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Supersymmetry involves fermions and hence quantities that transform in spinor representa-
tions of the Lorentz algebra. In this text, we introduce the spinor conventions used throughout
these lectures and provide some additional background material as a reference. Most relevant
for the first lectures are sections 1.2 and 2.

Our metric signature in D spacetime dimensions is

ηµν = diag(−1,+1, . . . ,+1), (1)

where the indices µ, ν, . . . = 0, . . . , D − 1 are the usual D-dimensional Lorentz indices.
The generators of Lorentz transformations are denoted by Mµν = −Mνµ and satisfy the

Lorentz algebra so(1, D − 1),

[Mµν ,Mρσ] = −ηµρMνσ + ηνρMµσ + ηµσMνρ − ηνσMµρ. (2)

A spinor representation is a representation of the above Lorentz algebra that does not
integrate to an ordinary (i.e. “single-valued”) representation of the corresponding Lorentz
group. Instead, it gives rise only to a “double-valued” representation of the Lorentz group
in the sense that spatial rotations by 2π give minus the identity, whereas a rotation by 0 or
4π is represented by the identity operator, even though all these transformations act as the
identity on Minkowski spacetime.
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Mathematically, this is possible because the Lorentz group 1 is not simply connected,
but contains closed loops that cannot be continuously contracted to a point. The universal
covering group of the Lorentz group is a group that is locally isomorphic to the Lorentz group
but has a different topology so that all closed loops can be continuously contracted to a point.
Spinor representations are then single-valued representations of this universal covering group
that project to double-valued representations of the Lorentz group itself.

1 Spinors in 4D

In 4D, there are two very common notations for spinor representations: the two-component
spinor notation and the four-component spinor notation. In this lecture, we will use the four-
component spinor formalism as it is more common in the supergravity literature, generalizes
more readily to other spacetime dimensions and is also often used in particle phenomenology.
The two-component spinor formalism, on the other hand, is frequently used in texts on global
supersymmetry, so we briefly include it here as well to facilitate the translation of one formal-
ism into the other. The following subsection 1.1 is however not necessary for the supergravity
course and may be skipped.

1.1 Two-component spinors

The universal covering group of the Lorentz group in 4D is isomorphic to the group SL(2,C),
the group of unimodular complex (2× 2)-matrices. This isomorphism is easily understood by
mapping a real four-vector V µ to a Hermitian (2× 2)-matrix V̂ according to

V̂ := V µσµ, (3)

where σ0 = I2 and σi (i = 1, 2, 3) are the Pauli matrices. The Minkowski norm can then be
expressed as V µVµ = −det V̂ . Acting with A ∈ SL(2,C) on V̂ according to

V̂ → AV̂ A†, (4)

preserves the Hermiticity of V̂ as well as its determinant and hence induces a Lorentz trans-
formation on V µ. As A and −A induce the same Lorentz transformation, SL(2,C) is a double
cover of SO(1, 3)0.

SL(2,C) has two equivalence classes of irreducible two-dimensional complex representa-
tions, corresponding to the defining representation of SL(2,C) and its complex conjugate
representation. These two representations are the minimal spinor representations of the 4D
Lorentz algebra and are often denoted by (1/2, 0) and (0, 1/2) or by dotted and undotted
two-component spinors, λA and ω∗

Ȧ
(A, Ȧ = 1, 2).

The Lorentz group generators Mµν act on these spinors via representation matrices

(r(Mµν)A
B and (r∗(Mµν)Ȧ

Ḃ that can be chosen as

(1/2, 0) : r(Mµν) = −1

4
(σµσν − σνσµ) (5)

(0, 1/2) : r∗(Mµν) = e−1

[
−1

4
(σµσν − σνσµ)

]
e, (6)

1The full isometry group O(1, D−1) of Minkowski spacetime decomposes into four disconnected components.
Being a bit sloppy, we mean by Lorentz group here only the component SO(1, D−1)0 of Lorentz transformations
that are continuously connected to the identity element. A more accurate term for this subgroup would be the
“proper orthochronous Lorentz group”.
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where −σi = σi (i = 1, 2, 3) are again the Pauli matrices, σ0 = σ0 = I2 , and

e ≡
(

0 1
−1 0

)
. (7)

That (6) is indeed the complex conjugate of (5) follows from the identity

e−1σµe = σµ∗ = σµT . (8)

The matrix e is an invariant of SL(2,C) in the sense that

AT eA = e ∀A ∈ SL(2,C), (9)

which implies that quantities such as λT eω are Lorentz invariant products of two spinors λA
and ωA. This is often written as λAω

A or λAωA using suitable raising and lowering conventions
for spinor indices with the matrix e.

All finite-dimensional irreducible representations of SL(2,C) can be obtained from sym-
metrized tensor products of these elementary building blocks, often denoted by (n/2,m/2),
where n and m count the (1/2, 0) and (0, 1/2) factors, respectively. For (m+ n) =even/odd,
these describe single/double-valued representations of the Lorentz group, corresponding to
bosons/fermions.

