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Lecture 1 : Simplicial Homology I

Simplices

∆n ⊂ Rn+1 given by (t0, · · · , tn) with ti ≥ 0 and ∑ ti = 1

∆̆n same with ti > 0

Standard linear maps from the faces

mi : ∆n−1 → ∆n (i = 0, · · · , n)
(t0, · · · , tn−1) 7→ (t0, · · · , 0, · · · , tn−1)

with 0 in i–th position

For 0 ≤ j ≤ n− 1 and 0 ≤ i ≤ n we have

mi ◦mj = mj ◦mi−1 (i > j)
= mj+1 ◦mi (i ≤ j)

Definition of Finite ∆–Complex

X topological space

A finite list of maps σα : ∆nα → X such that



Lecture 1 : Simplicial Homology II

σα one to one from ∆̆nα to eα ≡ σα
(
∆̆nα
)

The sets eα have vanishing overlap and cover X

If σα is in the list, then so is σα ◦mi for i = 0, · · · , nα

A ⊂ X is open (closed) in X ⇔ σ−1
α (A) is open (closed) in ∆nα

Homology

X is a ∆–complex

∆n(X ) formal linear combinations with integer coefficients of maps
σα with nα = n

∑
α with nα=n

kα σα (kα ∈ Z)

Free abelian group with basis given by maps σα with nα = n.
Elements are called n–chains



Lecture 1 : Simplicial Homology III

Boundary maps

∂ : ∆n(X )→ ∆n−1(X )

∂σα =
nα

∑
i=0

(−)i σα ◦mi

Basic fact
∂2 = 0

Proof (with n = nα)

∂2σα =
n−1

∑
j=0

n

∑
i=0

(−)i+j σα ◦mi ◦mj

= ∑
n≥i>j≥0

(−)i+j σα ◦mi ◦mj + ∑
n−1≥j≥i≥0

(−)i+j σα ◦mj+1 ◦mi

In the second term, j + 1→ i and i → j . We obtain the first term,
up to an overall (−) sign



Lecture 1 : Simplicial Homology IV

Chain complex

· · · → Cn+1
∂n+1→ Cn

∂n→ Cn−1 → · · ·

with

∂n ◦ ∂n+1 = 0

We have

Cn Chains

ker ∂n Cycles

Im ∂n+1 Boundaries

and

Im ∂n+1 ⊂ ker ∂n ⊂ Cn



Lecture 1 : Simplicial Homology V

Homology groups of chain complex

Hn (C ) = ker ∂n / Im ∂n+1

Two cycles are homologous if they differ by a boundary

∂α = 0 [α] = [β] if α = β + ∂γ

Simplicial homology of the complex ∆n (X ) denoted by

H∆
n (X )

Two Dimensional Examples

Point and S1

0→ Z→ 0 H0 (point) = Z

0→ Z
0→ Z→ 0 H0 (S1) = H1 (S1) = Z



Lecture 1 : Simplicial Homology VI

Torus

∂U = ∂D = a + b− c

∂a = ∂b = ∂c = 0

with chain complex

0→ Z2 ∂→ Z3 0→ Z→ 0

and

H0 = Z

H1 = Z2 (using the base a, b, a + b− c is obvious)

H2 = Z (generated by U −D)



Lecture 1 : Simplicial Homology VII

Real projective plane RP2 = S2/ (x ∼ −x)

∂U = a− b + c

∂D = −a + b + c

∂a = ∂b = w − v ∂c = 0

with chain complex

0→ Z2 ∂2→ Z3 ∂1→ Z2 → 0

and

H0 = Z

H1 = Z2 ( ker ∂1 generated by c̃ = a− b and c

Im ∂2 by c + c̃ and c − c̃)

H2 = 0



Lecture 1 : Simplicial Homology VIII

Surface of genus g with κ crosscaps. Chain complex

0→ Z4g−2+4κ ∂2→ Z6g+6κ−3 ∂1→ Z1+κ → 0

If κ = 0 then

∂ (U1 − U2 + · · · ) = 0 unique generator of H2

The ci are homologous to ai , bi

∂1 = 0

and we get homology

H2 = Z H1 = Z2g H0 = Z

If κ > 0 choose g = 0 since

(g , κ) ∼ (g − 1, κ + 2) (κ > 0)



Lecture 1 : Simplicial Homology IX

Then

ker ∂2 = 0

ker ∂1 generated by

 ci 2κ − 1
ai − di , bi − di 2κ
di+1 − di κ − 2

Im ∂2 generated by 4κ − 2 terms of the

form c + a− d , c + b− d

and (reinserting g)

H2 = 0 H1 = Z2g+κ−1 ⊕Z2 H0 = Z

Exercise : If one starts with chains ∑ kα σα with coefficients in an
arbitrary abelian group G one obtains the homology groups with
coefficients in G

H∆
n (X , G )

Compute the homology groups for the above spaces for G = Z2, R.



