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Overview

We illustrate Group Theory from the stand-point of a
Supergravity Theorist.

These lectures deal only with mathematics and no supergravity
Is actually discussed, yet the chosen topics are motivated by
Supergravity/Brane Theory.

We deal with both finite and Lie groups in the perspective of their
role in differential and complex algebraic geometry.

We emphasize geometrical/group theoretical structures and
conceptions that have been motivated and uncovered by
supergravity.

We aim at conveying the following message: geometry and
groups are fundamental items in brane theories, AdS/CFT and
supergravity. Not only: these physical theories have introduced
new visions and conceptions in Geometry and this last aspect
might turn out to be the most important and durable contribution
of Supersymmetry to Science in general.
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Finite Group Theory

Some elements of a theory which is quite old, usually
not too much studied by high energy physicists, yet of
growing relevance in the supergraivty/brane world




LACES 2016

Recalling some fundamental notions

Cayley’s theorem

Theorem Any group G of finite order |G| is isomorphic to a subgroup of the
permutation group on |G| objects, Si6)-

Lagrange’s theorem

Theorem The order of a subgroup H of a finite group G is a divisor of the
order of G:
Al € N such that |G| =1|H| .

The integer [ is called the index of H in G.

Lemma The only finite group of order p, where p is a prime, is the cyclic
group Ly,
Left and right cosets

aH ={ay,aiha,...aihy,}

G=HUaHJaHU...UaH
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_ N
Order of elements and conjugacy

classes
aEG ah:e ==) h = order of a

Corollary 4.2.1 The order of any element of a finite group G is a divisor of the
order of G.

Conjugacy classes

[¢] = {¢' € Gsuchthat g’ ~ g} = {h~'¢h, for h e G}

Conjugate subgroups

Ho={h,€G: hy=g""hg, forhe H}|

Invariant subgroups

A subgroup H of a group G is called an invariant (or normal) subgroup if it coin-
cides with all its conjugate subgroups: Vg € G, H, = H.
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Still a few more general concepts

Factor groups

If H is an invariant subgroup of G, then G/H (= H\G) is a group. with respect to
the product of classes defined as follows:

(¢1H)(g2H) = g122H.

The centre of a group

The centre Z(G) of a group G is the set of all those elements of G that commute (in
the eroup sense) with all the elements of G:

Z(G)={feG:g ' fg=f,YgeG}.
Z(G) is an abelian subgroup of G
The derived group
The group of commutators, or the derived group %(G) of a group G is the group

generated by the set of all group commutators in G (that is it contains all group
commutators and products thereof).
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Solvable Groups, Simple Groups

In general a group G admits a chain of invariant subgroups, called its subnormal
- 3
series”:

G=G,>G 1 >Ga>...1> Gy > {e}

Definition (G is a simple group if it has no proper invariant subgroup. For
simple groups, the subnormal series is minimal:

G {e}.

Definition A group G is solvable if it admits a subnormal series

such that all the factor groups G/ Gy, G1/Ga, ..., Gy_1/Gy, ...are abelian,

Semi-direct products

The definition requires
that the group G should

act on the group K as a
(g1,k1)(g2.k2) = (g1-g2.k10g1(kz2)) . transformation group.

G K={(g.,k) :geG,keK}
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Linear Representations

Definition 4.3.1 Ler G be a group and let V' be a vector space of dimension n. Any
homomorphism:
D: G — Hom(V,V)

is named a linear representation of dimension n of the group G.

If the vectors {e;} form a basis of the vector space V', then each group element y € GG
is mapped into a n x n matrix D;;(y) such that:

D(y).ei = Dij(y)e;

In other words p: G — GL(n,F) F= {E
Definition Let D : G — Hom(V,V) be a linear representation of a group G.

A vector subspace W C V is said to be invariant [ff:
YyeG,YweW: D({y)lweW

Definition A linear representation D : G — Hom(V.V) of a group G is
named irreducible iff the only invariant subspaces of V are O and V itself.
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Reducible Representations

V=W D=ED; : Di:G— Hom(W;,W;)
i=1 i—1
[Di(y)| 0 |0 0 0\
0 |[Di(y)][ 0| 0
vyeG o D= L |
0 | ... |...]0|D,a(p)| 0
\ 0 0 Ur'{ﬁ)
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Schurs’s Lemmas

Lemma Let V, W be two vector spaces of dimension n and m respectively,
with n > m. Let G be a finite group and let Dy : G — Hom(V,V) and D> : G —
Hom(W.W) be two irreducible representations of dimension n and m respectively.
Consider a linear map &' - W — V and impose the constraint

YreG YweW Dy(y)ed.w = @ .Dr(y).w

The only element &/ € Hom(W., V') that satisfies eq. (4.3.7) is & = 0

Lemma Let D: G — Hom(V,V) be an n-dimensional irreducible represen-
tation of a finite group G. Let C € Hom(V, V') be such that :

VYeG CD(y) = D(y)C

Then C = A1 where & € C and 1 is the identity map of the n-dimensional vector
space V' into itself.
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Characters

Definition Let D : G — Hom(V,V) a linear representation of a finite group
G of dimension n = dimV. Let r be the number of conjugacy classes €; into which
the whole group is split:

G=J% : %% = &%
Yy, y€€ JgeG | y=gyg"!

We name character of the representation D the following r-dimensional vector:

x[D] = {Tr[D(n)], T [D(p)], ..., Te[D(y)]}

where.
Vi € G

is any set of representatives of the r conjugacy classes.
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Character orthogonality relations

g = |G| = # of group elements

gi = |Ci| = # of group elements in the conjugacy class C; @ = i,...,r

i=1

r r
p=1

Where a, denotes the number of times the irrep D¥ is contained in the divect sum and it is named the
multiplicity. Given the character vector of any considered representation R the vector of its multiplicities is

J_ r
= — > g
g T
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Example: the octahedral Group

e |l ={x,nz} 4 ={—x,—z,—}
21 ={-y,—zx} 4 = {—x,z.y}
2y = {—nz,—x}||C2/43 = {—y,—x,—:
23 = {—z,—x,y} 44 ={—z,—y,—x}

Csf2s = {—zx,—0}|| |45 = {o 0.2}

26 = {z,x,y} 51 = {—»x,z}
27 = {y,—z,—x} 5, = {—z,y.x}
28 = {y,z,x} C4|53 = {z,y,—x}
31 = {—x,—yz} 54 ={y,—x,z}
Cﬁ 30 = {—x,v.—2 55 = {x,—z,y}

There are 24 rotations of three dimensional space that map the octahedral
into itself. They form a group O,, that consists of 5 conjugacy classes
displayed above.
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Structure of the octahedral group

Abstractly the octahedral Group Oa4 ~ Sa4 is isomorphic to the symmetric group
of permutations of 4 objects. It is defined by the following generators and relations:

ALB : Al=e : B’=e : (BA)Y'=e
010 010
A=23=1(001 . B=4=1]1100
100 00 -1

The group O,, is solvable

N2 = {l|,2],22,...,23,3],33,33}

O24 > Ny2 > Ny Ny = {11,31,32.33}

Ny ~ Zn x 7o — ~Zp i — ~1In
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Irreps of O,
dmDy =1 dmd» =1 dimD;s =2 : dimDy =3 ; dimDs = 4

Dy : the identity representation Vye Oy : Diy) =1
n={1L1,1,1,1}
D> : the quadratic Vandermonde representation  2(x.y,z) = (.1'2 - _\‘2] (.1'2 - zz) (_'_1‘2 - 22)

X2 = {1,1,1,—1,—1}

Dy : the two-dimensional representation )y : Oy — SL(2,Z)

Dy(A) = ((il '_]) . D3(B) = (?é)

= {2,—1,2,0,0}
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Irreps of O,, continued

Dy : the three-dimensional defining representation

DiA)=A : DyB)=B

X3 = {3‘0,—],—],]}

Ds : the three-dimensional unoriented representation

010 010
Ds(Ay= (o001 ] . DsB)=[100
100 001

%5 = {3,0,—1,1,—1}
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p
Character table of the octahedral

group

Irrep . {e,1} {G.8} {C7.3} {C2.6} {Cy.6}
D, = 1 1 1 1 ]
Dy, 2= 1 1 1 1 1
Diy. ys=| 2 —1 9 0 0
Dy, ya= 3 0 —1 —1 1
Ds. xs=| 3 0 —1 1 1
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C

S

ystallographic Groups

SOy(n) = #S0(n) !

g.[“” = {“;P-' ? “"V} yfgy — 1

R'sqeA < q=g"w, where ¢" €Z | Lattice

Definition An abstract group I is named crystallographic in n-dimensions if
there exists an n-dimensional lattice A, with basis vectors w, such that:

1. there is a isomorphism:
®: 1" — H CSOgx(n)

where SOg(n) is the conjugate of the n-dimensional group rotation group re-
specting a metric g )

2. the metric g is that defined by the basis vectors of the lattice A,

3. all elements of H are n X n matrices with integer valued entries.

This is equivalent to the statement that I has an orthogonal action in R"™ and pre-
serves the lattice A,,.

Pietro Fre
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The ADE classification of SU(2)
finite subgroups

The problem of classifying finite rotation groups is Plato’s
problem of regular solids. This problem s isomorphic to the
classification of simple Lie algebras, of modular invariant CFTs, of
Arnold simple singularities and of ALE manifolds, namely of
gravitational instantons.

It is one of the most profound items in the whole field of
Mathematics and admits generalizations under the name of McKay
correspondence.

It plays an important role in supergravirty and AdS/CFT
theories, also in modern algebraic geometry.
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SO(3) & SU(2) finite subgroups:
preliminaries

/ .

Every rotation has an axis

0 —nm
Camtant=1 Apgpu=| n 0 -] =-4],,
—m ¢ 0

Cromn) = eXp[BArma] = 1 +SInB Ay, + (1 —cosﬁjﬁimm

Homomorphism SU(2) into SO(3)

Y% e SUQ2): %) =6eS03) /| 6 =1Tr[% 6% "]

We consider the preimage of the rotation in SU(2)

+ B p+iv g —ik
[{Efffﬁ ﬂ:| - ﬁl:f:-m:-ﬂ:l %?ﬂﬂ - (_p —1}., p _iy )
where
B . B - 3,
A=4{sinw— : Uu=msin- : v=nsing : pP=cos<

2 2 7 2
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Every SU(2) element has two poles

Each element % € SU(2) has two eigenvectors z; and z, such that

U 1 = explif]z,

U 1y = exp|—iB]z j

J orthogonal basis where % is diagonal and given by:

Poles of %7 = SU(2) ” (

2

the rays {4z} and {fz,} where A, i € C pi={Azi}

Let H < SO(3) be a finite, discrete subgroup of the rotation group and let H C
SU(2) be its pre-image in SU(2) with respect to the homomorphism . Then the
order of H is some positive integer number:

|Hl=neHN

The total number of poles associated with H 1s:

#of poles =2n -2

since n — 1 is the number of elements in A that are different from the identity.

expl[if] 0
0 exp[—if] )
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Formulating the argument

Poles are equivalent if they are mapped one into the other by the group H

pi~p; it IyeH/ypi=p;

Equivalence classes

Qa:{p?",m,pg‘ia} cooa=1,....r

name mg the cardinality of the orbit class 2,

Stability subgroups of the classes

Each pole p € 2, has a stability subgroup K, C H:

VheK, : hp=p
that is finite, abelian and cyclic of order kg
H=K,+viK,+---+v, K, maEN:

|Kf|:k5‘-'

