p1 Ykt p) ﬂ _
(2m)* (kv +p1)? + e (ki + k2 + p1)? + de P} +ie (ki +p1)? + e
o / d*pr [Tr (7%“(%1-# A1) AP Uh Kot B) ) Ty (75701 h YU+ #) )] _
(2m)4 (k1 +p1)? + i€ (k1 + ko + p1)? + i€ pi +ie (k14 p1)? +ie
:ez/%Aa(’fl)f‘lﬁ(kz)ei(kﬁkz)mx
y / d*p [TY (757“(}61+ ) YU+ kot B) ) T (v%“ #i (Kot #) )]
(2m)4 (k1 +p1)? +ie (k1 + ko + p1)% + ie p? +ie (ka+p1)2+ie/)|’

(B.449)

If we perform the change of variable p; — p; + k1 in the second term of the integrand, the two
terms cancel yielding a vanishing result. However this conclusion is naive. The original integral
(B.462) and the integral (B.449) are linearly divergent and a shift in the integration variable is
not a legal operation. Consider the following example

I— /OO de(f(x +a) — f(x)), (B.450)

— 00

where f(x) is a regular function such that lim,_, 1, f(z) = finite. Then

= [T ) = 30 S e) - 10 (—o0)] = alf (o) — f(-0)). (BS1)
o0 n=1

n=1

Recall that for a regular function lim, 1o f(z) = finite = f(™(f00) = 0 Vn > 1. Notice that
for a logarithmic divergent integral f(+o0) = 0 and therefore the translation in the integration
variable is legal. This result can be easily generalize to a n—dimensional integral and we find

[t a) = fla) = lim S EF@)S, () (B.452)

2| —oo ||

where S, (|z|) is the volume of n—dimensional sphere of radius |z|. An additional factor i
is present in (B.452) if the integral is performed over the Minkowski space due to the Wick
rotation. Therefore an apparently vanishing integral can produce a finite result because of a

linear divergence. Let us apply this result to our integral (B.449). Performing the trace over
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the Dirac matrice, the above expression takes the form

d*kyd*k :
WI —4’i€2/(217r)82Aa(kl)Aﬂ(kQ)ez(k1+k2)x€a“/Byk2y><

B.453
y / d*py [ (k1y + p1g) B Plu ( )
(2m)* [ [(k1 +p1)? +i€][(k1 + ko + p1)? + i€l [p? +i€][(k2 + p1)? + i€]
and we can directly apply (B.452)
d4k‘1d4k‘2 ; 1 kl PP
I =die® | — = Aa(k1)Ag(ky)e'FrTRITeanbvgy i 2m?)ipd =2k =
Wi =die / (2m)® (1) Ag(hz)e ‘ % lplmsco (27T)4( ) p p*
d4k1d4k2 ; 1 PupP
—_4 2 -1 A, A i(k1+k2)z apfv —— k7 i pPo
‘ / e Aot Asha)e R L
62 d4]€1d4k‘2 .
= — | e Ag (k) Ap(kp )l F1 Rz comby g, e —
8772/ (27)8 (k1) Ag(k2)e € 20 K1
e? d4k1d4k2 i T _pav e? va
[ e Aa) = B a) o),
(B.454)
o 1 . . . : :
where we have set | 1|im P ]29 = anw. This result is partially ambiguous: since we have lost the
pl—oo P

invariance under momentum translation in the loop, the final result will depend on the choice of

the momentum in the initial loop integral. For example if we had begun with the loop integral

dip, 5 i+ d) ittt d) 5 i(fat Fot pit A) >
/(271’)4TI" <’7M (p1+a)2—|—i67 (k1 +p1+a)2—|—ie (/€1+/€2+p1—|—a)2—|—ie , (B.455)