Lecture 2 : Cohomology and Homological Algebra I

Simplicial Cohomology

Give chain complex · · · ∂→ Cn+1
∂→ Cn

∂→ · · · and abelian group G
define cochains

Cn (G ) = Hom (Cn, G ) = C ?
n

= group maps from Cn to G

Coboundary map δ with δ2 = 0

δ : Cn (G )→ Cn+1 (G )

Cn+1
∂→ Cn

ϕ→ G

δϕ = ϕ∂

Cocycle and coboundary

δϕ = 0 (ϕ vanishes on boundaries)
ϕ = δψ (ϕ vanishes on cycles)



Lecture 2 : Cohomology and Homological Algebra II

Cohomology of the cochain complex

· · · δ→ Cn (G ) δ→ Cn+1 (G ) δ→ · · ·

defined by
Hn (C , G ) = ker δ/ Im δ

Simplicial cohomology
Hn

∆ (X , G )

when Cn = ∆n (X ). A cochain ϕ ∈ Cn is like giving an element
ϕ (σα) ∈ G for each σα with nα = n, since those form a basis for
∆n (X )
In general

Hn 6= H?
n

The above is true if G = R, C.



Lecture 2 : Cohomology and Homological Algebra III

Basic Homological Algebra

Chain map f : An → Bn

· · · ∂→ An+1
∂→ An

∂→ · · ·
↓ f ↓ f

∂· · · → Bn+1
∂→ Bn

∂→ · · ·

Squares commute so that

f ◦ ∂ = ∂ ◦ f

Maps

cycles → cycles

boundaries → boundaries

and therefore

Hn (A) f?→ Hn (B)



Lecture 2 : Cohomology and Homological Algebra IV

f , g : An → Bn chain maps. A chain homotopy between f and g is
a map

P : An → Bn+1

P∂ + ∂P = g − f

In homology
g? = f?

since, on cycles, g and f differ by a boundary

A chain

· · · → An+1
∂n+1→ An

∂n→ An−1 → · · ·

is called exact sequence if it has vanishing homology

ker ∂n = Im ∂n+1



Lecture 2 : Cohomology and Homological Algebra V

Short exact sequence

0→ A
α→ B

β→ C → 0

means

α injective

β surjective

Im α = ker β



Lecture 2 : Cohomology and Homological Algebra VI

Let

0→ An
i→ Bn

j→ Cn → 0

a short exact sequence of chains. There exists a map

∂ : Hn (C )→ Hn−1 (A)

such that the long sequence below is exact

· · · → Hn (A) i?→ Hn (B)
j?→ Hn (C ) ∂→

∂→ Hn−1 (A)→ · · ·

In the proof we shall refer to the following two diagrams

0 → An
i→ Bn

j→ Cn → 0
↓ ∂ ↓ ∂ ↓ ∂

0 → An−1
i→ Bn−1

j→ Cn−1 → 0



Lecture 2 : Cohomology and Homological Algebra VII

and
b̃ → c̃

↓
ã b → c

↓ ↓
a → ∂b 0
↓ ↓
∂a → 0

To define ∂ let c ∈ Cn with ∂c = 0. Using the surjectivity of j we
have c = jb with ∂b such that j∂b = 0. Since ker j = Im i we have
∂b = ia with ∂a = 0 since i∂a = ∂2b = 0 and i is injective. Then

∂ [c ] = [a]

To show that the above is well defined, assume c = ∂c̃ . Then c̃ = j b̃
and b = ∂b̃ + i ã for some ã. But then ia = ∂b = i∂ã and a = ∂ã.