\ 4

V2qy o kgmg=n

(counting coincidences)

#of poles in 2,
— f'na (;{a — l)

\ 4

-
2n—2= Z my (kg — 1)
or=1

/

Pietro Fré



23

LACES 2016

The Diophantine inequality

(13) -5 (2)

a=1
R 2 . 1
F4—-——2= Z o
2 I / Iy CC=] k&'
[Since ke = 2. r+n2§2]

Only two cases

r=2 or r=23
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The A solutions

Case r = 2: the infinite series of cyclic groups A,

2 1

_— = — —_ -"r<, —_ J—

n f(1+k2 kip<n ‘ ki =k»=n

o €SUQ2) @ ZF="

Top ~ Tylnn | = {1, e, /%, 4"\ % Fof ot Fad" "}

o [I[n,n,1)] = ['nn, 1] ~ Z,

Ipnn | = (o, Z | .
bn & {If[n,n,l] — (A|A=1)

d" =% . F =1

)
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Structure of the DE solutions

Case r = 3 and its solutions

UL %—1+Yk
Kk ks n —+§a

L k1Ko, ks] = (ﬂ”,ﬁ’,f\ (A BN = ofr — B — 7, F? 1)

[ [ki k. k3] = (A,B| (AB)" = Ak2 — B — 1)

There are in I" elements of order at most of three different types
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D-solutions

The solution (k,2,2) and the dihedral groups Dih;

{f{],f{g,fq}:{f{,z,Q} . 2 < kel

The corresponding subgroups of SU(2) and SO(3) are:

k22 = (o, B.¥ | (d B = o? = B = &
k2,2 = (A.B | (AB}k = A2 = B2 = 1)

I}[k,2,2] ~ Dih? is the binary dihedral subgroup. Its order is

Dih?| = 4k
k
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The E-solutions

{k]:k29k3} - {3?3*2}
{klnkz:-kﬁ} — {4:3'~2}
{k]:k29k3} — {593"2}

I'3,3,2] ~ Ty
I'[4,3,2] ~ Oy
I'[5,3,2] =~ Ig

1. Tetrahedral
2. Octahedral
3. lcosahedral

Pietro Fre
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ky—1

e The

ADE

TS classification

1‘\C)

ky — 1

Simple Lie Algebras

Finite subgroups of I}, C SU(2)

F number of simple chains
in the Dynkin diagram

# of different types of
group—element orders present in I = @ [I}]

ke ke — 1 = lengths of
the simple chains

in the Dynkin diagram

group-element orders in
I =

(A.B| (AB)! — Ak — Bha — 1)

X — 1= ||Z =rank of the Lie algebra

9% + 1 = # of conjugacy classes in I},
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The classification of simple Lie
algebras

The classification of semisimple Lie algebras is based on root spaces and
Dynkin diagrams. Dynkin-Cartan theory, in all of its aspects, is of crucial
relevance in many directions of Mathematical Physics and it is absolutely

essential in Supergravity and Brane Theories.

BUE CanL Jonansuae 20

Sophus Lie Felix Klein Wilhelm Killing  Elie Cartan Eugenio Levi/
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algebra

K(H;'TH_;) = 5,; = Hg=0;H;
K(E“ E™%) =1 -
< (Hi E%) = 0 Cartan Killing metric
|H; .Hj] =0
[H;.E%] = oy E“

Theorem
frue:

] 2“”ﬁ e

(oot

2. 04B)=p -2 [gg € A is also a root.

\

Cartan-Weyl basis of a complex Lie

The generators H; span the Cartan
subalgebra CSA (maximal abelian whose
adjoint action is diagonalizable). The
dimension r of the CSA is named the rank

Hermann
Weyl

A is a finite collection of vectors in a
r-dimensional Euclidian space

If a.p € A are two roots, then the following two statements are

The elements a € A are named the
roots

~
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Axiomatization of Root Systems

Definition Let E be an euclidian space of dimension {. A subset A C K is
named a root system if:

1. A is finite, spans £ and does not contain 0.
2. If o € A the only multiples of o contained in A are £

3 V. B €A wehave 2128 £ 7

(o)

4 Yo B €A we have oo (B) = B — 20 (28 € A

Angles between the roots

(B.a) =208 ‘ (B.a)(a.B)=4cos’ Oy €Z

(o, @)
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Lemma 9.1. Let o, § € A be two non proportional roots. If (o, ) > O then o —ff €
Adsaroot If (a,) <Othen o+ € A is a root.

=  Simply laced Lie algebras

J\

= Non simply laced Lie algebras

(o.p)B.a)| o H.r
0 0 % undetermined
| | z |
S O T R 1
| 2 z 2
1| 2| 2
| 3 z 3
1| 3| 2 3

~
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Simple roots

Lemma  Let o, B € A be two non proportional roots. If (&) > Othen o —f €
Aisaroot If (0,3) < Othen 0.+ € A is a root.

Definition Given a root system A C B in an euclidian space of dimension !,

a set A of exactly { roots is named a simple root basis if:

1. A is a basis for the entire E',
2. Everyroot o € A can be written as a linear combination of the elements o4 whose

coefficients are either all positive or all negative integers
£
. : Z.
a=) Koy : ke
:; : or Z_

The vectors o comprised in A are named the simple roots of A.

of simple roots.

Theorem' Every root system A admits a basis
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Weyl Group and Cartan matrix

Definition Let A be a root system in dimension (. The Weyl group of A, de-
noted # (A) is the finite group generated by the reflections G, VoL € A.

Since for any two vectors v,w € E we have:
(0a(V), o (W)) = (V. W)

it follows that the Weyl group, which is finite, is always a finite subgroup of the
rotation group in ¢ dimensions:

# (A) C SO(!)

Having established that all possible_irreducible root systems A are uniquely deter-
mined (up to isomorphisms) by the|Cartan matrix:

oG, O
[C”{ aha’j >= QM ]

(0. ;)

we can classify all the complex simple Lie algebras by classifying all possible Car-
tan matrices.
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Coxeter-Dynkin diagrams

Simple roots

o O O OO0 O
oy 5] o3 Oy Gy —1 ey
# of lines joining o; with o =— Coxeter graphs
1
o o >=4c082 0, =42
<0G 0 > < 0. 0 = COs™ 0;; {3 Ap XA O O

x 0—O
By ~ (5 C)j)
Gy O=0

The four possible Coxeter graphs with two vertices

K Eugene Dynkin Harold Coxeter
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-~

Dynkin diagrams
Add an arrow

By convention we decide that this arrow peoints in the direction of the short root.

A Coxeter graph equipped with the necessary arrows is named a Dynkin diagram.

AL XA o o - (7))

o o—0 - (473)
5 =0 = (47)
& o=0 - (37
2 =0 - (373)

Pietro Fre
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Classification Theorem

The possible Dynkin diagram and hence the simple complex Lie algebras
are given by the following infinite series

A O—0O—C0O O—CO——0
o o o3 Ce—2 Cly—1 Oy
B, O—O—0O O—C=0
0 %) o3 Gpz Oy e
C Oo—0O0—~0-
e o Ol
D O—O——0O
S ) O3
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-~

or by these 5 exceptional cases

f O

' ()
Eg O Ry h—y Ny
] (04) ] s g
f )
Yy Yy Y
Eq O Ny vy / Ny O
0] (0 ] s g o7
f )
E Yy Yy Y Y
i O—O—CO—CO—C—C0CO—0
] (04) ] s g ct7 Olg
A O—0O0—0
o 5] o3 Uiy
@ O=0O
o 5]
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The ADE classification of simply

laced Lie algebras

Elaborating the consequences of the
axioms one reduces possible simply
laced diagrams to the form on the right
and finds the diophantine inequality

O—0O—0r I 1 1
£1 =) &3 _ _|_ . _|_ _ ::} l
P q r
((¢,1,1) = A; Dynkin diagrams feN
({— 2.2. .2) = D; Dynkin diagrams 4 </ € N
(p.q.r) =< (3.3, 2) = E¢ Dynkin diagram
(4,3,2) = E7 Dynkin diagram
(5,3,2) = Eg Dynkin diagram

.
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|dentification of the Classical Lie
Algebras

A = SL(r+1,C)
B, = SO(2r+1,C)
C. = Sp(rC)

D. = SO(2r,C)

=
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The weight lattice and linear
representations

Aot C Rﬁ f V E Aot © V= Hj oG . h’ff e Z Aweight = Art;m

(A", o)
(0. o)

Fundamental weights (4. a;) =2

— 5}!

For any representation I of the Lie Algebra G, I' : G. = Hom(V.,V)

I'(H) =—-iI (iH;) : (i=1,....0) areasetof { commuting hermitian matrices.

V=@ Vv, : (dimV, >1)

Al

where Il C 2 is a subset of linear functionals on the Cartan subalgebra .5#

A = C
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Weigths of a representations

Yvev, r'hyv=A(h)v . Vhes#
Dirac notation (bra and kets)
m(A) = dimV; n=dimV = Z m(A)
Lell Ap> 1 p=1,.... m(A )
< W.r|A,p > =03, 6p
Ai = A(H;)

Ch)|A.p>=Alh)|A.p>

Ho|h,i>=A(Hqa)|A.i> | One fundamental result of Weyl.

(A.0) _ _ 5 o> ez The weights of a representation
(o, &) belong to the weight lattice.
U

A€ Aweight

A(Hy) =2

Pietro Fre
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Another fundamental result of Weyl

Theorem Given any finite dimensional representation I of a simple Lie al-
gebra G, the set of its weights Il is invariant with respect to the Weyl group
Explicitly we have:

YaeA : Acllr = ou(A) eIl
m(cy(A)) = m(A)

Theorem Let o be a non vanishing root and let A € I be a weight of a
representation I of a semisiple Lie algebra G. Then there exist two integers p.q,
such that A + ko € I is a weight of the representation for all the integers —p <
k < q. Furthermore we have:

(4. @)

(o, o)

Utilizing these two theorems the construction of all the weights of a representation
can be easily encoded into an iterative computer algorithm starting from a highest
weight

p—qg=<A,00 >=2

/
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Highest weight representations

Definition Given two weights A, L of an irreducible representation I' of a
simple Lie algebra G we say that A is larger than (1, if and only if their difference
is a sum of positive roots

A & A-u= ) o
O eAy
Theorem If the irreducible representation I' of a simple Lie algebra G is
finite-dimensional than the set of weights Il admits a maximal weight A such that
any other weight A € I is A < A. Consequently we have:

F(E*)[A >=0

Corollary The highest weights of all existing irreducible representations be-
long to the Weyl chamber 20 which is the convex hull defined by the following con-
ditions:

(V, O J

(0, i)

vedl < 2 >0 i=1,....¢

where o are the simple roots.
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The Weyl group

Yw e # C SO(3)

Wi

w2

Wi

w4

w5

Wg

100
010
001
010
100
001
001
010
100

100
001
010
001
100
010
010
001
100

s (A

s (A1,

‘,(;1.1.

s (A1,

2 (A1,

',(.;L].

LA,

A

L.

L.;ij — (;L:;LQ;L]) .

2.43) = (A2.43. A1) .

Wl € ({A1L. L) w =€ (w{i.l}) €CSA

A 0 0
As) = (A1.A2.43) CSAsF({M. )= 0 A4 0

00 —A;1—4A
Aa) = (2Ands) The complex Lie algebra SL(3,C) is
provided by all 3x 3 matrices that
are traceless. The CSAis given by
the diagonal set of traceless
matrices.

