LACES LECTURES: INTRODUCTION TO SUPERSYMMETRY

Instructor: Silvia Penati

Location: Galileo Galilei Institute, Arcetri (Florence)

Dates: November 21-25, 2016

SYLLABUS

- Introduction to supersymmetry: what is supersymmetry? Why we introduce it?
- N=1 supersymmetry: algebra and basic physical consequences
- Representations of N=1 algebra. Massive and massless multiplets.
- N-extended supersymmetry: algebra and representations.
- Explicit realization of N=1 representations in terms of fields. Construction of supersymmetric relativistic fields theories.
- N=1 superspace, susy covariant derivatives. General properties. Susy multiplets as superfields. Invariant actions. R-symmetry.
- Wess-Zumino model. Construction in superspace and non-renormalization theorem for the superpotential.
- Abelian and non-abelian N=1,2,4 super Yang-Mills theories. General structure of the renormalizable and susy invariant action.
- Renormalization properties. Non-renormalization theorems. Finiteness of N=4 SYM.
- General structure of beta-functions for SYM theories. Asymptotic freedom. Superconformal field theories.
- Explicit realizations of spontaneous supersymmetry breaking.

BIBLIOGRAPHY

- 1) M. Sohnius, Introducing supersymmetry, Phys.Rept. 128 (1985) 39-204 (you find it in Inspire)
- 2) J. Terning, Modern Supersymmetry, Oxford Science Publications

- 3) P. Argyres, Introduction to supersymmetry, http://homepages.uc.edu/~argyrepc/cu661-gr-SUSY/index.html
- 4) A. Bilal, Introduction to supersymmetry, hep-th/0101055
- 5) J. Gates, M. Grisaru, M. Rocek, W. Siegel, Superspace or one thousand and one lessons in supersymmetry, Benjamin Cummings
- 6) D. Freedman and A. van Proeyen, "Supergravity", (first part).

A rather complete list of reviews and books can be found in:

http://www.stringwiki.org/wiki/Supersymmetry and Supergravity