Exactness of the long homology sequence is shown by proving
ker ∂ ⊂ Im j?, ker j? ⊂ Im i?, ker i? ⊂ Im ∂ and the opposite



Lecture 2 : Cohomology and Homological Algebra VIII

inclusions. As an example, let us show the first inclusion. With
reference to the above constrution, assume

a = ∂ã

Then

∂ (b− i ã) = 0 j (b− i ã) = jb = c

Five Lemma. In the commutative diagram below, if the rows are
exact and α, β, δ, ε are isomorphisms, then γ is also an isomorphism

A → B → C → D → E
↓ α ↓ β ↓ γ ↓ δ ↓ ε
A′ → B ′ → C ′ → D ′ → E ′



Lecture 2 : Cohomology and Homological Algebra IX

Examples
Homology of the simplex ∆N

We will prove that (clear for N = 0)

H∆
0 (∆N ) = Z

H∆
n (∆N ) = 0 (1 ≤ n ≤ N)

Let An = ∆n(∆N ) and Bn = ∆n(∆N+1)
Define two maps

i : An → Bn

P : An → Bn+1

where i is the inclusion and P is defined by

[v0, · · · , vn] 7→ [w , v0, · · · , vn, w ]



Lecture 2 : Cohomology and Homological Algebra X

We have

i∂ = ∂i (map of chains)

∂P = −P∂ + i (chain homotopy between i and 0)

and

B0 = iA0 ⊕Z (Z generated by [w ] )

Bn = iAn ⊕ PAn−1 (n ≥ 1)

Let b ∈ Bn with ∂b = 0. If n ≥ 1 then

b = ia + Pa′ = ∂Pa + P
(
∂a + a′

)
Also

∂b = i
(
∂a + a′

)
− P∂a′ = 0

implies ∂a + a′ = 0 and ∂a′ = 0.

If n = 0 then
b = ia + k [w ] = ∂Pa + k [w ]



Lecture 2 : Cohomology and Homological Algebra XI

Homology of the sphere SN ' ∂∆N+1

Chain complex of ∆N+1

0→ ∆N+1 = Z
∂N+1→ ∆N = ZN+2 ∂N→ ∆N−1 → · · ·

with
ker ∂N = Im ∂N+1 = Z

But ker ∂N computes the N homology of ∂∆N+1 which equals ∆N+1

aside from a single simplex of dimension N + 1. Therefore the
non–vanishing homology groups of the sphere are

HN (SN ) = Z

H0 (SN ) = Z



Lecture 3 : de Rham Cohomology I

Forms

M a manifold. A k–form is written localy as

ω =
1

k !
ωi1···ik (x) dx i1 ∧ · · · ∧ dx ik = ωI (x) dx I

Ωk (M) space of smooth k–forms on M (with 0 ≤ k ≤ dimR M)

Assiciative wedge product defined by(
dx i1 ∧ · · · ∧ dx ik

)
∧
(
dx j1 ∧ · · · ∧ dx jq

)
= dx i1 ∧ · · · ∧ dx jq

Exterior derivative

d : Ωk (M)→ Ωk+1 (M)

defined by

d
(

ωI (x) dx I
)

= ∂i ωI (x) dx i ∧ dx I



Lecture 3 : de Rham Cohomology II

Basic properties

d (α ∧ β) = dα ∧ β + (−)α α ∧ dβ

d2 = 0
(

∂i ∂j f (x) dx i ∧ dx j = 0
)

Pullback

f : N → M

f ? : Ωk (M)→ Ωk (N)

locally defined by

(f ?ω)j1···jk (y) =
∂x i1

∂y j1
· · · ∂x ik

∂y jk
ωi1···ik (x (y))

and satisfying

f ? (dα) = df ? (α)

(f ◦ g)? = g? ◦ f ?

f ? (α ∧ β) = f ? (α) ∧ f ? (β)



Lecture 3 : de Rham Cohomology III

de Rham Cohomology

Complex

0→ Ω0 (M) d→ Ω1 (M) d→ Ω2 (M) d→ · · · d→ ΩdimR M (M)→ 0

Cohomology

Hn (M) =
ker d

Im d
(closed form / exact forms)

Given f : N → M the map f ? descends in cohomology (chain map)

f ? : Hn (M)→ Hn (N)



Lecture 3 : de Rham Cohomology IV

Cohomology ring. The wedge produce on forms descends in
cohomology

H? (M) = ⊕kHk (M)

Hk ×Hq ∧→ Hk+q [α] ∧ [β] 7→ [α ∧ β]

Compatible with pullback

f ? ([α] ∧ [β]) = f ? [α] ∧ f ? [β]

Cohomology ring with compact support

H?
c (M) = ⊕kHk

c (M)

using forms with compact support Ωk
c (M) with

d : Ωk
c (M)→ Ωk+1

c (M)
Note : Pullbacks do not send forms with compact support in forms
with compact support