A3) = (AA3,42)

The Weyl group of A, is isomorphic
to the permutation group of three
objects S,

,_...;ij — (.;L:;L];Lg) .
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The fundamental weights

\J

The Weyl chamber

A
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Weights of the defining triplet

representation
triplet _ [ A1 A2 A3
. H“P“] _{;]1 LASLACY
\ A=A = (1,0)
\ \2= Al A2 = (—1.1)
e b W= A2 (0. -1
\ Matrices of the representation
Aq= Amax
\ %0 0 #Ol 0
- - Ho =0 —50]|:H = 0 %0
00 0 0 0 —\/3
010 000
En = 000 JE® = 001 |,
000 000

E—O{] — (EQI)T . E—C{g — (EC{Q)T . E—Cq—(?fg — (Etl'l-!-ﬂ'g)r
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Weights of the adjoint representation,
namely the roots

The root lattice is always
sublattice of the weight lattice!

The highest root is the
highest weight of the adjoint
representation!
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Weights of the 15-dim rep.

Name Orth. comp.| Dynk. lab.|mult

A = 201 4A2 = {\/22\/5 - @211

A = 3A1-A2 |- {%% - 3.-1| 1

Ay |= 247 = {02 It= (0.2)| 1

A= A = {%# - (L0)] 2

As |= =241 +342= {—\/iz = (=2.3)] 1

Ag |= 241 =222 |= {\/E —\/E - 2.-2) 1

R e e R it} I

Ag |= =A% = {0.— IH= (0,-1)] 2

Ao |= =341 4242)= é—%# - (=3.2)] 1

_ _ A |= B3 +AN = mmeplE (L3
complcated, less tivia R VAR 20
example Ap |= —AT—24%|= {_\%_TE - (~1,-2)] 1

Pietro Fré
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Correspondence with Young tableaux
an d te n SO rS | Weight|tensor comp.|weight mult. |
Weight |tensor comp.|weight mult. ([1]2]2]
3
i | 1] M T 2
15 =11 A | 2 ! 2
L[] ([1]273]
: K
The reason Ay | L ! W B ,
why certain i3] ' é 3[3]
weights have A 2] | L
multiplicity >1 31377
is that there is L[1]2] Ao 3] |
more than one A | )
inequivalent é 13 ! 3[3]
way to fill the — Ao | = '
boxes of the 1[2]2] 12]3]
corresponding As 2] | At 3] |
Young tableau
L[1]3] [3]3]
o | L ' v | B !

-
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The Golden Splitting

Supergravity has put into evidence some intrinsic
properties of Lie Algebras that are purely mathematical
yet obtain their proper interpretation only within the
framework of those geometries that are well-adapted to
supersymmetric field theories.

One of these hidden jewels is the golden splitting
that is the Lie algebra seed of the c-map
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adj(Ug) = adj(Uy ) ®adj(SL(2.R)g) & W w)
T = T

Ly L] = f°, L.

TOW = (A1) WP,

Li W) = (1), W,

:W’-a,_ W"fﬁ} =g/ (Ka)aﬁ T+ c k.i:j Ly
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The golden splitting of the quaternionic algebra )

adjg] = (adj[sl(2,C)g] ., 1) & (1, adj [sl(2,C)]) & (2, 4)

a’ 3a*b 3ab? b3
ab a | a’c da*+2bca cb* +2adb b*d
A= (c d) 75(A) = ac® be? +2adc ad* +2bed bd>

- 3c2d 3cd?

d3
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Theory of Coset Manifolds

A fundamental item in Supergravity and in many other
branches of Physics.

The classification of symmetric coset manifolds was
the monumental work of Elie Cartan. Such a classification is
also a classification of Real-Forms of the complex Lie
algebras and contains the seeds of the Tits Satake
projection, a very fundamental item in the applications of
coset manifolds to Supergravity.

Pietro Fre




56

LACES 2016

Coset Manifolds

Ve.g €G : g~g iff 3heH \ gh=¢

Yee G : gL(y)=L()h(gy) : higy) €H
The geometry of coset manifolds
Decomposition of the Lie algebra

G=HaK [H,H] C H H,K]cHa K

If [H,K]cK | <=) The cosetis
reductive

[K,K] C H | 4=m) Symmetric space

Basis of generators of the Lie algebra

d = Llil'ﬂ% = dimG — dimH

All the geometric properties
of the manifold are
essentially encoded in the
structure constants

7). 1] = C' i T

T".ﬂi' :Cﬂ' T,
}.-!I'-_:.:il A=1,.....n [TA1TB] = Cc.:iﬁTC — [ i ] ib+a

[ﬂi‘- TC] =C pe It + Cﬂf?t‘ T,

J
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The structure of iIsometries

Infinitesimal transformations and Killing vectors

g=14+e'Ty
h(y,g)~1—eW,(y)T; | Killing vector fields on G/H

¥y ek

g e g L(y) = (1 — el ef [Ty, Tp]) L(y)

[Ta. Tp) L(y) = Ty TgL(y) — T Ta L(y) l
= [ka. kg] L(y) — (kA Wi — KsWj + 2", W) wg.) L(y)T;

3

[Ty . Tg) L(y) = C4p TeL(y) = C%p (ke L(y) — WEL(Y) Th)

K, kp] = C ke
kaWj — KgW, + 2(?"ﬁ WiWh =CC, W,

Pietro Fre
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p
An example: the hyperbolic

hyperplane

Y — SO(n+1,1) My =diag | +,+.... 4+, — —.....
- SO(n+1) ) g

|
|
4
L
~———

>
n+1—m m

X £ Hgfﬂ_m'mj = {K,X},? = +1 VgeG {K?K}F]‘ =+l & (gx,gx)y = £l

_ Standard parameterization of the coset
[For H" ]

curd ,
SO(n.1) > SO(n) > h = (f{l}) L 610 =1, / Lysn + 2']3‘_3? —zr‘jﬁ
L(y)"nL(y) = n Liy) =
T 2
N =dag(+.,+.,...,+.,—) \ — 2]_'1? i_t'::_z
0 2y!
I ' T
X¥) =LWxo=Ly) | (| =772 | o x(y)' nx(y) = —1
T ) 1+y°
N o

Pietro Fre
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Spheres or Hyperplanes

: 0
Lnsen + 2y FT 1+Kr;'}'-’ —2 1+3n'3'—
Lu(y) = xe(y) = Lely) | |
yT I—ky? —
2K 1+xy2 I+ Ky- |
(/I {}...{}[}\ 1 O ...0[0
01 ...000 0 1 ...0{0
Lev) [+ 0 it [ Ley) =] 1 0 ¢ 1
0... 0 1|0 0... 0 1{0
\0... 0 0[x/ 0... 0 0«
—_ \_V_.J
M My

KK{}']T NeXx(y) = K

Pietro Fre
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4 - .
The decomposition of the Lie algebra

and the Killing vector field

0.. 010
0.. | 0[0 }i-th row
Jij=Fi—Fi o iL.j=1,....n Fij = g gg
—
j-th column
The commutation relations of the so(n) generators are very simple.
ijJie) = — O Jje + Oj Jig — Sjedix + S0 0.. olo
0.. 0 O[1 }i-th row
The coset generators can instead be chosen as the following matrices: P, = | 0 .. 010
0.. —K 00
——
i-th column

ij . Bl = —0u P+ 0y P
[P, Pj] = —KkJi;

I‘.;'j' = }-‘,'C]J' — V¥ a;'
ki = %(I — K’yz\) di +Kyiy-d

JijLic(¥) = KijLac(y) + L (¥) Tpg W ()

PiLi(y) = KiLic(y) + Lic(y) Jpg W/ (v)

Pietro Fre
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G Is an H-bundle

Vielbeins, connections and metrics on G/H

(y)=L'(y)dL(y) |0=dE+ZAZX

Cartan Maurer
forms

: G z G G is an H-bundle
L=VT+ ol “@(ﬁ’H) - 6= g onoH
v + C% ' AVP = — Lo VP A Ve
do' + %C:‘ﬂcm;‘ A wof — _%thcvb AVE adjG = adjH & Dgy
=g
o/ = exp [Ag] 2 = exp Dy

VaR') = VPO 2, (h(r.8)

o(y) = o [h(yv.g)] o(y) o/~ [h(yv.g)] + o [h(y,g)] /" [h(y.8)]

Pietro Fre
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G/H as (pseudo)-Riemannian
manifolds

Invariant metrics on coset manifolds

ds* = T V@V = 1, VE(y) VR (y) dy* @dyP

8ap (V)

b ds* = Tap (ka VIQVP +Vig G, Vf’)

= Tab ([’DH(WAJ]”c 57+ [Du(Wa))’ 5;}‘) Vea Ve

Ty -

=0 by invariance

Pietro Fre
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rank of the coset manifold

/@'I 0 1. 0 |0 \
0 |D» 0
01... Deq] 0

\ 00| 0 |2/

we have v irreducible invariant tensors Iaf
- - I ~
blocks and we can introduce v independent scale factors:

(i)
b;

(27D 0[] 0 0
0 |t 0
=1 : .
0 | ... Ap_ptP= U0

\ 0 | 0 0 |2, )

in correspondence of such irreducible

If rank=1 Nab = 5.::57
ds* = A* N V9@ Vv?
E(I — A V(I

In any case

The spin connection ®“’ uniquely determined - 0 = dE* — @™ A E° N,

-
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The Riemann tensor

| .
mab Nbe = wac _ ﬁ acd Ea" 4+ Cacf ' mah — dﬂ)ab . mac A wch

M¢, = R, JE°NE!

271

| —a i
—5C%C )

I |
Rabcd - ( I ﬂbe Cecd T %Caec Cebd + %Cﬂed Cebc

In the case of symmetric spaces C“,, = 0

l

a _
R peq = ~32

a i
bi C ed

Pietro Fre
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Example (spheres or pseudo-
spheres)

2 Ay K la ob]
A 1+ky? 77 % ©

ET =~ 22 e Td]

ab
R cd —

Stereographic projection
on the plane
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4 _ N
Real sections and non-compact

cosets

In the context of coset manifolds a very interesting class that finds important appli-
cations in supergravity and superstring theories is the following one:

=W

where Gg is some semi-simple Lie group and H. C Gg is its maximal compact
subgroup.The Lie algebra H. of the denominator H, is the maximal compact subal-

gebra H C Gg which has typically rank rcompaes > r. Denoting, as usual, by K the

orthogonal complement of H,. in Gg:

Gr=H, & K

MGy

rpe = rank (Gg /H) = dims#™ 1 #" = CSAgc) [ |K

we obtain that r,, < r.

\ /
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Two extremal real sections

a) The maximally split real section G,x. This is defined by assuming that the
allowed coefficients ¢ are all real. In any linear representation of Gax the ma-
trices representing

T, = {H,;EG,E_G}
are all real. From the representations of Gy, by taking linear combinations of
the generators with complex coefficients one obtains all the linear representations
of the complex Lie algebra G(C).

b) The maximally compact real section G.. This real section, whose exponenti-
ation produces a compact Lie group, is obtained by allowing linear combinations
with real coefficients of the set of generators:

Th = {in,i(Ea +E_a) ) (Ea _E_a)}

In all linear representations of G, the matrices representing the generators T4 are
anti-hermitian.

- J
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Classification of real sections

Bor(G| = span{H;.E“} : o >0 E~* = (E")

CLASSIFICATION OF ALL THE REAL SECTIONS

STEP ONE

Definition Let:

6 : g—=9

be a linear automorphism of the compact Lie algebra g = G, where G, is the max-

imal compact real section of a complex semi-simple Lie algebra G(C). By definition
we have:

, B(aX+PY)=a6(X)+pO(Y)
vapek . wXreg o { 0 (X, ¥]) = [6(X),6(Y)]

2 . . . .
If 0< = Id then 0 is named a Cartan involution of the Lie algebra g.