we would have found an additional contribution of the form

\3 .
(;3)4 27 i Tr(3#57"1y% " 7o )p’ pfpa piyligpys =
(B.456)
(i)° o 2., . sp-apy i
— Ir2idictviaB ftvi " pafr ..
~a 27 idie plinoop PR §2€ a
(2m)* I
This produces in the WI an additional term given by
. [ d*kd*k - i
Wlaa. = — (16)21/ WAa(kl)AB(kQ)el(kﬁb)m(kw + k2u)@€“a’8yau (B.457)
If we write a = c(k1 + ka2) — bka, the above expression becomes
e?b [ d*kid*k ~ e?b
W44 :@ / W!‘Lx(kl)Aﬂ(kz)ez(k1+k2)$k1uk2u€“a’gy = @ewaﬁFw(@Faﬁ(m)-
(B.458)
There we obtain the following generalized W1
. e2(1+1b)
(0104 (2)10) = — 5" Fyu () Fas (). (B.459)
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Here the parameter b seems arbitrary. In order to fix b, consider again the triangle graph and
multiply by ki1,. The vanishing of this contraction is equivalent to require that the U(1) vector
current is conserved. We find

ik1a d*p 1 o (Kt p) 8 (k14 Kot #1)
2 {/ (271')4Tr <7M75pf e (k1 +p1)? + ic | (k1 +ka+p1)2+ ie)
d*ps g (ot #) o (Kt fot #1) _
+ / @i " <7M75p§ Fic! (ks +p1)2 +ic! (ki+ kot pi)?+ ze)] -
_ 1t [/ d'p, Tr (7“75 H AUt fot ) ) Ty (7“’75(%14— p) APt Kot #) )
2 (2m)4 p? +ie (k1 + ko + p1)? + i€ (k1 + p1)? + i€ (k1 + ko + p1)? + e
d*p, Vs i VP (Kt #1) Yrys g1 VPt Kot ) B
+ / (271')4Tr ( p? +ie (kg + p1)? +ie> - ( p? +ie (k1 + ka +p1)? +ie)] -
_ i [/ d'py Ty (7“’75 # (ot $) ) Ty <7“75(}f1+ p1) P+ Kot Pr) )] _
(27T)4 p%—‘rZG (kQ +p1)2+i6 (k‘l +p1)2+’i6 (k1+k2 +p1)2+i6

2
_ i wBpo . L
~16m2° to2a

(B.460)
If we consider a different choice in the integration variables, we have the following ambiguity:

o |
Lo <'Lzewﬂ”<a(kly T k) — ko) + = 5 (a(kyy 4+ ko) — bkm) -
2 8 8

| (B.461)
b
672

l
:@Emﬁuklo‘ ((alkw + kov) — bkay) — alkyy + ko) + b)) = — 1

P ko,

Summarizing, we obtain

ik1a {/ dipy e (fy“fy 71 o (fr+ #1) 0 (K1t Fot #1) )
2 (2m)4 "2 tie (ki+p)?+ie (ki + ko +p1)?+ie
d'pi 2! (Kot #1) (b1t Kot 1) )}
+ Tr ( * —~P e : - (B.462)
/ (2m)4 g (FY 751)%—1—@67 (k2 —1—;01)2—1—%’y (k1 + k2 + p1)? + ie
)
=== b)eHPP7 Ky ko,

Therefore the vector current is conserved if and only b = 1, but with this choice the axial
current is anomalous and we have

2

1672

(010,4(2)[0) = =5 ™ F, (2) Fup(a). (B.463)

In other words if we require that the vector current is conserved, the axial current is not conserved
and it satisfies the relation (B.463).

The next step is to generalize this result to the non-abelian case, namely a theory of a massless
Dirac fermion transforming in a representation R of gauge group G gauge and coupled to the

gauge field A, of the same group G. Its action is given by
S =i / Azt (au + eA;T;m) b (B.464)
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Classically, we have the conserved axial current

Tha(@) = P(@) ' T v (). (B.465)

We can repeat the analysis and what changes is the group theoretical factor in front of the

anomalous term. In fact

2
WI= 5 [ a1t 48 00) AL 020 I T 0 000 TS ) =

- \2
= (ZZ) /d4y1 dty AL (1) A% (y2) 0, (T ()7 A TS ()b (1 )V T (51 ) (2 )7 P Ty D b (32)) =

(6)2 4, 14 a b
= —T d yld yQAoz(yl)Aﬂ(yQ)x

X {Tr(TC(R)TéR)Tb(R))aﬂTr (v4°S(x — y1)7*S(y1 — y2)7"S(y2 — x)) +

+ Te(TOTOTING, Tr (77955 (@ — y2) 7S (y2 — y1)7*S (1 — 1?))] =

= —eQTT(TiR)TéR)TJR))/ d*y1dy2 A% (1) Al (42) 0 Tr (V9 S (2 — y1 )V Sy — y2)7?S(y2 — @) =
2

e v
= —32?6“ BTr(TFy (2) Fap(@)).