Lecture 3 : de Rham Cohomology V

Mayer–Vietoris

If A ⊂ M is open with i : A→ M inclusion, we have the chain maps

i? : Ω? (M)→ Ω? (A) restriction map

i? : Ω?
c (A)→ Ω?

c (M) extension map

Assume
M = A∪ B (A, B open)

Chain maps

0→ Ω? (M)→ Ω? (A)⊕Ω? (B)
i?A−i?B→ Ω? (A∩ B)→ 0

0→ Ω?
c (A∩ B)→ Ω?

c (A)⊕Ω?
c (B)

jA?−jB?→ Ω?
c (M)→ 0

with iA, iB and jA, jB inclusions

A∩ B
iA→ A

jA→ M A∩ B
iB→ B

jB→ M



Lecture 3 : de Rham Cohomology VI

Short exact sequences. To show surjectivity of i?A − i?B choose a
partition of unity ρA, ρB . Given a form ω on A∩ B it comes from

ρBω⊕−ρAω

Surjectivity of jA? − jB?. A form ω on M comes from

ρAω⊕−ρBω

Long exact sequences

· · · → Hk (M)→ Hk (A)⊕Hk (B)→ Hk (A∩ B)→ Hk+1 (M)→ · · ·
· · · → Hk

c (A∩ B)→ Hk
c (A)⊕Hk

c (B)→ Hk
c (M)→ Hk+1

c (A∩ B)→ · · ·

Poincaré Lemmas

Basic statement

Hk (M ×Rn) = Hk (M)

Hk
c (M ×Rn) = Hk−n

c (M)



Lecture 3 : de Rham Cohomology VII

Projection and zero section

Rn ×R
π
�
s

Rn π ◦ s = 1Rn

Map
K : Ωk (Rn ×R)→ Ωk−1 (Rn ×R)

defined by

aI (x , t) dx I 7→ 0

aI (x , t) dx I dt 7→
(∫ t

0
aI (x , s) ds

)
dx I

Basic fact

s? ◦ π? − 1 = 0

π? ◦ s? − 1 = (−)k (dK −Kd) (chain homotopy)

Therefore in cohomology s? and π? are inverses and the
cohomologies conincide



Lecture 3 : de Rham Cohomology VIII

Sample computation

(dK −Kd)
(
aI dx I

)
= −K

(
∂iaI dx idx I

)
−K

(
∂taI dtdx I

)
= (−)k−1

(∫ t

0
∂taI

)
dx I = (−)k−1 (aI (x , t)− aI (x , 0)) dx I

Let

e = e (t) dt with compact support∫
e = 1

and

E (t) =
∫ t

−∞
e (s) ds



Lecture 3 : de Rham Cohomology IX

Chain maps

Ωk
c (Rn)

e?

�
π?

Ωk+1
c (Rn ×R)

given by

φ
e?7→ φ ∧ e

and

aI dx I π?7→ 0

aI dx I dt
π?7→
(∫ ∞

−∞
aI (x , s) ds

)
dx I

Map
K : Ωk

c (Rn ×R)→ Ωk−1
c (Rn ×R)

defined by

aI (x , t) dx I 7→ 0

aI (x , t) dx I dt 7→
(∫ t

−∞
aI ds − E (t)

∫ ∞

−∞
aI ds

)
dx I



Lecture 3 : de Rham Cohomology X

Again (exercise)

π? ◦ e? − 1 = 0

e? ◦ π? − 1 = (−)k (dK −Kd) (chain homotopy)

Homotopy invariance

Let

M
st
�
π

M ×R
F→ N

The maps
ft = F ◦ st : M → N

define a smooth family parameterized by t

In cohomology the map s?
t = (π?)−1 is independent of t and so is

f ?
t = s?

t ◦ F ? : H? (N)→ H? (M)



Lecture 3 : de Rham Cohomology XI

Two spaces M and N are homotopic if we have two maps
f : M → N and g : N → M with g ◦ f and f ◦ g smoothly
deformable to the identity on M and N respectively. Homotopic
spaces have the same cohomology

A ⊂ M is a deformation retract if there is a smooth family of maps
ft : M → M with ft |A = 1A and with f0 = 1M and f1 (M) = A.
Then A and M are homotopic

Example : Spheres SN

SN = A∪ B with A∩ B ∼ SN−1

Long exact sequence

· · · → HN−1 (A)⊕HN−1 (B)→ HN−1 (A∩ B)→
→ HN (SN )→ HN (A)⊕HN (B)→ · · ·

implies
HN−1 (SN−1) = HN (SN )