\ /
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From involution a new Lie algebra

e = span{iHg, }
0= o Dp wmmmp (Do D6] C N 0 H — I
[ﬁﬂ' : pﬂ] C Po )
The compact CSA is mapped
Po - Pal C 9o into itself
Ge
My = T where Hg = exp|[$p] G, = exp|[g]
)
gy = N By Po = ipe

“He Hg = exp[95]

Gy = exp|gp]

CSAGR — iﬁd‘ﬂmp @ ﬁn.ﬂ‘.

) 0

CSAGmax — jﬂﬂcomp @ ﬁn.ﬂ.

Pietro Fre
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real sections and simple roots

{fx:(th’%BaL

Tits Satake diagrams

B, O—O—0O- 00—~
0 Op

o £5)

Oy_2 Oy Oy

Definition A Riemannian space (A ,g) is named normal if it admits a com-
pletely solvable® Lie group exp[Solv(.#')| of isometries that acts on the manifold in
a simply transitive manner (i.e. for every 2 points in the manifold there is one and
only one group element connecting them). The group exp|Solv(.#)| is generated by
a so-called normal metric Lie algebra, Solv(.# ) that is a completely solvable Lie
algebra endowed with a suitable, invariant Euclidean metric.

M == exp [Solv(.A )]

1
S lecw = <.> .

\
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All non compact cosets are normal

The key point is that non-compact coset manifolds of the fom
are all normal. This is so because there is always, for all real forms except the max-
imally compact one a solvable subalgebra with the following features:

G
Soly ( R) c Ggp
Gg
dim Solv —R) = dim (—)
( c Hc
G

exp Solv (—R) = transitive onH—R

C

For maximally split real sections

H. = span{(E* —E~*)} : VaeA; K = 5 @ span [(E* +E™%)]
Bor(Guax) = 5 ®©span (E*) . VYoe A,

BOI‘(G“];]X') - SD]V (Gll_ll—]:\).

Pietro Fre
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Kaehler Geometry and
Hypergeometry

Lie Group Theory is inextricably entangled with
Differential Geometry. One of the most important and durable
contributions of Supergravity to Science is encoded in the
new geometrical structures that it has introduced or better
clarified and developed.

Kaehler, Hodge-Kaehler, Special Kaehler
HyperKaehler and Quaternionic Kaehler manifolds are all
advocated by and integrated into the fabrics of Supergravity

Pietro Fre
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Complex Manifolds

Definition 3.2.1 A 2n-dimensional manifold 4 is called almost complex if it has
an almost complex structure. An almost complex structure is a linear operator J -
D(T# . A4 — T (TH . #) which satisfies the following property:

PF=—1

Ea:aa:

d
d0q

ina well-adapted frame we have

Jeg = —eqyn if o<n

JEQ = €x_n !f o >n

EF'* = Ef—l_iei"-l-ﬂ ‘ JEI* = —;:Erx

The question is whether we can do that globally

Locally we can
introduce complex
coordinates

Pietro Fre
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Holomorphic transition functions

Moreover every two well-adapted frames are related to each other by a coordinate
transformation which is a holomorphic function of the corresponding complex co-
ordinates. Indeed let

0" = 0" +L%(90)

be an infinitesimal coordinate transformation connecting two well adapted frames.
By definition this means

0o (P = Ihap 7

which is nothing but the Cauchy—Riemann equation for the real and imaginary parts
of a holomorphic function. Hence eq. (3.2.20) can be replaced by

77+
We can establish a global complex structure if J is integrable. This requires
Tgf},aa@dxﬁ Adx? =0
where the following is the Nienjuis tensor that should vanish

o (¥4 v ¥
Ty =9pdy =I5 Iy Il

Pietro Fré
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Definition Let 4 be a complex manifold and E be another complex manifold,
A holomorphic vector bundle with total space E and base manifold 4 is given by
a projection map:

. E — A

such that

a) mis a holomorphic map of E onto #
b) Let p € #, then the fibre over p

Ep = 7~ (p)

is a complex vector space of dimension r. (The number r is called the rank of the
vector bundle. )
c) For each p € & there is a neighbourhood U of p and a holomorphic homeo-
morphism
h: o ' (U) — U xC’

such that
h (:T_l(;,;-)) = {p} xC"

(The pair (U.h) is called a local trivialization.)
d) The transition functions between two local trivializations (Uy  he ) and (Ug  hy ):

hy © ;—:5' (Ug NU ) @€ — (U NUR ) @€
induce holomorphic maps

Bap - (Ua N Ug ) — GL(r.C)

Pietro Fre
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Connections on holomorphic bundles

Let £ — .# be a holomorphic vector bundle of rank r and U C .# an open subset
of the base manifold. A frame over U is a set of r holomorphic sections { sy, ..., s }
such that {s1(z),....s.(z) } is a basis for 771(z) forany z € U. Let f = {e;(z) } be
a frame of holomorphic sections. Any other holomorphic section & is described by

§ =¢&@a

5?;"; = dzj*g}_* 3;'! =0
0 — 9[:].[]') + 9[:(]'.])
DE =dE+0E g(1o0) — ﬂ'Zf'Qr'
6" — 47"

Let now a fiber hermitian metric h be defined on the holomorphic vector bundle.

(E.nin = EI*(E) I]j(z)}'?p",r(z_f) — <§'|',’-.r n

Pietro Fre
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Connections are simpler on holomorphic
bundles than in real geometry

Definition A hermitian metric for a complex manifold # is a hermitian fibre

metric on the canonical tangent bundle T # . In this case the transition functions
gap are given by the jacobians of the coordinate transformations.

A) d{S. M

= (DS . NM)n+{S. DN )y
B) DOVE = [§+ etfh”}z; — 0

6(f) = h(f)~'an(f) 0!, = dZ " 9, hgy

i il e e . .
dzkﬁ; = —g& Jdgirj  Levi Civita connection

O(f) =dB+Jd8+6A6 =06 | Curvature 2-form

A &

This identity follows from d 8 + 68 A 68 =0, which is identically true

Pietro Fre
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For the Levi Civita case we have

I} =1d?

L= —¢" (9jgue)
i *

rj* - rk .r rk

11:{“;* - g ( 7 gk":f) . . .
ggi = :k EC# !’\dzf

kf ak {"
R p— 8 [ ‘ ;@f -~ :f,dzkmzf‘”
@j: C-}k

Re = Rhyrni = O T = IO In (1/2)
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Kaehler metrics

o T(T M. M (T M M) — C (M)

g(u,w) = gaﬁu“wﬁ

g(Ju.Jw) = g(u.w) Hermitian metric

\ K(u,w)= !

ZHK(J“-“’) Kaehler 2-form

Kup = gypJe

¢ is hermitian if and only if K is anti-symmetric.

A hermitian metric 2 i ik i in )t
is of the form: ds® = gjprdz" ® dz) wmy K= Egjjrdg. Adz

A hermitian metric is Kaehler iff the Kaehler 2-form is closed

dK = 0

Pietro Fré
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-

Kaehler potential

dK=0 is a differential equation for g;;* whose general solution in any
local chart is given by the following expression:

gijt = 0idp A

where ¥ = #* = ¢ (z,z*) is a real function of 7', i

K is the Kahler potential

e

A (2.7 )= H (2.2 )+ f(z) + f*(z*) gives rise to the same metric

N=1 supersymmetry requires that the scalar fields in the scalar multiplets should
be the coordinates of a Kaehler manifold!

J
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Hypergeometry

dimp 24 = 4m = 4#of hypermultiplets

We name Hypergeometry that pertaining to the hypermultiplet sector, irrespec-
tively whether we deal with global or local .4#"=2 theories. Yet there are two Kinds
of hypergeometries. Supersymmetry requires the existence of a principal SU(2)-
bundle

LU — DM (3.6.2)

The bundle #% is flat in the rigid supersymmetry case while its curvature is pro-
portional to the Kihler forms in the local case.

rigid hypergeometry = HyperKihler geometry.
local hypergeometry = Quaternionic Kihler geometry

Pietro Fré
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HyperKaehler and Quaternionic

Both a Quaternionic Kihler or a HyperKihler manifold 2.4 is a 4m-dimensional
real manifold endowed with a metric /z:

ds* = he(q)dg" @dq" o uv=1,... 4m
and three complex structures
() T(2#) — T(24) (x=1,2,3)
that satisfy the quaternionic algebra
S ==8"1 4 eV
and respect to which the metric is hermitian:

WX.YET2.4 : h(PXPY)=h(X.Y) (x=12.3)

Pietro Fre
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Triplet of Kaehler 2-forms

one can introduce a triplet of 2-forms

K* = K3dq" Ndq" 5 Ky = huw(J9))

In the
VK =dK*+ "o’ AK* = 0 HyperKaehler case
we can choose a

Defining the % —curvature by: frame where the
three 2-forms are
| . | closed
Q' =do*+ 58'“’“&)} A WF '

QY =0 Hyperkaehler mmm) (¥ = 0 — dK?% =

Q'Y = AK' | Quaternionic Kaehler

Pietro Fré
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Holonomy restrictions

As a consequence of the above structure the manifold 2.4 has a holonomy
group of the following type:

Hol(2.#) = SU(2)®H (Quaternionic Kéhler)
Hol(2.#) = ®H (HyperKihler)
H c Sp(2m,R)

Formalism for hypergeometry

{A,B,C=12Ha,B,y=1,...2m} Cup=—-Cpgq and exp = —€p4
U = U (q)dq" VA = duN 4 ot (eoe ! g N U
Iy = @;ﬁa?‘ﬁﬁ'ﬁ@aﬁ €AB + ﬂaﬁ A ?/AYC]B]; =0

\

Upg = (@.Aa’)* - SABEaﬁ@Bﬁ
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Structure of the curvature 2-form

B U UL = - 305" (0 PP R

dA*P + ﬂ“}'x\ﬂaﬁﬁj},ﬁ =R — IRS;B dg Ndg® symplectic curvature

herx K;};ﬂ = _BX}!;?H“; —|_ gx}‘ZKZ

Hs Hw

guaternionic algebra of the Kaehler
forms

Pietro Fre
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Moment Maps

Moment maps were born in hamiltonian mechanics but
play a distinguished essential role in supersymmetric theories
being essential building blocks of the Lagrangian and of the scalar
potential. The use of moment-maps in supersymmetric field
theories provided the framework of Kaehler and HyperKaehler
guotient, one of the most prolific directions in modern differential
and algebraic geometry.

They are also essential items in the AdS/CFT
correspondence.
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Moment Maps

The conception of moment maps has its root in Hamiltonian mechanics where the
time-derivative of any dynamical variable can be represented by the Poisson bracket
of that variable with the hamiltonian. More generally the action of any vector field
t on functions defined over the phase-space .# can be represented as the Poisson
bracket of that function with a generalized hamiltonian .7 which is associated with
the vector field:

N :
t=r(p.a)g;+ulpa)g -

ti(p.q) = {f. 74}

The moment map is the map:

w: rT#, # — Cl.#
ult] =

which to every vector field associates its proper hamiltonian.