(B.466)

Therefore the coefficient of the anomaly is proportional to the group theoretical factor!'!

1
dase = 5T (T{TD, T} ) (B.467)

and vanishes when this coefficient is zero. This coefficient vanishes when the representation R

satisfies the condition

Tr (T§R>TC§R>T§R)) = Ty (T§R>T§R)T§R)> . (B.468)
There is a very simple way to satisfies this condition. Notice that
T
Tr (T§R>T§R>T§R)> " (T§R>TC§R>T§R)) _ (TIfR)TTCER”TC(R)T) . (B.469)
1t
7T — sl g, (B.470)
then we find
Tr (TC<R)T,§R>T15R)) - Tr (T5R>TgR>T§R>) - Tv (TC(R)T;R)T;R)) . (B.471)

A representation'? which satisfies the condition (B.470) is said real if it is equivalent to a real

representation ( e.g the adjoint representation of SU(2)) and pesudo-real if it is not ( e.g the

1The origin of the anticommutator is due to the fact that the anomaly expression is symmetric in the exchange

of the F*".
'2Recall that we are using antihermitian generators.

97



fundamental representation of SU(2)). In general a representation for which dyp. = 0 is called
safe representation.

This analysis can be generalized to the case of chiral theory and local symmetries, namely a
theory where the left and the right part of the Dirac fermion transform in different representation

of the gauge group. In this case, by means of the above results, it is not difficult to check that

the absence of anomalous term is equivalent to require!®
diy. — di. = 0. (B.472)

Here d“™ is the quantity defined in (B.467) for the left and right representation respectively.

abc

C Conventions

Given a compact Lie group G, we shall denote its Lie algebra with & and the generators T, are

chosen to be antihermitian T,I = —T“. They satisfies
[To, To) = fap “Te (C.473)

and they are normalized so that
1
Tr(T,1p) = _iéab' (C.474)

The Jacobi identity implies the following relation between the structure costant

0 :[Taa [TvaCH + [Tbv [TaTaH + [Tw [TavaH = fbc n[TaaTn] + fca n[Tvan] + fzzb n[TaTn] =
:fbc nfaanT + fca nfbm‘Tr + fab nfcanT =

fbc nf‘””“ + fca nfbnr + fab nanT =0
(C.475)

Useful Traces

1 1 1
Tr(Ta[TbaTcD = fbc mTr(TaTm) = _§fbc e = _ifbca = _ifabo (0476)
1 1
Tr([Tme] [TC7Td]) = fab mfcd nTr(Tan) = _5 ab mfcd n(smn = _§fabnfcd " (0477)

13The case where we have just left or right fermions is obtained by assuming that the other sector is decoupled,

that its dup. vanishes
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D Some useful result on antisymmetric matrices

Lemma 1 FEwvery real antisymmetric matriz with determinant different from zero can be brought
into the following form
1109
UxXuT = . : (D.1)
109

where U is an orthogonal real matriz and {z1,...,x,} are real numbers.

Lemma 2 Given two commuting real antisymmetric matrices X and Y with determinant dif-
ferent from zero there exists an orthogonal matriz such that UXUT and UYUT are of the form

considered in the previous lemma.

Lemma 3 Given an antisymmetric unitary matriz QQ we can find a unitary matriz U such that
’iO’Q
UxXuUT = ) (D.2)
109
Lemma 4 Given a complex antisymmetric matriz Z, we can always find an unitary transfor-

mation U such that UZUT takes the following form

izlag
UzU"T = - ;
125,09
if the dimension of the matriz is even or the form
0] ... 0
C | 210
UzUuT = _ ,
0 -
ZniO'Q
if the dimension is odd. In both cases x1,x2, ...,y are real numbers
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