Lecture 4: Poincaré Duality and Künneth Theorem I

Integration and Stokes Theorem

N manifold with boundary if you can cover it with coordinate
patches (Uα, xα) with Uα diffeomorphic to either Rn or Hn (given
by (x1, · · · , xn) with xn ≥ 0)

∂N given by points corresponding to ∂Hn (xn = 0) with local
coordinates (x1, · · · , xn−1)
N orientable if you can choose coordinates with

det
∂y

∂x
> 0

Let ω ∈ Ωn
c (N). Given an oriented (Uα, xα) and a partition of unity

ρα define∫
N

ω = ∑α

∫
Uα

ραω
∫
Uα

η ≡
∫

Rn,Hn
η1···n (xα) dx1

α · · · dxn
α



Lecture 4: Poincaré Duality and Künneth Theorem II

If
(
Vβ, yβ

)
has the same orientation and χβ is a corresponding

partition of unity we have∫
Uα

ραχβω =
∫
Vβ

ραχβω

since

dy1
β ∧ · · · ∧ dyn

β = det

(
∂yβ

∂xα

)
dx1

α ∧ · · · ∧ dxn
α

dy1
β · · · dyn

β =
∣∣∣∣det

(
∂yβ

∂xα

)∣∣∣∣ dx1
α · · · dxn

α

Summing over α, β we obtain

∑α

∫
Uα

ραω = ∑β

∫
Vβ

χβω



Lecture 4: Poincaré Duality and Künneth Theorem III

Stokes Theorem ∫
N

dω =
∫

∂N
ω

where, given oriented coordinates x1, · · · , xn on N with xn ≥ 0, the
orientation on ∂N is given by (−)n x1, · · · , xn−1

Using linearity it suffices to show it for Rn, Hn. For instance

ω = f dx1 ∧ · · · ∧ dxn−1

dω = (−)n−1 ∂nf dx1 ∧ · · · ∧ dxn∫
Hn

dω = (−)n−1
∫
xn≥0

∂nf dx1 · · · dxn

= (−)n
∫
xn=0

f dx1 · · · dxn−1 =
∫

∂Hn
ω



Lecture 4: Poincaré Duality and Künneth Theorem IV

dim Hn < 0

M with good finite cover U1 · · ·Up (of finite type) and

A = U1 ∪ · · · ∪ Up−1 (of finite type)

B = Up

A∩ B of finite type (covered by Ui ∩ Up with i = 1, · · · , p − 1)

Long exact sequences

Hk−1 (A∩ B)→ Hk (M)→ Hk (A)⊕Hk (B)

Hk+1
c (A∩ B)← Hk

c (M)← Hk
c (A)⊕Hk

c (B)

Left and right factors above have a finite dimension by induction on
p. By exactness

dim Hk (M) < ∞ dim Hk
c (M) < ∞



Lecture 4: Poincaré Duality and Künneth Theorem V

Poincaré Duality

M orientable of finite type (with dim M = n)

M = A∪ B with ρA, ρB partition of unity

Integration maps

Hk (M)×Hn−k
c (M)→ R

[α]× [β] 7→
∫
M

α ∧ β (well defined using Stokes)

or equivalently

Hk (M)→ Hn−k ?
c (M)

[α] 7→
∫
M

α∧

The above map is an isomorphism



Lecture 4: Poincaré Duality and Künneth Theorem VI

Look at the diagram

Hk (M) → Hn−k ?
c (M)

↓ ↓
Hk (A)⊕Hk (B) → Hn−k ?

c (A)⊕Hn−k ?
c (B)

↓ ↓
Hk (A∩ B) → Hn−k ?

c (A∩ B)
↓ ↓

Hk+1 (M) → Hn−k−1 ?
c (M)

We shall show that it is a commutative diagram up to signs. The
theorem then follows by the five–lemma and induction on the size of
the finite cover

The only subdle point is the last square. Let [γ] ∈ Hk (A∩ B) and
[ω] ∈ Hn−k−1

c (M)



Lecture 4: Poincaré Duality and Künneth Theorem VII

The class d? [γ] is defined by

d (ρBγ) on A

d (−ρAγ) on B

which coincide and have support on A∩ B and define an element of
Hk+1 (M)
The class d? [ω] is defined by

d (ρAω) ∈ Hn−k
c (A)

d (−ρBω) ∈ Hn−k
c (B)

which coincide and have support on A∩ B and define an element of
Hn−k

c (A∩ B)