In the present geometrical context, conceptually very much different from that of
dynamical systems which are of no concern to us the focus is on the
moment-maps of Killing vectors, associated with isometries of the manifold .# .
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Moment maps of holomorphic Killing
vector fields

Let g; ;= be the Kihler metric of a Kidhler manifold .# and let us assume that g; ;-
admits a non trivial group of continuous isometries ¢ generated by Killing vectors &;
(I=1,...,dim%) that define the infinitesimal variation of the complex coordinates
' under the group action:

_ 7 =7 +elki(z)
0pki(z) =0 & dikf (Z) =0
»” ij{j—l—ij{j:D;Vﬁf{j—Fijﬁ:D
Vyuky +Vyuky =0

—

ky =ig” 027, PP{ =24 Momentmap
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In a more Intrinsic language

238 =0 VX)) =0 : . :
ﬁ?J:U = 0= LK = ipdK +d(ipK) = d(iyK)
I .# is simply connected, d(iK) = 0 implies the existence of a function 3

such that

l :
— Edﬁ? = E?K

The function &3 is defined up to a constant, which can be arranged so as to make
it equivariant:

?@? = f@[?!?]

P constitutes then a moment map. This can be regarded as a map

P M — RxG

Pietro Fre
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Poisson bracket

ke kL] = kg Pz = d' {21, 2y} = 47K (L))

(P, Py} = fif 2L+

where Cyy is a constant fulfilling the cocycle condition
L L L _
St Cuy + fngCrr+ fir Cum =0
If cocycle Cyj is a coboundary; namely we have

Lo il ity L
(P, 25} = fiy* 21 ng-’*(kikJ — kyky ) =517

Pietro Fre
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Final form of the moment map

Pt = —% (k10::t — k1o ) +1m( fi),

where f; = f1(z) is a holomorphic transformation on the line-bundle, defining a
compensating Kihler transformation:

Kot + Kot = —fi(z) — F1(2).
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Triholomorphic moment maps

.
dq"

Ky = &y
LK = VKW L fot = VW

AW} — LW + VW W = i Wy

HyperKaehler
L — L“},(q) e SO(3)
Kx! — ny(q) K}.-

AKY =0

Quaternionic Kaehler

AQ = eV OW L Aot = VW

iK' = VP = —(d P} + V0’ F)

J

kI Kx — —dpm

Pietro Fre
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Triholomorphic Equivariance

Equivariance
?o P =igpVPs = L@[???] HyperKaehler

v K o (2. 225} = 2K* (L))
{2, 2y) = fu2k

Quaternionic
{1, 25} = 2K (L)) = A e2° ] 2§
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Special Geometry

Special Kaehler Geometry is an entire new
chapter of complex geometry created by supergravity
with profound relations with the deformation theory of
complex structures and Kaehler structures of Calabi-
Yau three-folds. It also provides new visions on
symmetric spaces and their structures.

Pietro Fre
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Hodge Kaehler manifolds

Consider a line bundle £ —.# over a Kihler manifold .#. By definition this is a
holomorphic vector bundle of rank » = 1. For such bundles the only available Chern

class is the first:

(L) = %ﬁ(h—‘ Ih) = %Ealogh

[ — .
cl(£) = 5ddlog || E(2) |

where || £(z) || = h(z.2)E(Z)E(z) denotes the norm of the holomorphic section
A Kihler manifold .# is a Hodge manifold if and only if there exists a line bundle

£ # such that its first Chern class equals the cohomology class of the Kiihler
two-form K:

[(?I(fj = [K]]

In local terms this means that there is a holomorphic section & (z) such that we
can write

\_

i - I= 2
K = Eg.;jrdzr f\d?" — Eaalog H é(z) HL

/
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Connection on the line bundle

since the fibre metric /4 can be identified with the exponential of the Kéhler
potential we obtain:

0 =dA = &-Jéfdzf g = 5%2 8,-&5”(12?*
Vid = ((9; + %pafjif)fp Vi = (5'.,* — %paf*g%/)(p

D= P12

V.f(ir) = (5’, —|—pt9;¢%/)‘—f) D Vi b = (:)facff)

Pietro Fre
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Special Kaehler manifolds

Definition 1 A Hodge Kihler manifold is Special Kahler (of the local type) if
there exists a completely symmetric holomorphic 3-index section Wy j. of (T™ .4 )3 &
£? (and its antiholomorphic conjugate Wi j*k* ) such that the following identity is
satisfied by the Riemann tensor of the Levi—Civita connection:

am*ﬁf.fjk =0 amm*j*k* =0

V[m%]jk =0 V[mw}*]j*k* =0

2. s*t
i jork = §ov jQkix + 8ok &jiv — € Wipro Wip g

Cijp = Wijke ; Cijrgr = Wi jrpre

Pietro Fre
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Special Kaehler 2"d definition

Let 5.4 denote the complex line bundle whose first Chern class equals
the cohomology class of the Kéhler form K of an n-dimensional Hodge—Kihler
manifold .Z . Let ¥ — .# denote a holomorphic flat vector bundle of rank 2n -+
2 with structural group Sp(2n-+2,IR). Consider tensor bundles of the type ¢ =
V@ &L A typical holomorphic section of such a bundle will be denoted by (2
and will have the following structure: ( yA )

Q =
Fy
By definition the transition functions between two local trivializations U; C .4 and
U; C . of the bundle 2# have the following form:

X (X
_ i
(F), =),

where f;; are holomorphic maps U; NU; — € while M;; is a constant Sp(2n+2,R)

matrix.

- J

Pietro Fré




99 LACES 2016

2nd definition continued

Leti{ | ) be the compatible hermitian metric on ¢

i(Q]Q) = —i” (_Ou g)ﬁ

Definition 2 We say that a Hodge—Kdhler manifold .# is special Kihler if
there exists a bundle € of the type described above such that for some section
Q e I' (., #) the Kiihler two form is given by:

[ K= %35’ log (i{2]Q)) = %gf-j* dsz\dzﬁl

Kaehler potential

# = —log (i(2|9)) = —log [i (X" Fy ~ Fex* )|

Pietro Fré
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Relation between the two definitions

LA

. A
— = J"'X’/.fiz — ?sz X
V ( My ) =e¢ Q e (

Fy

)

Up = ViV = ((9* + %(;'n%/) V= (ff*

Vij = inﬂc gkf* Uﬁ‘*

The integrability conditions of the
equations here on the left reproduces the
statement on the Riemann tensor occurring
in the first definition

| =i(V|V) =i (IAMA —HZLZ)

Pietro Fre
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4 . . N
Symplectic transformations of the

period matrix

The vector kinetic matrix N,y in special geometry

My = AMisL hyi = NS

' EREVA
A Ny = "?A|} © (f I) ¥
}(‘3’1 _ }(:' . h _ Eﬂ!
JI r"l d .f‘1|f MA

a symplectic embedding of the isometry group .# %,

4 )
ny*—}sp(zﬂ—kz,ﬁ)

A: B:
EeUpx (gwAé_(Cng)

0 1 0 1
A;T _nxn 0N Ae — _nxn nXn
? (_l”xn 0, ) N (_lnxn 0,51 )

p- - g &

S

=C C
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The transformation

N (E-2,67) = (Cc+D: N (2,7)) (Ag +B: A (2,7))

The matrix N has a positive definite imaginary part and generalizes the notion of
upper complex plane to what is known as the upper Siegel plane. The linear
fractional transformations with symplectic matrices map the upper Siegel plane
into itself just as SL(2,R) maps the Poincaré Lobachevsky plane into itself

Pietro Fré
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Quotient singularities and
Kaehler quotient resolutions

Finite Group Theory has an important bearing on the
geometry of singular algebraic surfaces when considering orbifolds
of the type C"/I"

The resolutions of these singularities is done by means of
Kaehler or HyperKaehler quotients.

Gravitational instantons, the ALE-manifold are obtained in
these way from C?/I'where I'is a finite subgroup of SU(2). Hence
we have a new incarnation of the ADE classification.

These structures are very important for the study of the AdS4/CFT,
correspondence

Pietro Fre
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HyperKaehler quotients

Given a HyperKihler manifold .#” which admits a Lie group ¥ of triholomorphic
isometries, the HyperKdhler quotient is a procedure that provides a way to
construct from . a lower-dimensional HyperKihler manifold .#, as follows. Let
3" € G* be the dual of the center of the Lie algebra G. For each { < R3 @ 3* the
level set of the momentum map

Eﬁzﬂﬁwmcyq

M= NG

dim 4" = dim . —3 dim & dim.# = dim7 =4 dim7

The standard use of the HyperKihler quotient is that of obtaining non trivial
HyperK:ihler manifolds starting from a flat 4n real-dimensional manifold R*" acted
on by a suitable group % generating tritholomorphic 1sometries

Pietro Fre
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ALE Manifolds Rire = 3" Rip

Actually ALE manifolds are all Ricci flat and constitute vacuum solutions of
Einstein equations after Wick rotation. In this sense ALE-manifolds are gravita-
tional instantons in the same way as the connections with a self dual field strength
are gauge instantons.

The first instance of an ALE manifold was found by Eguchi and Hanson 1979

The fascination of ALE manifolds 1s that they happen to be in one-to-one corre-
spondence with the finite subgroups I' € SU(2) and are similarly classified by the
The base manifold of the gravitational instanton has a boundary at infinity which,

rather than a pure 3—sphere is:
s¥r

Except for the ALEr ~ (CQ/F X I' c SU(2)

singular point

ALEr = CM/ /. P
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Crepant resolutions

Definition 2.1 The canonical line bundle Ky over a complex algebraic variety V of complex dimension n is
the bundle of holomorphic (n,0)-forms Q"0 defined over V.

Definition 2.2 An orbifold V /T of an algebraic variety modded by the action of a finite group is named Goren-
stein if the isotropy subgroup H, C T of every point p € V has a trivial action on the canonical bundle Ky.

Definition 2.3 A resolution of singularities T : W — X =V /I" is named crepant, if Kywy = n*Kx. In particular
this implies that the first Chern class of the resolved variety vanishes (¢i (TW) = 0), if it vanishes for the
orbifold, namely if c; (TX) = 0.

In the case V = C", a resolution of quotient singularity:
n: W— C"/T (2.12)

is crepant if the resolved variety W has vanishing first Chern class, namely it is a Calabi-Yau ¢g-fold.
The Gorenstein condition plus the request that there should be a crepant resolution restricts the possible I'.s
to be subgroups of SL(n,C).

