
Dario Martelli LACES 2018

AdS/CFT correspondence Final exam

Provide detailed solutions to the following set of questions, giving intermediate formu-
las, and explaining both the logic of the answers as well as the technical details of the
calculations involved. Some intermediate computations may be carried out with the
aid of computer programs, but the main steps should be reported in the answers; for
example, statements such as “after some straightforward algrebra the result is” will
not be regarded as satisfactory. The notation and conventions used in the problems
adhere to those used in the lectures, but small variations may be present. Many, but
not all, the necessary ingredients for working out the problems are provided in the text
of the questions. You have access to the literature for looking up formulas that are
not provided, for example the action and supersymmetry variations of type IIB super-
gravity. When using formulas that are not included in the text, write them clearly and
provide the source (e.g. the arXive number of the paper or the title of the book), with
equation numbers.

Problem 1: deformations of the D3-branes solution

Recall that the D3-brane solution of type IIB supergravity that was discussed in the
lectures takes the form

ds2 = H(r)−1/2(−dt2 + dx⃗2) +H(r)1/2
(
dr2 + r2ds2(S5)

)
(0.1)

eϕ = gs (0.2)

F5 = (1 + ∗)d
(
H(r)−1vol(R1,3)

)
(0.3)

with

H(r) = 1 +
L4

r4
(0.4)

and all other fields vanishing. This solves the equations of motion, supplemented with
the self-duality condition F5 = ∗F5, as well as the Killing spinor equations (preserving
16
32

supersymmetries).

(a) Verify that the black 3-brane configuration, given by

ds2 = H(r)−1/2(−f(r)dt2 + dx⃗2) +H(r)1/2
(

dr2

f(r)
+ r2ds2(S5)

)
(0.5)

eϕ = gs (0.6)

F5 = (1 + ∗)d
(
H(r)−1vol(R1,3)

)
(0.7)

with

H(r) = 1 +
L4

r4
f(r) = 1− r4h

r4
(0.8)
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is a solution of type IIB supergravity.

Consider the equation for a parallel spinor on a six-dimensional Riemannian space with
metric gij, namely the equation

∇iξ = 0 (0.9)

where recall that the spinorial covariant derivative is defined as

∇i ≡ ∂i +
1

4
ωabi γab (0.10)

Here we define such spaces as Calabi-Yau spaces.

(b) Show that the integrability condition of (0.9) implies the Ricci-flatness condition.
Namely, show that if there exist a non-zero solution ξ to the equation (0.9) then the
Ricci tensor of the metric gij obeys

Rij = 0 (0.11)

(c) Verify that replacing R6 with an arbitrary Calabi-Yau metric gij in the D3-brane
solution is still a supersymmetric solution of type IIB supergravity. Namely, show that

ds2 = H(yi)−1/2(−dt2 + dx⃗2) +H(yi)1/2
(
gijdy

idyj
)

(0.12)

eϕ = gs (0.13)

F5 = (1 + ∗)d
(
H(yi)−1vol(R1,3)

)
(0.14)

with

2CYH(yi) = 0 (0.15)

where 2CY is the scalar Laplace operator computed with the Calabi-Yau metric gij,
solves the equations of motion as well as the supersymmetry conditions of type IIB
supergravity.

To study the supersymmetry conditions consider the following ansatz for the ten-
dimensional Killing spinor

ϵ = ψ ⊗ ξ (0.16)

where ψ is a spinor in Minkowski space obeying ∇µψ = 0 and ξ is a spinor on the
Calabi-Yau space.

(d) State the further necessary condition on the Calabi-Yau metric gij in order for
the solution above to be interpreted as a stack of D3-branes placed at a Calabi-Yau
singularity. Illustrate this condition by writing down an explicit example of Ricci-flat
metric gij, that does not satisfy it.

(e) After picking an appropriate explicit solution to (0.15), write down and discuss the
“near-horizon” limit of such solution, including the full isometry group of the near-
horizon solution.
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Problem 2: the Schwarzschild-AdS black hole

Consider the four-dimensional Schwarzschild-AdS black hole with line element

ds2 = −f(r)dt2 + dr2

f(r)
+ r2

(
dθ2 + sin2 θdϕ2

)
(0.17)

where the coordinates θ ∈ [0, π] and ϕ ∈ [0, 2π] parameterise a round two-sphere and

f(r) = 1− 2GM

r
+
r2

L2
(0.18)

with M the mass of the black hole.