1.2 Four-component spinors

The four-component spinor formalism in 4D has a direct analogue in any spacetime dimension
D, so we will first keep D arbitrary before we specialize to D = 4. Starting point for this
formalism is a representation of the so-called Clifford-algebra Cliff(1, D − 1) in D spacetime
dimensions, i.e. a set of complex matrices γµ that satisfy the following anticommutation
relation

{γµ, γν} = 2ηµνI. (10)

Given a set of such γµ, the anticommutation relation (10) implies that the matrices

Σµν :=
1

4
[γµ, γν ] (11)

automatically form a representation of the Lorentz algebra (2). This representation is in fact
a spinor representation, as one can directly verify by evaluating e.g. the matrix R(θ) = eθΣ

12

for a rotation in the (1, 2)-plane by a finite angle θ,

R(θ) = eθΣ
12

= cos(θ/2)I + 2 sin(θ/2)Σ12, (12)

which shows that indeed R(2π) = −I.
Thus, a representation of the Clifford algebra Cliff(1, D−1) induces a spinor representation

of the Lorentz algebra so(1, D − 1).
Specializing now to D = 4, the smallest possible complex representation of Cliff(1, 3) is on

C4, i.e., the γµ are complex (4 × 4)-matrices, the well-known Dirac matrices. The elements
ψ ∈ C4 on which they act are called four-component Dirac spinors. Where needed, we will use
indices α, β, . . . = 1, 2, 3, 4 to denote the components ψα of these spinors or the components
γµαβ of the Dirac matrices.

There are infinitely many choices for the γµ, but in 4D they are all equivalent, i.e. any two
sets of (4×4)-matrices γµ and γ′µ that satisfy (10) are related by an invertible (4×4)-matrix S
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as γ′µ = SγµS−1. We will rarely make use of particular representations, but for convenience,
we will always assume so-called “friendly” representations whose defining properties are

γ†0 = −γ0 (13)

γ†i = +γi (i = 1, 2, 3) (14)

γTµ = ±γµ, (15)

where the last equation means that each gamma matrix is either symmetric or antisymmetric
(the sign need not be the same for all four gamma matrices). A very useful example of a
friendly representation is the Weyl representation

γµ =

(
0 iσµ
iσµ 0

)
, (16)

where −σi = σi (i = 1, 2, 3) are the Pauli matrices, and σ0 = σ0 = I2. Other well-known
representations such as the Dirac or Majorana representation are also friendly 2.

An important object in the following will be the completely antisymmetrized products of
several gamma matrices,

γµ1...µp := γ[µ1γµ2 . . . γµp], (17)

where, as usual, the antisymmetrization involves a prefactor 1/p!, so that, e.g., γµν =
1/2[γµ, γν ] etc. Obviously, Σµν = 1/2γµν .

Note that the Clifford relation (10) implies

γµ1µ2...µp =

{
γµ1γµ2 . . . γµp if all µi are different

0 otherwise.
(18)

The 16 matrices γM = {I4, γµ, γµν , γµνρ, γµνρσ} are linearly independent and form a basis of
the complex (4×4) matrices. To understand this, one first notices that the trace of the γµ1...µp
vanishes for all p ≥ 1, as one verifies quite easily e.g. in the Weyl representation. As γµ1...µpγν
is a linear combination of certain matrices γρ1...ρs with s ≤ p unless p = 1, one easily verifies
that

tr(γµ1...µpγν) =

{
0 for p > 1

tr(γµ1γν) = 4ηµ1ν for p = 1
. (19)

Similarly, tr(γµ1...µpγν1...νq) vanishes unless p = q and (modulo permutations)
(µ1, . . . , µp) = (ν1, . . . , νq). This then implies indeed that the 16 independent matrices
{14, γµ, γµν , γµνρ, γµνρσ} =: {14, γM} are linearly independent and hence form a basis of the
space of complex (4× 4) matrices.

As we have seen, an irreducible representation of the Clifford algebra (10) induces a spinor
representation (11) of the Lorentz algebra. The Σµν , however, are (4 × 4)-matrices, so the
corresponding spinors ψ ∈ C4 on which they act have twice as many components as the
two-component spinors discussed in the previous subsection. As the latter provide already
irreducible representations of the Lorentz algebra, we expect that the representation given by
(11) is in fact reducible as a representation of the Lorentz algebra, even though the underlying
representation of the Clifford algebra is irreducible.