\ /
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Concept of aging

Suppose that I" ( a finite group) acts in a holomorphic linear way on C". Consider an element y € I" whose
action is the following:

=
2]
I
o

é\l

2(y)
Since in a finite group all elements have a finite order, 9 € N, such that 7" = 1. We define the age of an element
in the following way. Let us diagonalize D(7y), namely compute its eigenvalues. They will be as follows:

(kl,...,l”)—expl@a,-] s or>aq;, €N i=1,....n

r

We define:
l n
age(y) = Y
i—1

Theorem 12.1 Let Y — C* /T be a crepant resolution of the Gorenstein singularity. Then we have the following
relation between the de-Rham cohomology groups of the resolved smooth variety Y and the ages of T':

dimH* (Y) = # of age k conjugacy classes of T

\

/
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Example with L168 and its

subgroups

Conjugacy class of Lgg C | C | G| Gy | C5 | Co
representative of the class e | R | S |TSR| T | SR
order of the elements in the class | 1 213 4 7 |17
age 0 1 1 I 1 2
number of elements in the class 1|21 | 56| 42 | 24 | 24
Conjugacy Class of Gay C | (3 Cy Cs
representative of the class e |\ W | XHXH? |\ WX | X
order of the elements inthe class | 1 | 7 7 3 3
age 0] 2 1 I 1
number of elements in the class | 1 | 3 3 7 7
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~

r. Wrwwz) | #="L2d | |2 | #ec | t=x—1
Ap u? +w? — {1,z,.. k| k+1 k
2

Diyr | r+w2z+70 | {Lowzw?, | k+2 | k+3 k+2
22,21

Es= | w+w 4+ {1,w,z, 6 7 6

T wz,z2,wz*}

EFr=| u*+w+wg {1,w,z,w?, 7 8 7

17 2wz, w'z}

Eg = w47 {1,w,2,2%,wz, 8 9 8

7 22wzt wz'}

Pietro Fré
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=
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\

For ALE - manifolds

dimH"!) = r = # non trivial conjugacy classes of I'

dlmf@r = r
The McKay correspondence for C?/T

D = é ay, Dy,
u=I

1 . DY ()%
aw = Yeax nu
i=I

r
:@@'Dﬂ_ — @Aﬂva
=0

Cuy =28,y —Auy  extended Cartan matrix of the

extended Dynkin diagram sy simple roots { o
+ highestroot Ctp = Y.i_| 1;

Pietro Fre




The McKay Dynkin Graphs
%—d Dyso }

E1=0 2T

T Ty 7!
=9 3T Coxeter numbers are the
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Kronheimer’s construction

Given any finite subgroup of I' C SU(2), we consider a space 2 whose elements are two-vectors of |I'| x |I|
complex matrices: p € 2 = (A,B). The action of an element ¥ € I" on the points of .27 is the following:

(A ) v, ( w, v, ) ( R(Y)AR(y ™) )
B ivy Ty R(y)BR(yv 1)
Regular representation
R(y)es = eys Vy.6 €' | 22 ~ Hom (R, 2®R)
I - invariant subspace

S ={peP/Nyel.y-p=p}

e G

e HomﬂRQ@R}

l V}; L‘t}f

N | Y



114

LACES 2016

Schur’s Lemma + McKay

R @AHTVHOH](C””,CHV) ‘
u.v

dimg .7 =2 n; =2|T7 .
u

o Tr(dp’ Adp) iK iQ
= Tr(dp' Adp) =
iQ —iK
K = —i[Tr(dA"AdA)+Tr(dB" AdB)] Eigo,;gdcf"‘/\dq'B

ds’ = g,5dq" @ dgP
Q = 2Tr(dAAdB) = Qupdg* AdgP

Pietro Fre
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-~

Solution of Invariance constraints
for A,

[0

R(e;)=1| O

o

(= ]

Decomposition into irreps (one)-dim.

vo O

~

vk—i—l —1.

Pietro Fre
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The gauge group

A B! Ag—! igBTg™!
veesur) . g ¢ | L
iB AT igBg™ ! gATg
Let . < SU(|I']) be the subgroup of the above group which commutes with the action of T

r+1
# =@ U(n,) () SU(T))
1

'u,:

dim#F =Y nd —1 =] -1 M=) ) F
m

dimg .#; = dimg Homp (R, 2@ R) —4dimg F = 4|T| — (4]0 — 1) = 4

Pietro Fre
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Moment maps

e - & w(p) = —i([A,A7+[B,B")
— diag(e"®. P, ... "% =0
f = diag(e. o) 5 0 i) = (AB).
B faus(p)  fap—(p) B ( B OPa )
—Tr(¢" 8sp) = T =
Ha = Tria oup) r(fAmp) fﬂug(p)) =y
Pi = —i[Tr([A,A7] fa) + T ([B". B] fa)]
= Tr([A.B] fa)
Pa = (WP =P = o>+ el + (o P = [ [P = [aci[* + val?)
‘13:{ = HUL’(}—Ika’k—I—(t{A_IVA_l—HA'I’A) (A=
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Eguchi Hanson space

| = —%(c.’ﬂ cos(y) +d¢ sin(0)sin(y))

2
62 = 5 (dBsin(y) — dg sin(8) cos(y)) doj = &j 0j /\ O
o3 = _%(ghp cos(0) +dy) a

W(r) =1/1— (—)2 — % (r/a)

It

JS%H — 1r’ie“'(ﬂ*‘]|_2u’r2 12 (C}']E + 632) + rzl"le"(rjl2 532

t—a%) (dpcos(0) +dy)? 2
| ((r ¢ )(“’rb‘f"( ) Ay 4‘”{}4 L2 (dtpzsinz(ﬂ)—kdﬂz))

-

4

r

It is far than obvious that this is a HyperKaehler metric ! Yetitis and itis a
HyperKaehler quotient!

Pietro Fre
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¢ =
2V2
L y G(p) =
- G(p‘)( i(8+¢) .,'EJ'S'_I_EM;&_I_I;) E—EI{S—W-I--?]

The complex structure

G(ﬂ)( S+¢}'_|_m _|_£”§‘f' )f TI{S W+o)

JS%H QCI Z JffEHﬂ’C ’X‘JC

Ky = V12 +1—log (\/12 Tl 1) +log(7)
=+ 18P

4/ 4
P

— 1
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Relation with the Kronheimer

approach
In this case it 1s convenient to redefine: U = {uo.vi}
> > V= {PD?HI}
‘13 = |uo — |vo +|v1 = — |uy |
B = uvg—u' vy , ,
¥ =2 WV) = Y Ul - L IViI
. . i=1 =1
ul) = (UV) = (U.e7V) 5
Pt =2HUV) =) UV,
i=1
FC o (UV) = (eVU.e"V)

({ = P3 (e_VUjevV)
s=2" (e VU, e'V) =2 (UV)

As stated in the second line of the above equation the holomorphic part of the
moment-map 1s invariant under the action of the complexified group.

/
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The Kaehler potential retrieved

U]:VE U1=V3

Il
o] —
L
S
[
=~
Il
b —
)

(£ \/C2+4UR V2|
2|v2]| o

Ay =e VUL +V V[P =/ +]|]*
(/021|714
Hy = /24 |z]* — Llog +[2]

2]2)?
For ¢ = 1, identifying 7/ = {' we see that the Kihler potential already constructed
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The c-map and the c*-map

The c-map and the c*map are purely mathematical
structures put into evidence by supergravity. In alliance with the Tits
Satake projection they provide very important tools in the study of
the following two problems:

1. Gauging of supergravity theories and study of their vacua
2. Black Hole solutions of Supergravity Theories

In any case they provide new quality and new visions in
geometry.
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-
Approaching the c-map

The main object of study in the present section are those Quaternionic Kéihler man-
ifolds that are in the image of the c-map.> This latter

c-map : LK, = DM 414

is a universal construction that starting from an arbitrary Special Kéhler manifold
L, of complex dimension n, irrespectively whether it is homogenoeus or not,
leads to a unique Quaternionic Kéhler manifold 2.4 4,4 of real dimension 4n -+ 4
which contains ..¢",, as a submanifold.

Pietro Fré
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124

/Deﬁllitiﬂll Let X, be a special Kiihler manifold whose complex coordi
z' and whose Kihler metric we denote by g;j~. Let moreover
. introduce the fol-

nates we denote by
i x(2.2) be the symmetric period matrix defined above

lowing set of 4n+ 4 coordinates:

¢y ={v.a}) {&y UzZ=1{z" 2z}
S—— ~ ~ ~ d
2real  ncomplex (2n+2) real
R
2n real

Let us further introduce the following (2n-+2) x (2n+ 2) matrix 4 j'

- (IS + Re# Im.A"~!Ret | —Re A Im .4 ~!
BRI —ImA ~"Re At | Im !

which depends only on the coordinate of the Special Kdihler manifold. The c-map
image of &, is the unique Quaternionic Kihler manifold 2.4 4,4 whose co-
ordinates are the ¢" defined in (4.3.2) and whose metric is given by the following

universal formula

R 1 :
\d.s;@ﬁ T (w2+4gf sd d7 + eV (da+ZTCdZ)? — 2¢7V dZT ﬁ;'dz)

Pietro Fré
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The items of hypergeometry

» 2
sigh |dsg 4| = | +,...,+
4+4n

The HyperKihler two-forms and the su(2)-connection

—_

& = da+27 CdZ 10
, n= (E{j _ L
w—Limx}f V2
) & * 0 —-i
\/_x:l {Ym}ﬁ‘} :6'ﬂ12x2_< B = / ; 0 V2

— \ V2

K=— K*c

x/ixg‘l ' /0 v%

B = 1y

.\

Sa—

—




126

LACES 2016

General formulae for su(2)

_ig_i.,Up o~5vICdZ
i = 2 U—‘%" . .
—e 2V CdZ 124+ iV

K=do+oAo

B TRRER ¢
S\ -0 —u

1 1 _ _ |
w=—i K — dSAdS - e UVTCAZ AV CdZ — 1e—UdZT A CdZ

2

D= e 7 (DVT ACdZ — %czs A VT@dZ)

B—e 7 (DVT ACdZ — %a@/\ VT(CdZ)

9 - % (afxdzf — O xdzf*)

dS = dU +ie " (da +Z" CdZ)
dS = dU —ie”Y (da + Z" CdZ)
DV = d7'V,V

DV = dz" ViV
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c-map and triholomorphic moment
maps

K* = —idV/2Tr (¥'K) = K' dg" A dg’
o= Kb

XS s ' ; = o |V
u| J_2| = —o" 6,1,: + E.x}4J;|

The above formulae are not only the general proof that the Riemaniann manifold
2.4 defined by the metric IS4 is indeed a Quaternionic Kéhler manifold, but,
what is most relevant, they also provide an algorithm to write in terms of Special

Geometry structures the tri-holomorphic moment map of the principal isometries
possessed by 2.4 .

~
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-~

a)

b)

C)

Types of isometries of the quaternionic

manifold in the c-map image

~

The isometries of the (2n+ 3)—dimensional Heisenberg algebra Heis which
is always present and is universal for any (4n + 4)-dimensional Quaternionic

Kiihler manifold in the image of the c-map. We describe it below.

All the isometries of the pre-image Special Kihler manifold .., that are

promoted to isometries of the image manifold in a way described below.