(a) Calculate the Hawking temperature TH of the black hole by requiring regularity of
the Euclidean metric obtained with the Wick rotation t = −iτ . In particular, defining
the position of the horizon of the Lorentzian metric as rh, that is the largest root of
the equation

f(rh) = 0 (0.19)

show that

TH =
L2 + 3r2h
4πrhL2

(0.20)

(b) Verify the consistency of the Bekenstein-Hawking relation between the entropy of
the black hole SBH and the area of the horizon A,

SBH =
A

4G
(0.21)

and the first law of thermodynamics

dM = THdSBH (0.22)

(c) Compute the holographically renormalized on-shell action obtained as

I = lim
ϵ→∞

Sbulk + SGH + Sct (0.23)

where

Sbulk = − 1

16πG

∫
r≤ϵ

d4x
√
|g|

(
R +

6

L2

)
(0.24)

is the bulk gravity action,

SGH = − 1

8πG

∫
r=ϵ

d3x
√

|γ|K[γ] (0.25)

3



is the Gibbons-Hawking boundary term and

Sct =
1

8πG

∫
r=ϵ

d3x
√

|γ|
(
2

L
+
L

2
R[γ]

)
(0.26)

are the counterterms. Here γij is the metric induced by (0.17) on a constant r = ϵ
hypersurface; K[γ] is the associated extrinsic curvature and R[γ] its Ricci scalar. In
particular, show that the result derived takes the form

IE = −iI|t=−iτ =
4π

TH

1

8πGL2

(
GML2 − r3h

)
(0.27)

=
M

TH
− SBH (0.28)

The computation can be carried out in Lorentzian signature and then analytically
continued to Euclidean signature, with periodically identified τ ∼ τ + 1

TH
, at the end.

The minimum temperature for which the Schwarzschild-AdS black hole exists is

Tmin =

√
3

2πL
(0.29)

For T ≥ Tmin there exists another solution with finite temperature and the same
asymptotic behaviour, which is “thermal AdS4”, given by Euclideanized global AdS4,
with metric

ds2 =
(
1 + r2

L2

)
dτ 2 +

dr2

1 + r2

L2

+ r2
(
dθ2 + sin2 θdϕ2

)
(0.30)

and τ identified periodically exactly as in the Schwarzschild-AdS black hole, namely
as τ ∼ τ + 4πrhL

2

L2+3r2h
.

(d) Compute the holographically renormalized Euclidean on-shell action of thermal
AdS, following the same steps as for the Schwarzschild-AdS black hole, and show that it
takes again the form (0.28). Discuss the Hawking-Page phase transition by comparing
the values of the holographically renormalized on-shell actions for the two solutions
and give the values of the critcal mass M∗ and corresponding critical temperature T∗
at which the transition occurs. In particular verify that T∗ > Tmin.

Problem 3: AdS5 × S5/Z2 and its dual SCFT

Recall that the metric on S5 can be written in the following form

ds2(S5) = dσ2 +
1

4
sin2 σ

(
dθ2 + sin2 θdϕ2

)
+

1

4
cos2 σ sin2 σ(dα + cos θdϕ)2

+
1

9

(
dψ − 3

2
sin2 σ(dα + cos θdϕ)

)2

(0.31)
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where the ranges of the coordinates are σ ∈ [0, π
2
], θ ∈ [0, π], ϕ ∈ [0, 2π], α ∈ [0, 4π],

ψ ∈ [0, 6π]. This is the “unit radius” Einstein metric on S5, normalised with Ricci
tensor

Rij = 4gij (0.32)

with Killing vectors generating the isometry group SO(6). These are canonical coor-
dinates that display the Sasaki-Einstein nature of S5, which can be viewed as a U(1)
bundle fibered over the base space space CP 2, with (Einstein) metric on the latter
being the first line of (0.31). The U(1) ⊂ SO(6) is generated by the Killing vector 3 ∂

∂ψ
.