2The Dirac representation corresponds to γ0 = iσ3 ⊗ I2 ≡
(
iI2 0
0 −iI2

)
, γi = σ2 ⊗ σi, and the Majorana

representation is given by γ0 = iσ2 ⊗ σ3, γ1 = −σ1 ⊗ I2, γ2 = σ2 ⊗ σ2, γ3 = σ3 ⊗ I2, but they are not really
needed for this lecture.
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This is verified most easily in the Weyl representation (16), where Σµν becomes manifestly
reducible,

Σµν =

(
er∗(Mµν)e−1 0

0 r(Mµν)

)
. (20)

Here, r(Mµν) and r∗(Mµν) are the (2 × 2)-representation matrices (5) and (6), and e is the
antisymmetric matrix (7). In the Weyl representation of the gamma matrices, we thus have a
natural decomposition of a four-component Dirac spinor ψα (α = 1, . . . , 4) into one undotted
two-component spinor λA in the representation (1/2, 0) and one dotted spinor ω∗

Ȧ
in the

representation (0, 1/2) according to

ψ =

(
e · ω∗
λ

)
. (21)

For supersymmetry, it is convenient to work with minimal spinor representations of the
Lorentz algebra, as these typically correspond also to the minimal amount of supersymmetry
one can have in the respective spacetime dimension. There are essentially two ways to reduce
the number of degrees of freedom of a Clifford algebra spinor so as to obtain irreducible
representations (irreps) of the corresponding Lorentz algebra. One possibility is to impose
a chirality condition, which leads to Weyl spinors. In the Weyl representation (21), a Weyl
spinor ψ would correspond to setting either ω or λ equal to zero. The other possibility is to
impose a reality condition, which leads to Majorana spinors. In the Weyl representation (21),
this would correspond to setting λ = ω.

Note, however, that imposing a Weyl or Majorana condition in 4D does not necessitate
the use of the Weyl or the Majorana representation of the gamma matrices. The Weyl con-
dition just takes on a particularly simple form in the Weyl representation, and the Majorana
condition leads to a particularly simple result in the Majorana representation (although it is
also quite simple in the Weyl representation). We usually do not make use of these simplified
forms, however, and instead want to write down the conditions in a covariant way valid for
any (friendly) representation so as to be able to make full use of the gamma matrix calculus.

We already mention here that the Weyl and the Majorana condition are not always possible
in every spacetime dimension: The Weyl condition can only be imposed in even dimensions,
whereas the possibility to impose a Majorana condition shows a somewhat more complicated
dependence on the spacetime dimension. Moreover, the Weyl and Majorana condition can
often not be imposed simultaneously. In the rest of this section, we resrict ourselves to four
spacetime dimensions, where one can impose a Weyl or a Majorana condition, but not both
of them at the same time.

1.2.1 The Weyl condition

The Weyl condition projects out the part of a four-component spinor that has a particular
handedness. In a general representation of the gamma matrices, it is imposed with the γ5

matrix:
γ5 ≡ γ5 ≡ −iγ0γ1γ2γ3 = +iγ0γ1γ2γ3. (22)

The Clifford algebra (10) implies (cf. Ass. # 2, Ex. 2)

(γ5)2 = I4 (23)

{γ5, γµ} = 0⇒ [γ5,Σµν ] = 0 (24)
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so that the chirality projectors

PL ≡
1

2

(
1 + γ5

)
, PR ≡

1

2

(
1− γ5

)
, (25)

can be used to define left and right-handed spinors

ψL ≡ PLψ, ψR ≡ PRψ. (26)

Because of (24), this projection is consistent with Lorentz covariance (i.e., PR,L and Σµν

commute.), and left and right-handed spinors form separate representations of the Lorentz
group. In the Weyl representation, γ5 = σ3 ⊗ I2, i.e., the left and right-handed spinors are
nontrivial only for the upper or lower two components of ψ in (21). In other words Weyl
spinors are essentially just the two-component spinors introduced earlier with two zero entries
attached. Note that γ5ψL = ψL, while γ5ψR = −ψR.

In a friendly representation, γ0γ
†
µγ0 = γµ ⇒ Σ†µνγ0 = −γ0Σµν , and the Dirac conjugate of

a general four-component Dirac spinor is defined by

ψ ≡ iψ†γ0 = −iψ†γ0, (27)

so that bilinears such as ψχ are Lorentz invariant.
In a friendly representation, γ†5 = γ5, and hence P †L,R = PL,R. Moreover PLγ0 = γ0PR and

PRγ0 = γ0PL, which then implies

ψR = ψPL, and ψL = ψPR, (28)

where
ψR = (PRψ) = −i(PRψ)†γ0. (29)

Because of this we will often write

ψL := ψPL = ψR, ψR := ψPR = ψL. (30)

Apart from defining chiral spinors, the γ5-matrix also gives rise to some useful gamma
matrix identities, in particular,

γµνρσ = iε̂µνρσγ5 (31)

γµνρ = iε̂µνρσγ5γ
σ (32)

γµν = − i
2
ε̂µνρσγ5γ

ρσ (33)

γµ = − i
6
ε̂µνρσγ5γ

νρσ, (34)

where ε̂µνρσ denotes the epsilon tensor in 4D Minkowski space with ε̂0123 = −1. This implies
that the 16 matrices I4, γµ, γµν , γ5γµ, γ5 form a basis of all complex (4× 4)-matrices.