The additional 2n + 4 isometries that occur only when ¢, is a symmetric
space and such, as a consequence, is also the c-map image 2.4 4,,14. We will

discuss these isometries in section (4.3.4).
General Form of the Killing Vector

k = k"(q)d,
d . d ~ 0 d d
e Y i v i e Y a
_kaU+kazf+k ﬂfﬁ—kk a£i+k 370

= k%0 + kid; + k' Op + k* 9y + k% 9,
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Killing vectors of Heis

79 Z9 LAY - g a—ATCZ
E}[ﬂ] :AQE}C{
=A%dy, — ATCZo,

) igqu  dpq0
l[_,al]K = ( ['.11] l_ ['-1] ) = dsl}[ﬁ] + [m, 513[.1]}

— l[‘,»i] 0 — I[A] u

The moment maps solving the equation are

Tl = —dlrf’ UATCZ L 5e” ’E'ATCV
A —Lem TATCV LeUATCZ
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Moment map for the central charge

_}
av— a+ e €Ki =¢€ds

i K = dPp + [0, P
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Killing vectors of the special Kaehler
and their moments maps

ki(2) 9 2(z) = exp[fi(z)] T12(2)
sl ki) . 22+ TE

ki = ki(2) d; + ki (2) 9 + (T 2P 9

P = 1(P+ 3 ITCHL) -3 VPVICTZ
n = LUV eqiz —i(+ 1V 2T CY2)

~
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p
Symmetric manifolds in the image of

the c-map

When the Special Kédhler manifold . .%",, is a symmetric coset space, it turns out
that the metric is actually the symmetric metric on an enlarged symmetric

coset manifold

Uo Uy
2
Hp Ho »

LM aprs =

Naming A [g| the W-representation of any finite element of the g € U & group,

we have that the matrix .#4(z,z) transforms as follows:

g9;20 = z< My (0-2.0-7) = Alg] A (2.2)] AT [g]
My (z2) = ATty (z0.70)] Alg; ]

This allows to introduce a set of 4n + 4 vielbein defined in the following way:

~

|

I

Eop = 3
— ~

dU ,¢'(z), e (da+Z"CdZ) ,c.’_%A[g;']dZ d's‘g@.,{{ = Ef@# qais E:L;ﬁ

2n 2n+2

/
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Identifying U, via its solvable Lie
algebra

1| 0o 0

| 0ol8;[0 0

W =100 0
0] 0 |0[=2.; ' (z0,70)

]
dEG 4 — E‘f "kxEo4 NE9g =0

where f!,. are the structure constants of a solvable Lie algebra 21 which can be

identified as follows: U
A = Solv (“‘5")
Ho
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Universal Heisenber algebras

Inspecting eq.s (1.7.19) we immediately realize that the Lie Algebra Uy contains
two universal Heisenberg subalgebras of dimension (2n -+ 3), namely:

Ug D Heis; = spang {W'* 7} : Z, =L, =L"+1°

[w‘a,w'ﬂ - _%Ca% ; [ZI ,w'ﬂ —0

Ug D Heisy; = spang {WE‘:‘,ZQ} - Io=L_=L'—17

—

{wm,wﬂ - —%@ﬂﬁ 7y [Zg,wﬂ — 0
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The Tits Satake Projection

Although originally introduced in the mathematical
literature, the Tits Satake projection reveals its profund
meaning In the supergravity context, in particular in
connection with the ¢c-map and the c*-map.

It allows to arrange manifolds into universality classes
that provide a useful classification for supergravity models
and the exploration of their general properties.
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Structure of the Tits Satake
projection

Do T1ts-:&a>take S Hops

|. mrs is a projection operator, so that several different manifolds .&2¢; (i =
l,...,r) have the same image mys (.7 7).

2. mrs preserves the rank of %), namely the dimension of the maximal Abelian
semisimple subalgebra (Cartan subalgebra) of %);.

3. mrs maps special homogeneous into special homogeneous manifolds. Not only.
It preserves the two classes of manifolds discussed above, namely maps special
Kcihler into special Kdihler and maps Quaternionic into Quaternionic

4. mrs commutes with c—map, so that we obtain the following commutative dia-

gram:
Special Kihler =P Quaternionic-Kihler
rs rs U
R c-map T
(Special Kdhler)rg == (Quaternionic-Kihler) g
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TS commutes also with the c*-map

: , ¢™-map P
Special Kdhler —— Pseudo-Quaternionic-Kéhler
mors wors

(Special Kihler)q <3P (Pseudo-Quaternionic-Kéhler)

o, =0 —  deletin
IIys : Ag — Ars,: Ag N 'ﬁ.g.
multiplicities

Ats = root system of Grs, G1s C Gpg.

Pietro Fre




138

LACES 2016

The concept of Paint Group

We saw that each real form Gy of a Lie algebra is in one-to-one
correspondence with a symmetric space M=Gg/H. This latter singles out a
solvable Lie algebra as we have seen. The group of external Automorphisms
of Solv(M) is the Paint Group.

7 Aut Solv (.
'Gpuinl = Allpy [SO]‘J {/ﬁ)] Altpy [SOl‘v' (/ﬁ}] u [ olv( /ﬁ}} ,

Solv (&)

Solv (.#') = maximally split < Autgy [Solv (.Z)] = 0.
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The sub Tits Satake algebra and the
long roots

Let r be the rank of Solv (.#') , namely the number of its Cartan generators H; and n
the number of its nilpotent generators #;,, namely the number of generalized roots
o. The whole set of Cartan generators H;, plus a subset of p nilpotent generators #
associated with roots ¢ that we name long, close a solvable subalgebra Solvg,ts C

Solv(.# ) that is made of singlets under the action of the paint Lie algebra Gyyin,
Ie.

Solvgwrs = span {H;, #,¢ }
[SDIV&UhTSs SDI“”’suhTS] C SOlVSlIhTS!
VX € Gpaine, V¥ € Solvgrs X, ¥]=0.
We name Solvgwrs the sub Tits-Satake algebra. By definition Solvg,ts has the
same rank as the original solvable algebra Solv (.#'). In all possible cases, it is the

solvable Lie algebra of a symmetric maximally split coset Ggyyrs /Hgyprs. In this
way, eventually, we have the notion of a semisimple Lie algebra Ggyprs.

By definition G, commutes with the Paint Group.
The long roots are those whose projections are singlets under the Paint

\ Group. J
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The short roots

Considering the orthogonal decomposition of the original solvable Lie algebra with
respect to its sub Tits-Satake algebra:

[ SDIV(%) — SOIVsubTS g%KShurP]

q
Kshurl — @ D [L@;LQJ»)} ’

=1

[ID) 25.Qp| = Z) @ Qp}is the tensor product:

of an irreducible module Qy, (i.e. representation) of the compact paint algebra G in
with an irreducible module 27 of the solvable sub Tits-Satake algebra Solvgyrs.

R
2 =P W), n,=dimP],
s=1

where each W[a(u") *5)] is an eigenspace of the CSA of Ggprs
| H € CSA(Salv () W € WA 0 Qy  [H W) = ol

/
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A general structure

The decomposition of Ko mentioned above  has actually a general form de-
pending on the rank. We will discuss this here for the quaternionic-Kéhler mani-
folds.
r=4) Gaunrs = SO(4,4) P, Pg, Ps., Denoting the: half spaces by 47 <.
- o (4t o (4t
Kslmrl - (41" ‘QV) '\_17' (45 103) d‘,‘ (4§ "Q?) ’

where Qy g5 are three different irreducible modules of Gpin

We analyse an example where  Gpaint = SO(8)

Q=8 : Q=8 : Qs=38;
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A primary example Eg o,

( :ESf:i:Ej (f%j) 112 )
tie) 46 a3t iey e L1 £1e7 £1eg 128
ﬂES = ¢ N -~ 4
even number of minus signs
\ 240 |
Eg(_24) Fy4)

-

E?(_]gg) X SU(Q) USp(ﬁ) X SU(Q)
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The primary example continued

U5

O . . O O O IGpainl :SO(S)
o7 Og (071 o3 05 04 o8
(xL:{ad',aﬁ,aﬁ,ag} oo ={a'. o’ o o’}

and the projection Sl immediately yields the following restricted root system:

( +et g (i) 1 i.j=12,38) 24)
e — +e (i=1,2,3,8) 8 {
1S = i%S]i%Egi%Egi%Sg 16 [
48

\ J
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Decompositions

80(4.4) X SO(S) - Eg(_zdr),

S0(44)xS0()

248 (1.28) ® (28'1C, 1) o (81""(:381’) o (Ssncﬂss) o (ng,Sg)

Fyra) X Go—14) C Egog

Faia) %Gy (14

248 (52.1) @ (1,14) 4 (26,7)
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Special Kihler

Quaternionic

Tits Satake projection of Quater.

LK, DM 4y14 DA 1s
U(s+1,1) U(s+2,2) U(3.2)
Ufs+1)xU(1) U(s+2)xU(2) U(3)xU{2)
SU(1,1) G G2)
(1) SU(2) xSU(2) SU(2)xSU(2)
SU(LL1) _ SU(LI) SO(3,4) S0(3,4)
Uity X Uit} S0(3)x50(4) S0O(3)x50(4)
SU(L,1) S0(p+2.2) SO(p+4.4) S0(5,4)
Uty X SO(p42)x50(2) | SO(p+4)=50(4) SO(5)x50(4)
Sp(6) Flaa)
u(3) Usp(6) = SU(2)
S5U(3.,3) E(g.___g)
SU(3 )= SU(3)=U(1) SU{6)xSU(2) F(4__4)
Uspi6)xSU(2)
SO* l ]2I E(}'___ﬁ)
SU{6)xU(1) SO(12)xSU(2)
E7 25 Eg 24y

E(ﬁ___}'g) XUI: 1 |

E[?.—] az) SU(2)
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Special Kihler

Pseudo-Quaternionic

Tits Satake proj. of Pseudo Quater.

& o * b W
FH R Gy 2.4 715
Ufs+1,1) U(s+2,2) U(3,2)

Ufs+1)xU(1)

Ufs+1.1)xU{1,1)

U(2.1)=x0(1.1)

SU(1,1) G2 G
U(1) SU(I.1)xSU(1.1) SU(TL.1)=xSU(LT)
SU(1,1) SU(1,1) S0(3.4) SO(3.4)
u(l) Ul S0(2,1)x50(2.2) S0(1,2)xS0(2,.2)
SU(LL1) SO(p+2.2) SO(p+4.4) 50(5.4)
(1) SO(p+2)xS0(2) | SO(p+2.2)x50(2.2) SO(3.2)xS0(2.2)
Sp(6) Flaa
U(3) Sp(6)xSU(1,1)
SU(3,3) Ej, -2
SU(3)xSU(3)xU(1) SU(3.3)xSU(1.1)  Fuw
Sp(6)xSU(1.1)
SO*(12) E(j.'._:;)
SU(6)xU(T) SO*(12)xSU(LI)
E(7,-25) Es —24)

E(6,—75)xU(1)

E(j___g:',) = SU(L,1)
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Supergravity relevant symmetric
spaces

An analysis of supergravity models according to the
classification of their scalar manifolds.
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General properties of these manifolds

. The A root-system associated with the sl(2,IR)g algebra in the decomposition

clo]®ol 1s made of 4y where yr is the highest root of Up—s.

2. Out of the r simple roots o of Up=3 there are r — 1 that have grading zero with

respect to v and just one ayy that has grading 1:

(W, ow) =1 (5.5.1)

3. The only simple root agy that has non vanishing grading with respect v is just the

highest weight of the symplectic representation W of Up—4 to which the vector
lelds are assigned.

4. The Dynkin diagram of Up—4 is obtained from that of Up—=3 by removing the dot

corresponding to the special root oy

. Hence we can arrange a basis for the simple roots of the rank r algebra Up—;

such that:
o = {ﬁ;,(}} . f%W

oy = Wh%@} (5.5.2)
W= (L\/’E}

where @; are (r— 1 )—component vectors representing a basis of simple roots for
the Lie algebra Up—4. Wy, 1s also an (r— 1 )—vector representing the highest weight
of the representation W,
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Structure of the root systems according to the
golden split and theTits Satake projection

This means that the entire root system and the Cartan subalgebra of the Up—; Lie
algebra can be organized as follows:

+y _ + (0, ﬁ) : 2

+ ¢ — + (@, V2] 2x#ofrools = 2n,

+w = + [ w. ‘*"TE - 2 x # of weights = 2 x dimW

' e CSA c Up_y - rankUp—y, = r

I 1

dimUp—y =3+ dimUp=; + 2 x dimW

adj(Up=3) = adj(Up=4) ®adj(sl(2,R)g) & W w)
I TS . y o gl
adj(ULS ;) = adj(UL2 ) ¢ adj(sl(2,R)g) B Wi wrs)
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Classification of SUGRA symmetric

spaces (non exotic)

. The .4 = 8 supergravity theory, which is the maximal one in D = 4,

2. The A" = 2 supergravity theory with a single vector multiplet and non-vanishing
Yukawa coupling(model 2).

3. The A" = 4 supergravity theory with 5 vector multiplets (model 11).

4. The A" = 4 supergravity theory with 6 vector multiplets which is obtained com-
pactifying a type II theory on a T®/Z, orbifold (model 12).