Consider the space obtained by acting with a Z2 quotient on S5, where in these
coordinates the quotient acts by dividing by 2 the periodicity of the coordinate α,
namely consider the above metric, with α ∈ [0, 2π].

(a) What is the isometry group of the quotient space S5/Z2 so obtained?

It follows that AdS5 × S5/Z2, namely

ds2 =
r2

L2
(−dt2 + dx⃗2) +

L2

r2
(
dr2 + r2ds2(S5/Z2)

)
(0.33)

eϕ = gs (0.34)

F5 =
4

L

(
vol(AdS5) + L5vol(S5/Z2)

)
(0.35)

with all the other fields of the AdS5 × S5 solution unchanged, is a solution to the
equations of motion of type IIB supergravity. A more accurate analysis (that is not
required in the problem) reveals that this solution preserves 16

32
supersymmetry and

therefore it must be dual to an N = 2 SCFT in the IR.

(b) Compute the integrated volume Vol(S5/Z2).

The supersymmetric gauge theory conjectured to be holographic dual to this solution
has the following characteristics, expressed in the language of N = 1 supersymmetric
gauge theories:

1. Gauge group G = SU(N)1 × SU(N)2.

2. Two chiral multiplets Ua, a = 1, 2 transforming in the bi-fundamental repre-
sentation (N, N̄) of G. Two chiral multiplets Va, a = 1, 2 transforming in the
bi-fundamental representation (N̄,N) of G. One chiral multiplet Φ1 transforming
in the adjoint of SU(N)1 (and singlet under SU(N)2). One chiral multiplet Φ2

transforming in the adjoint of SU(N)2 (and singlet under SU(N)1).

3. A superpotential W = λ(Tr[Φ1ϵ
abUaVb]+Tr[Φ2ϵ

abVaUb]).
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(c) Discuss the (internal) global symmetry group of the Lagrangian of this theory in
the language of N = 1 supersymmetry and its relation to the isometry group of S5/Z2

in the gravity dual.

(d) Compute the VMS obtained setting to zero the F-terms and the D-terms of the
associated Abelian theory with G = U(1)1 × U(1)2. Then discuss its relationship to
the dual gravity solution. [Hint: consider first the D-term equations and exploit their
similarity to the conifold theory; then consider the F-term equations.]

Recall that the NSVZ exact beta function associated to each Yang-Mills gauge cou-
pling g of a gauge group factor is

β( g
2

4π
) = − g2

8π

3T (G)− 3
∑

i T (ri)(1−R[Xi])

1− g2

8π
T (G)

(0.36)

where R[Xi] are the R-charges of the fields Xi, transforming in some representation
of the gauge group factor. For SU(N), we have T (G) = T (adj) = N and T (N) =
T (N̄) = 1

2
. Furthermore, the beta function associated to a superpotential coupling λ

is proportional to

β(λ) ∝
∑
i

R[Xi]− 2 (0.37)

where the sum above is over all the chiral fields that participate to a superpotential
terms with the given coupling.

(e) Assuming that this theory has a fixed point (that may be part of a so-called “con-
formal manifold” of fixed points) at which it is a SCFT, derive the R-charges of the six
chiral fields, denoting them R[Xi] with Xi ∈ {Ua, Va,Φ1,Φ2}, by imposing conformal
invariance and maximizing the trial central charge/Weyl anomaly coefficient a, given
by

a =
3

32

(
3TrR3 − TrR

)
(0.38)

Moreover, compute the a of the SCFT and compare it with Vol(S5/Z2) using the
AdS/CFT dictionary.

Now consider themass deformation given by adding to this theory the superpotential
term

δW =
m

2
(Tr[Φ2

1]− Tr[Φ2
2]) (0.39)

(f) Assuming that this deformed theory flows to an (a priori different from the above)
SCFT in the IR, determine the exact R-charges and a anomaly coefficient of this
deformed theory.
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(g) After adding the mass deformation, the effective low energy theory may be derived
by the process of “integrating out” the massive fields, namely solving the (non-Abelian)
F-term equations for the massive fields in terms of the massless ones, and substituting
them back into the super-potential. Carry out this computation and uncover the low
energy theory. Discuss and interpret your findings.
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