As an application, we prove a very useful equation that forms the basis of various Fierz
identities, namely

εη̄ = a14 + bνγ
ν + cνργ

νρ + dνγ5γ
ν + fγ5, (35)
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where

a = −1

4
η̄ε (36)

bν = −1

4
η̄γνε (37)

cνρ = +
1

8
η̄γνρε (38)

dν = +
1

4
η̄γ5γµε (39)

f = −1

4
η̄γ5ε. (40)

valid for any anticommuting four-component spinors η and ε (not necessarily Majorana).
To derive this, one first uses that any complex (4 × 4)-matrix can be expressed as a linear
combination of the 16 independent matrices {14, γµ, γµν , γ5γµ, γ5}, which then also has to be
true for the (4× 4)-matrix εαη̄β, i.e., we have

εη̄ = a14 + bνγ
ν + cνργ

νρ + dνγ5γ
ν + fγ5, (41)

with suitable coefficients a, bν , cνρ, dν , f . These coefficients can be easily obtained by mul-
tiplying (41) with 14, γµ, γµν , γ5γµ, γ5 and taking the trace each time, using that the only
non-vanishing traces are

tr(γνγ
ρ) = 4δρν (42)

tr(γµνγρσ) = 4(ηνρηµσ − ηµρηνσ) (43)

tr(γ5γ
µγ5γ

ν) = −4ηµν (44)

tr(γ5γ5) = 4. (45)

As an example consider

tr(γρεη̄) = (γρ)αβεβ η̄α = −η̄α(γρ)αβεβ = −η̄γρε, (46)

where the anticommutativity of η and ε has been used. From (41) and (42) one then obtains
that this must be equal to bνtr(γργ

ν) = 4bρ, which then implies (37). The calculation of the
other coefficients in (35) is then completely analogous.

Multiplying (35) with further spinors then gives rise to various Fierz identities that allow
one to re-order expressions that are cubic or quartic in fermionic fields.

1.2.2 The Majorana condition

The Majorana condition is a reality condition on a four-component Dirac spinor that can, in
a general gamma matrix representation, be written as

ψ∗ = Bψ, (47)

with a suitable matrixB. This condition is self-consistent (i.e., ψ∗∗ = ψ) and Lorentz covariant
if B satisfies

B∗B = I4, γ∗µ = BγµB
−1 ⇒ Σ∗µνB = BΣµν . (48)
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If one defines the Majorana conjugate as ψc := B−1ψ∗, the Majorana condition reads ψc = ψ.
In the Weyl basis (16) one can choose

B =

(
0 e
−e 0

)
, (49)

so that a Majorana spinor would be of the form (21), but with λ = χ. From this we see that
a Majorana spinor describes the same number of independent degrees of freedom as a Weyl
spinor.

Another equivalent, but for many purposes more convenient, way to write the Majorana
condition is via the so-called charge conjugation matrix, C, which satisfies

CT = −C, γTµ = −CγµC−1. (50)

In a friendly representation, one can moreover choose C such that it also satisfies

C−1 = −C = C†, (51)

as we will always assume.
In terms of C, the charge conjugate spinor is defined as

ψc := Cψ
T

= iCγ0Tψ∗, (52)

and a Majorana spinor is defined as
ψc = ψ. (53)

This is equivalent to (47) if we identify

B = (iCγT0 )−1 (54)

so that in terms of B charge conjugation reads

ψc = B−1ψ∗. (55)

The advantage of C is that for a Majorana spinor the Dirac conjugate can be written as

ψ = ψTC. (56)

Notice that using (50) one finds the symmetry properties

CT = −C, (Cγµνρ)T = −(Cγµνρ), (Cγµνρσ)T = −(Cγµνρσ),

(Cγµ)T = (Cγµ), (Cγµν)T = (Cγµν).
(57)

For anti-commuting Majorana spinors, this then implies

ψ1Mψ2 =

{
+ψ2Mψ1 for M = I4, γµνρ, γµνρσ
−ψ2Mψ1 for M = γµ, γµν

(58)

Unless stated otherwise, we will, in the following, always use (anticommuting) Majorana
spinors, but often also take in addition the chiral projections ψL and ψR of these Majorana
spinors, which therefore are not independent. More specifically, we have, in our conventions,

(ψL)c = ψR, (ψR)c = ψL. (59)
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To show this, we use
B−1γ∗5 = −γ5B

−1 ⇔ B−1P ∗L = PRB
−1 (60)

so that
(ψL)c = (PLψ)c = B−1P ∗Lψ

∗ = PRB
−1ψ∗ = PRψ

c = PRψ = ψR. (61)

Note that (59) implies that ψR is no longer a Majorana spinor, because that would require
(ψR)c being equal to ψR. Thus, in 4D, a four-component spinor cannot be simultaneously
chiral and Majorana. Nevertheless, it makes sense to talk about the projection ψR or ψL of
a given Majorana spinor ψ.