5. The A" = 2 theory with two vector multiplets and non vanishing Yukava cou-
plings, usually called the sz-model (model 14).

6. The .4 = 2 theory with three vector multiplets and non vanishing Yukava cou-
plings, usually called the szu-model (model 15).

Next we have two universality classes, each containing an infinite number of ele-
ments. They are

. The A" =4 supergravity theory with n = 64 p vector multiplets (p > 1), (model
13).

2. The A4 = 2 supergravity theory with n = 3+ p vector multiplets (p > 1) and non
vanishing Yukawa couplings (model 16).

o
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A most Interesting TS class

We still have the very interesting 4-element universality class whose maximally
split representative corresponds to the maximally split special Kihler manifold
Sp(6.R) . . £ e . - .
m This class contains the models 3.4,5, 6 distinguished by quite peculiar

Paint groups. We will thoroughly analyze the structure of this class.

3
Sp(6,R) Fy(a) ] I v
SUB=U(I) Sp(6.R)xSL(2,R) R
n=~06
B
H.
SU(3.3) 6(2) e, B
SUG)=SUG) < U(T) SUGA)xSLER) |30 xso@) 1 (|A47=2
n=>9
_5_ g/'l/z'f)
) Eoi e Err o
Sp(6,R) 4(4) SO*(12) 7(-5) . o . _
SUG)XU(T) Sp6.R)xSLIZR) SUGEL SO xsLR) |50 *S06)| S0B)g |47 =
xS0(3) n=16
S
E : Eoo o
7(=25) 8(—24) o .
_M=2) : (—24) SO(8) Gy 1y || =2
n=27
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The exotic models

TS | TS coset coset Paint subP susy
# |D=4|D=3 D=4 D=3 Group Group
1,
. . SU(p+1,1) SU(p+2.2) ;o
bey | be SU(p+1)xU(1) SUpT O xsLER, ||V X U(1) xUp)|Ulp—1)||A =2
n=p+1
2,
. . SU(p+1,3) SUip+2.4) s
bes | bes || suprnesum <o | suprraxsoi o || V(1) x U x U(p) [U(p — 1) |47 =
n=p+1
3¢
: , SU(5,1) Eg(—14) P
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TS TS cosel cosel Paint subP susy
# D=4 D=3 D=4 D=3 Group Group
1
E7(7) Eg(s) E77) Eg(s) | | v
SU(R) SO*(16) SU(8) SO~(16) T
2
Su(1,1) Gy(2) SU(1,1) Gy (2) | ] >
U(1) SL(2.R)xSL(2.R) U(1) SL(2.R)xSL(2,R) -
n=1
Sp(6.R) Fy(a) | | s
SUR)xU(1) Sp(6,RT<SL(2.R) <=
n==06
-
H.
SU(3.3) 6(2) e B
SUBIXSUG) XU SUGA)xSLR) |30 xS0 =2
n=29
T g/V='f)
) Foia iy B~/ =
Sp(6,R) 4(4) SO™(12) T(—5) 2 SYCE | _
SUGBI<U(M) SpI6.RIxSL2.R) SU6)<0(T) SO SRy |[SOG)*S0B) SOB)g |47 =2
xS0(3) n=16
—
E : Eor Ao
T(=25) 8(—24) o .
— =) : ) SO(8) Gor_ iy || =2
hf\(—?SJXUH) h?(—ZS)XSL(Z'R] Z( 14)
n=27
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Classificatl

on tab 2 non exotic

N IN cosel cosel Paint subP susy
# D=4 D=3 D=4 D=3 Group Group

7
SL(2R) _ SO(2,1) SO(4,3) SL(2.R) _ SO(6,1) 50(8.3) = - B
02) X 5002 $S0(2,2)xSO(2,1) 02) X 50(6) 50(6.2)xSO2.1) SO0G) SOM) |4 =4
n=1

g
SL(2.R) $S0(3.2) 50(5.4) SL(2.R) 50(6,2) S0(8.4) » . B
002) X S0(3)=x5002) | S0B2=x5022) 002) X 30(6)x507) | SO62x500122) SO(4) SOB) |4 =4
n=2

9
SL(2,R) SO(4.3) 50(6,5) SL(2,R) 50(6,3) 50(8.5) N ~
0(2) X S0(#)xS0(3) | SO[@.21x50(23) 02) X 350(6)x50(3) SO(6.2)xSO(2.3) SO(3) SOR) | =4
n=3

0
SLQR) | SO(54) 50(7.6) SLE) | SO(64) 50(8,6) o0 | P
002) X S0(3)xS00) | S0BB,2)x5002.4) 002) X 30(6)x50[@) | SO6.2)xS0024) SO(2) A=
n=4

i
SL(2,R) 50(6.5) 50(8,7) SLQR) | S0(65) 50(8.7) | | v
012) X 30(6)x5003) | 5076,2)x50(23) 002) X 30(0)x503) | SO6.2x50023) A=
n=>

0
SLQR) | SO(6.6) 50(8.8) SLQR) | S0(66) 50(8.8) | | v
002)  * S0(6)x50(6)) | SO6,2)xSO(2,6) 02) X S06)xS0(6)) | S0(6,2)xS02:6) A=
n=6

3
SL(2,R) 50(6,7) 50(8.9) SL(2.B) S0(6,6+D) SO(8.8-4p) n B
00) X SO6)=S0(7)) | S06.21x50127) || 001 * S0(6)x8006+7)) | S06.2)xS012.647) SOy |SOp=D|A4 =4
n=6+p
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Classification tab 3: non exotic

TS TS cosel cosel Paint subP susy
& D=4 D=3 D=4 D=3 Group Group
14
SL(2R) _ SO(2,1) SO(4.3) SL(2.R) _ SO(2,1) SO(4.3) : | Vo
002 SO(2) SO(2.2)xSO(2,1) 0(2) SO2) SO(2,2)xS0(2,T) 7=
n=2
15
SLRR) _ S0(2.2) SO(4.4) SL2R) . SO(22) SO(4.4) | | v >
0(2) ~ SO(2)xS0(2) | SO(2,2)xS0(2,2) 0(2) ~ S0(2)xS0(2) SO(2,2)xS0(2,2) <=
n=3
16
SL(2,R) SO(2,3) SO(4.,5) SL(2.R) SO(2.24) SO(4,44p) sop  |sow—nl|ls=2
0(2) ~ SO(2)xSO(3) | SO(2,2)xS0(2,3) 0(2) ~ SO2)xS0(2+p) | SO(2.2)xSO(2,24p) SUAP) >UP .
n=3+p
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N=8 | adiEgy = adjEs ©adiSL(2,R);; & (2.56)

Y =30 +400 + 503 + 60y + 305 + 4ot + 207 + 20
05

O—O—C0O—0O—0O——~0O—=®

07 g Ol4 03 o ol g

a; = {1,—1,0,0,0,0,0,0} — {@;,0}

o = {0,1,—1,0,0,0,0,0} = {00}

oz = {0.0,1,—1,0,0,0,0} — {03,0}

oy = {0,0,0,1,—1,0,0,0} = {@y,0}

as = {0,0,0,0,1,—1,0,0} — {@s,0}

o, = {0.0,0,0,1,1,0,0} = {0;.0}

057:{—%.—%.—%.—%.—%.—% L-,-'O}: {E}'.D}

ag — {_1-!0"0-0*0-0*_%-\/%} = {“r."h%}

|
w, = {—1,0,0,0,0,0, ——— = {0,0,0,0,0,0,0,/2
=1 7 Y ={ }
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SO*(12)
— S H N—p = :
N=6 V== SU(e) < U(1)
ad] E?(_ﬁ) =adjSO™(12) & adjSL(2.R)g & (2,32,)
fm
Y =0 +20p + 303 +40 + 205+ 30 + 204 @ O O O O
07 (973 (0¥} o3 o
oy = {1,—1.0,0,0,0,0} — {@,,0}
o = {0,1,—1,0,0,0,0} — {0,0}
o3 = {0,0,1.—1,0,0,0} — {053,0}
oy = {0,0,0.1,—1,0,0} = {040}  y=1{0,0,0,0.0.0,v/2}
as = {0,0,0,0,1,—1,0 = {@5,0)
0 = 10,0,0,0,1,1,0} — {0,,0)
S S S S T S S
L R S S S S M S
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Tits Satake of the N=6 theory F,

adj(Ey(_s)) = adj(SO(12)) B adj(SL(2.R)) B (2,32)

|
adj(Fy()) = adj(Sp(6,R) adj(SL(2.R)g) & (2,14

O—O0—=<0 dimg, 6 ) =14

W =20 + 30> + 403 + 204
(v, @1)=2 ; (v @)=0 i#l
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SU(1,5)

N=5 Ay—sps= SU(5) x U(1)

dimgU[ 1.5)

adj(Eg_14)) = adj(SU(1,5) @ adj(SL(2,R)g) @ (2,20)

W= 0q +20p + 303 + 204 + 205 + 0

(v.oq)=1 : (y,04)=0 i#4 ©) oy
o = 40,0,—%, 1o, _%.0} (@0} O—0O—0O
o ={-L L Z o000} — [@,0} O Ots o3
o = 11/2.0,0.0,0,0 = {@3,0}

w = {~fdom V) = ()

o5 = —%.—\/g,o.o.o,o} — (@4,0)

o — 0.\/;—2\[@,—§.0,0} — {@s,0)

Pietro Fré



160 LACES 2016

Detailed study of the F, univ.
class

As an illustration we analyze one universality class
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The su(3,3) case

GSUhTS — 5[(2:]R) @5[(2:R) @5[(2~R) - sp(ﬁ,R) - IrGTS

14 28 (2 1)@ (1,2,1) @ (1,1,2) $(2,2,2)

su(3,3) model

Gpaint — 50(2)@'50(2) Gsubpainl =0

G ain su
20 TPUEITS o 12.1,1) @ (2,01,2,1) @ (2.¢3]1,1,2) @ (1,0[2,2,2)

Gsu aint P
20 TS g

6 U (2,1.1)@(1.2,1) @ (1,1,2)
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32

The SO*(12) case

Gsubpaint = 50 ( 3)L1ing

Gpaint = 50(3) ©50(3) $50(3)

'Gain Gsu
P t@ bTS (2‘2?l|2‘1?1)@(QHL?Z‘I‘Z?I)@(l,l?2|1?1;2)@(l*l?l|2}2~2)
Gsu ain
32, TPEE (6]3) @ (14]1)

GsuhTS = 5[(2,1@.) @5[(2,153) @5“2,]@.) C sp(ﬁ,R) = GTS

147 2905 2 1 1)@ (1,2,1) @ (1,1,2) & (2,2.2)
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The E; ,5 case

Gpnint = 50(8) I:Gs.ul:npuint — 92(_14)

'Gfiin II}su
56 IS (@10 1) @ (8]1,2,1) & (81, 1,2) & (1]2,2,2)

92( 14) 7 1 56 GTS@:'qégbpaim

8. (6]7) & (14'|1)

GsuhTS — 5[(2:]R) EBE[(Z:R) @5[(2~R) C 5p(6~m) - GTS

14 585 2 1 1)@ (1.2.1) @ (1.1,2) & (2.2,2)
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