From the definition of γ5 and (50), one also gets

Cγ5 = γT5 C ⇔ CPL = P TL C (62)

so that for a Majorana spinor ψ,

ψL = ψPL = ψTCPL = ψTP TL C = (ψL)TC (63)

even though ψL is not Majorana. From this we can obtain more symmetry properties for the
chiral projections that are very similar to those for the Majorana spinors themselves,

χLψL = χTLCψL = −ψTLCTχL = ψLχL,

χLγ
µψR = −ψRγµχL χLγ

µνψL = −ψLγµνχL
χLγ

µνρψR = ψRγ
µνρχL.

(64)

Finally, under charge conjugation

(γµ)c = γµ, (γ5)c = −γ5 (65)

in the sense that (γµψ)c = γµψc etc.
In all the subsequent formulae, the hermitian conjugate +h.c. of a field operator is denoted

with a superscript ∗, whereas the superscript † is reserved for matrix expressions when also
a transposition is involved. On ordinary complex numbers and classical fields, the hermitian
conjugation acts as complex conjugation, where, however, the order of anticommuting spinor
fields is exchanged to mimic the effect of hermitian conjugation of operators. This results in a
minus sign when the original spinor order is restored. Fortunately, the effect of this hermitian
conjugation can simply be obtained by writing down the charge conjugate expression with all
the rules obtained so far, including (65), but without exchanging the order of the spinors. As
an example, we show (ψLγ

µχR)∗ = (ψLγ
µχR)c = ψRγ

µχL:

(ψLγ
µχR)∗ = (ψTLCγ

µχR)∗ = −ψ†LC
∗γµ∗χ∗R = −ψ†LC

∗γµ∗B(χR)c = −ψ†LC
∗BγµχL. (66)

Inserting (54), C∗ = C and (γ0T )−1 = −C(γ0)−1C−1 = −C−1(γ0)−1C, this becomes

(ψLγ
µχR)∗ = −iψ†L(γ0)−1γµχL = (ψL)γµχL = ψRγ

µχL = (ψLγ
µχR)c, (67)

where in the second equation we used (γ0)−1 = −γ0, which follows from (γ0)2 = η00I4 = −I4.
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2 The simplest globally supersymmetric field theory in 4D

Both as an illustration of our spinor conventions and because it will serve as a starting point of
the supergravity lecture, we give here a short account of the simplest globally supersymmetric
field theory in 4D, namely the free and massless Wess-Zumino model of one chiral multiplet.

In superspace notation this model would correspond to

LWZ =

∫
d4θ Φ∗Φ, (68)

where Φ is a chiral superfield and Φ∗ its complex conjugate. In other words, we assume a
canonical Kähler potential K(Φ,Φ∗) = Φ∗Φ and a vanishing superpotential W (Φ) = 0.

Switching to our four-component notation, the component fields of Φ are (φ, χ,F), where
φ(x) is a complex scalar field, χ(x) is an anticommuting four-component Majorana spinor
(which has the same number of degrees of freedom as a complex two-component spinor and
its complex conjugate) and the complex auxiliary scalar field F(x). Choosing suitable field
normalizations, the Lagrangian for these component fields is

LWZ = −(∂µφ)(∂µφ∗)− χ/∂χ+ |F|2, (69)

where, as usual, /∂ = γµ∂µ. Modulo total derivative terms, this Lagrangian is invariant under
the supersymmetry transformations

δφ = χLεL, δφ∗ = χRεR (70)

δχL =
1

2
(/∂φ)εR +

1

2
FεL, δχR =

1

2
(/∂φ∗)εL +

1

2
F∗εR (71)

δF = εR /∂χL, δF∗ = εL/∂χR, (72)

where the supersymmetry parameter ε is an anticommuting four-component Majorana spinor3.
These supersymmetry transformations satisfy the supersymmetry algebra

[δη, δε]φ(x) =
1

2
(εγµη)∂µφ(x), (73)

and similar for the other fields, where η denotes another supersymmetry parameter.
In this course, we will always work with the physical on-shell fields only, i.e. we will always

work with theories after all auxiliary fields have been integrated out. In the case at hand, the
auxiliary field F has the field equation F = 0, so we can here simly drop F from the theory
and work with the on-shell multiplet (φ, χ) with the on-shell Lagrangian

LWZ = −(∂µφ)(∂µφ∗)− χ/∂χ (74)

and the on-shell transformation laws

δφ = χLεL, δφ∗ = χRεR (75)

δχL =
1

2
(/∂φ)εR, δχR =

1

2
(/∂φ∗)εL. (76)

Note that the on-shell Lagrangian (74) is still invariant (modulo total derivatives) under these
on-shell transformation laws, as we will explicitly verify below. The only disadvantage of using

3In terms of the supersymmetry operator, Qα, which is an operator valued four-component Majorana spinor
that satisfies {Qα, Qβ} = −2iPµ(γµ)αβ , the supersymmetry variations δψ(x) of a general field operator ψ(x)
are defined by iδψ(x) := 1

2
[εQ, ψ(x)].
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only on-shell fields is that the supersymmetry algebra (73) is only satisfied on-shell, i.e. there
will be extra terms in (73) that only vanish upon using the equations of motion. This is no
problem for us as we are anyway only interested in the Lagrangians for the physical fields.
Moreover, for increasing amounts of supersymmetry, a full off-shell formulation of the theory
can become quite complicated or may even not be known.

We now close this section by explicitly verifying the invariance of the on-shell action
(74) under the on-shell supersymmetry transformations (75), (76). In order to prepare our
discussion of local supersymmetry and supergravity, however, we will a priori allow for a
spacetime-dependent supersymmetry parameter ε = ε(x).

To begin with, we write

LWZ = −(∂µφ)(∂µφ∗)− χ/∂χ (77)

= −(∂µφ)(∂µφ∗)− χL/∂χR − χR /∂χL. (78)

Using (64), the order of the spinors in the last term in (78) can be exchanged, and a subsequent
partial integration brings this term to the form of the second term in (78):

−χR /∂χL ≡ −χRγµ(∂µχL) = +∂µχLγ
µχR = −χL/∂χR + tot. div., (79)

so that, up to a total derivative,

LWZ = −(∂µφ)(∂µφ∗)︸ ︷︷ ︸
Lbos

−2χL/∂χR︸ ︷︷ ︸
Lfer

. (80)

To verify the invariance under the on-shell transformations (75), (76), we find for the bosonic
part

δLbos = −(∂µδφ)(∂µφ∗)− (∂µφ)(∂µδφ∗) (81)

= +δφ�φ∗ + c.c.+ tot. div. (82)

= +χLεL�φ
∗ + c.c.+ tot. div. (83)

(84)

On the other hand, the fermionic part is

δLfer = −2
[
χL/∂δχR + δχL/∂χR

]
(85)

= −2
[
χL/∂δχR + χR /∂δχL

]
(86)

= −2
[
χL/∂δχR + c.c.

]
(87)

= −
[
χLγ

µ∂µ(/∂φ∗εL) + c.c.
]

(88)

= −
[
χL(/∂ /∂φ∗)εL + χLγ

µ(/∂φ∗)(∂µεL) + c.c.
]
, (89)

where, in the second equality, we have again used (64) to change the order of the two spinors,
followed by a partial integration (cf. eq. (79)).

Using now /∂ /∂ = γµγν∂µ∂ν = 1
2γ

µγν(∂µ∂ν + ∂ν∂µ) = 1
2{γ

µ, γν}∂µ∂ν = � I4, we see that
the first term in (89) together with its conjugate precisely cancels δLbos, and we are left with

δLWZ = −(JµL∂µεL + JµR∂µεR) (90)

with the “supercurrents”

JµL := χLγ
µ(/∂φ∗), JµR := χRγ

µ(/∂φ). (91)

Thus, in global supersymmetry, where ε = const., the action SWZ =
∫
d4x LWZ is indeed

invariant under supersymmetry (as usual we neglect any boundary terms that might arise
from the varous partial integrations we did along the way).
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3 Clifford algebras and spinors in arbitrary D

As discussed at the beginning of section 1.2, Clifford algebra representations yield spinor
representations of the corresponding Lorentz algebra. This works the same in any spacetime
dimension D, but the dimension of the spinor representation and the possibility to reduce
it by imposing a chirality or/and a Majorana condition are strongly D-dependent. The D-
dependence of the existence of chirality and Majorana conditions also leads to D-dependent
R-symmetry groups, which in turn contribute to a rich variety of possible scalar manifold ge-
ometries in the respective spacetime dimensions. It is the purpose of this section to classify the
representations of Clifford algebras, the minimal spinor representations of the corresponding
Lorentz groups as well as the resulting R-symmetry groups. This generalizes the discussion
of spinors in four dimensions given in section 1.2.

Further information on this topic and many explicit proofs can be found, e.g., in

• P.C. West, “Supergravity, brane dynamics and string duality”, hep-th/9811101.

• A. Van Proeyen, “Tools for supersymmetry,” Ann. U. Craiova Phys. 9 (1999) no.I, 1
[hep-th/9910030].

Starting point is the Clifford algebra in D Lorentzian dimensions, where we will now
choose capital letters for the gamma matrices,

{Γµ,Γν} = 2ηµν (µ, ν, . . . = 0, 1, . . . , D − 1) (92)

ηµν = diag(−1,+1, . . . ,+1) (93)

Just as in 4D, the relation (92) implies that

Σµν ≡
1

4
[Γµ,Γν ] =

1

2
Γµν (94)

form a representation of the Lorentz algebra. The exponentials exp
[
ωµνΣµν

2

]
with ωµν finite

rotation angles or boost paramters then form a double-valued representation of the Lorentz
group SO(1, D − 1)0.

3.1 Irreducible representations of Cliff(1, D − 1)

The structure of the irreducible representations of the Clifford algebras is slightly different for
even and odd dimensions:

3.1.1 Even dimensions

Up to equivalence there is, just as in 4D, exactly one nontrivial irreducible representation of
Cliff(1, D − 1) (see e.g. hep-th/9811101). It has complex dimension 2D/2, i.e., the Γµ are
complex (2D/2 × 2D/2)-matrices, generalizing the (4 × 4)-matrices in 4D. Explicit forms of
these representations can be built up by successive tensor products of the irreps of lower-
dimensional Clifford algebras, starting with the case D = 2 (see e.g., hep-th/9910030), but
we do not need them in these lectures.
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3.1.2 Odd dimensions

If D is odd, irreps of Cliff(1, D−1) can be obtained from an irrep of Cliff(1, D−2) by defining
the analogue of the γ5 matrix in 4D:

Γ∗ ≡ (−i)
D+1
2 Γ0Γ1 . . .ΓD−2 (95)

This matrix satisfies

(Γ∗)
2 = 1 (96)

{Γ∗,Γµ} = 0 ∀µ = 0, . . . , D − 2 (97)

so that either of
Γ

(±)
D−1 ≡ ±Γ∗ (98)

can be used as the remaining gamma matrix to complement {Γ0, . . . ,ΓD−2} to a representation
of Cliff(1, D− 1). One thus obtains two inequivalent representations of Cliff(1, D− 1) for odd
D, one for each sign in (98).

3.2 Irreducible spinor representations of SO(1, D − 1)0

Thus far, we have discussed the irreps of Cliff(1, D − 1) and described how these induce
double-valued spinor representations of the corresponding Lorentz groups SO(1, D−1)0. Just
as in four dimensions, however, the spinor representations of the Lorentz group so-obtained
are in general not irreducible, even though they descend from irreducible representations of
Cliff(1, D − 1). In order to obtain an irreducible spinor representation of SO(1, D − 1)0, one
in general has to impose additional constraints, which may be of the following type:

1. Chirality condition

2. Reality condition

3. Chirality and a reality condition

The possibilities to impose one of the above is strongly dimension dependent, as we will
now describe.

3.2.1 Chirality conditions

For even D, we can always impose the following chirality condition to define a left or right
handed Weyl spinor :

Γ∗ψL
R

= ±ψL
R
. (99)

Note that that this condition is Lorentz covariant because of [Σµν ,Γ∗] = 0, just as in 4D.
For odd D, on the other hand, there is no non-trivial analogue of Γ∗, because

Γ0Γ1 . . .ΓD−2︸ ︷︷ ︸
∼Γ

(±)
D−1

Γ
(±)
D−1 ∼ (Γ

(±)
D−1)2 ∼ 1. (100)

Thus a nontrivial chirality condition can only be imposed in even D.
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3.2.2 Reality conditions

It is again useful to distinguish between even and odd dimensions:

Even dimensions As discussed above, for even D there is only one equivalence class of
irreps of Cliff(1, D − 1) generated by matrices Γµ. Hence, the complex conjugate matrices
±Γ∗µ, which also satisfy the Clifford algebra, must be equivalent to the matrices Γa, i.e., there
has to be a matrix B such that

Γ∗µ = ηBΓµB
−1 (101)

for both signs η = ±1.

Odd dimensions If D is odd, we can obviously find a matrix B that also satisfies (101)
for the first (D− 1) gamma matrices with η = ±1. What is non-trivial, however, is to extend

(101) also to the remaining gamma matrix Γ
(±)
D−1 = ±Γ∗ (cf. eq. (95)), i.e., to have

(Γ∗)
∗ = ηBΓ∗B

−1. (102)

Indeed, using the definition (95) and (101) for Γ0, . . . ,ΓD−2, one easily shows

(Γ∗)
∗ = (−1)

D+1
2 BΓ∗B

−1, (103)

which is consistent with (102) only for one sign:

η = (−1)
D+1
2 =

{
−1 for D=5 mod 4
+1 for D=3 mod 4

(104)

Obviously, the defining equations (101) and (102) define B only up to an arbitrary rescal-
ing. We may thus choose the overall scaling such that

| detB| = 1 (choice) (105)

With this normalization, one has 4

B∗B = ε1 (106)

ε = ±1. (107)

The important point now is that this parameter ε is not arbitrary, but is instead fixed by
the values of η and D. Concretely, for D = 2n or D = 2n+ 1, one finds 5

ε = −η
√

2 cos
[π

4
(1 + η2n)

]
, (110)

4This can be proven by inserting (101) and (102) into their own complex conjugate to derive [B∗B,Γµ] = 0
for all µ and similarly for all symmetrized products of gamma matrices. As these together with the unit matrix
span all complex matrices, B∗B commutes with all matrices and thus, according to Schur’s lemma must be
proportional to the unit matrix. Using the complex conjugate of (106) and the choice (105), one then derives
ε = ±1.

5This can be proven, e.g., with the help of the charge conjugation matrix C. In a friendly representation
(so that for ΓµΓ†µ = 1 (no sum)), C ≡ BTΓ0 satisfies, because of (101) and (106),

ΓTµ = −ηCΓµC
−1 (108)

CT = −ηεC. (109)

The matrices (CΓµ1...µp) then have a definite symmetry under transposition. This symmetry depends on p,
ε and η. On the other hand, the set of all matrices Γµ1...µp plus the unit matrix form a complete basis of all

complex (2[D/2]×2[D/2])-matrices. As the number of linearly independent antisymmetric and symmetric of such
matrices is fixed to be 2[D/2](2[D/2]−1)/2 and 2[D/2](2[D/2] +1)/2, respectively, one can determine the possible
values of ε as a function of D and η (which, for odd dimensions, is itself fixed by D). (cf. e.g. hep-th/9811101).
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and one arrives at the possible values for ε and η shown in table 1.

The Majorana condition What makes the possible values of ε so important, is that it
determines whether one can impose a Majorana condition on a spinor, which, in terms of B
reads

ψ∗ = αBψ (Majorana condition), (111)

where α is an arbitrary phase. This condition is consistent with Lorentz invariance, because
Γ∗µν = BΓµνB

−1. A Majorana spinor thus furnishes a complete representation of the Lorentz
algebra and has only half as many degrees of freedom as an unconstrained complex Dirac
spinor. The consistency of (111) with ψ∗∗ = ψ, however, imposes the consistency condition

ε = +1 (for Majorana condition), (112)

limiting the possibility of Majorana spinors to certain dimensions, as indicated in table 1.

Symplectic Majorana spinors If ε = −1, one can impose a so-called symplectic Majorana
condition. To this end, one needs an even number of Dirac spinors ψi, (i, j, . . . = 1, . . . , 2N)
and an antisymmetric real matrix Ωij with Ω2 = −12N and imposes

(ψi)
∗ = ΩijBψj . (113)

As one needs at least two Dirac spinors to impose the symplectic Majorana condition, it
does not lead to a reduction of the minimal number of degrees of freedom relative to a single
Dirac spinor. The symplectic Majorana condition is however convenient, because it makes
the action of the R-symmetry group (which in these dimensions involve symplectic groups,
see table 1) manifest.

3.3 Majorana and Weyl condition

In some dimensions, the Majorana and the Weyl condition can be imposed simultaneously.
This reduces the number of independent degrees of freedom to one quarter relative to an
unconstrained Dirac spinor. Imposing (we set the phase α = 1 for simplicity)

ψ∗ = Bψ (114)

Γ∗ψ = ±ψ, (115)

at the same time, obviously requires the consistency condition

(Γ∗)
∗ = BΓ∗B

−1 (116)

which is possible only if D = 4n− 2. But as there are no Majorana spinors in D = 6, 14, . . .,
Majorana-Weyl spinors can only exist for

D = 2 mod 8 (Condition for Majorana-Weyl spinors). (117)

Note, in particular, that in 4D, one can have Majorana spinors or Weyl spinors, but not
Majorana-Weyl spinors, as mentioned earlier.

Analogously, in dimensions in which ε = −1 allows a symplectic Majorana condition, one
can sometimes also simultaneously impose a Weyl condition, and the corresponding spinors
are then called symplectic Majorana-Weyl spinors. These are the dimensions D = 6 mod 8
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min. spinor min. # of R-symmetry
D η ε type real super- group

charges

2 +1 +1 MW 1 SO(NL)× SO(NR)
−1 +1

3 +1 +1 M 2 SO(N)

4 +1 +1 M or W 4 U(N)
−1 −1

5 −1 −1 SM 8 Usp(2N)

6 +1 −1 SMW 8 Usp(2NL)× Usp(2NR)
−1 −1

7 +1 −1 SM 16 Usp(2N)

8 +1 −1 16 U(N)
−1 +1 M or W

9 −1 +1 M 16 SO(N)

10 +1 +1 MW 16 SO(NL)× SO(NR)
−1 +1

11 +1 +1 M 32 SO(N)

12 +1 +1 M or W 64 U(N)
−1 −1

. . . . . . . . . . . . . . . . . .

Table 1: The possible values for η and ε together with the resulting minimal spinor types,
the minimal number of real supercharges and the general form of the R-symmetry groups.
(M = Majorana, SM = Symplectic Majorana, W= Weyl, MW= Majorana-Weyl, SMW =
Symplectic Majorana-Weyl).
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The minimal amount of supersymmery in each spacetime dimension is generated by a
spinor operator that corresponds to the minimal spinor representation of the Lorentz group
in the respective spacetime dimension. Extended supersymmetries then correspond to mul-
tiples of such minimal spinors. The R-symmetry group of the corresponding supersymmetry
algebra has to respect these reality and chirality conditions and thus depends on the minimal
spinor type as shown in table 1. If the scalar fields of a given type of multiplet transform
nontrivially under the R-symmetry group (or a factor thereof), the holonomy group of the
scalar manifold typically contains this group (factor) as a factor. Especially for large amounts
of supersymmetry, this already strongly constrains the possible scalar manifolds.

For more than 32 real supercharges, one always has states with helicity h > 2 in the
supermultiplets, which, for Lorentzian signature, limits supersymmetric field theories to D ≤
11.
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