Lecture 4: Poincaré Duality and Künneth Theorem VIII

We must show that∫
M

d? [γ] ∧ [ω] = ±
∫
A∩B

[γ] ∧ d? [ω]

This follows from∫
A

ρAd (ρBγ) ∧ω +
∫
B

ρBd (−ρAγ) ∧ω

= ±
∫
A

ρBγ ∧ d (ρAω)±
∫
B

ρAγ ∧ d (−ρBω)

= ±
∫
A∩B

(ρA + ρB ) γ ∧ d (ρAω) = ±
∫
A∩B

γ ∧ d (ρAω)

Künneth Theorem

Consider the space M ×N with M of finite type

Look at projections

M ×N
η→ N

↓ π
M



Lecture 4: Poincaré Duality and Künneth Theorem IX

The map

H? (M)×H? (N)→ H? (M ×N)
[α]× [β] 7→ [π?α ∧ η?β] (well defined ! Check)

is an isomorphism

Proof similar in spirit to that used to show Poincaré duality, relying
on the Meyer–Vietoris sequence and induction on size of the finite
cover of M



Lecture 5: Čech Cohomology I

Sheafs

Sheaf F on X

U open 7→ F (U) abelian group
V ⊂ U 7→ restriction maps FV

U : F (U)→ F (V )

such that

FW
V ◦ F

V
U = FW

U (for W ⊂ V ⊂ U)

FU
U = 1

and such that, if U =
⋃

iUi , then

given f ∈ F (U) such that f |Ui
= 0 then f = 0

given fi ∈ F (Ui ) such that fi = fj on Ui ∩Uj , then there is an
f ∈ F (U) with fi = f |Ui

Examples of interest to us

Constant sheafs with F (U) = G fixed abelian group (Z, R, C, · · · )
and FV

U = 1G

Smooth and holomorphic sections of vector bundles



Lecture 5: Čech Cohomology II

Map of sheafs f : F → G are maps

fU : F (U)→ G (U)

compatible with restrictions

F (U)
fU→ G (U)

↓ FV
U ↓ GV

U

F (V )
fV→ G (V )

Čech Cohomology

Uα open cover of X with α ∈ I ordered countable set



Lecture 5: Čech Cohomology III

Čech cochains

Cp (U,F ) = ∏
α0<···<αp

F
(
Uα0···αp

)
with

Uα0···αp = Uα0 ∩ · · · ∩ Uαp

A cochain is the following data

ωα0···αp ∈ F
(
Uα0···αp

)
Convention: extend ωα0···αp to all indices by requiring antisymmetry

Coboundary map

δ : Cp → Cp+1

(δω)α0···αp+1
=

p+1

∑
i=0

(−)i ωα0···α̂i ···αp+1
(restriction maps suppressed)

δ2 = 0
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Cohomology
H? (U,F )

Relation to Simplicial Cohomology

X finite simplicial complex (double baricentric subdivision of a
∆–complex)

Uα with α = 1, · · · , N one of the ordered vertices of X is the
open–star of α (union of the interiors ∆̆ of all simplices which
contain α)

Uα is a good finite cover and

Uα ↔ Vertices

Uαβ ↔ 1–simplices (Uαβ 6= ∅ iff the 1–simplex α–β is

part of the simplicial complex X )

· · ·
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Cochains coincide

Cp (U, G ) = Hom (∆n (X ) , G )

where G is the contant sheaf. Also coboundaries coincide and
therefore

Hp

Čech
(U, G ) = Hp

∆ (X , G )

Čech–deRham Complex

Good cover Uα of X with partition of unity ρα

Double complex

Kp,q = Cp (U, Ωq)

δ : Kp,q → Kp+1,q

d : Kp,q → Kp,q+1
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Čech–deRham complex

Kn =
⊕

p+q=n
Kp,q

D = δ + (−)p d

with

D2 = δ2 + d2 + (−)p δd + (−)p+1 dδ = (−)p [δ, d ] = 0

Čech–deRham cohomology

H?
CD =

ker D

Im D



Lecture 5: Čech Cohomology VII

Double inclusion

0→ Ω2 r→ K0,2 K1,2 K2,2

0→ Ω1 r→ K0,1 K1,1 K2,1

0→ Ω0 r→ K0,0 K1,0 K2,0

↑ i ↑ i ↑ i
C0 (U, R) C1 (U, R) C2 (U, R)
↑ ↑ ↑
0 0 0

induce maps in cohomology

r? : H? (X )→ H?
CD

i? : H? (U, R)→ H?
CD

Colums are exact since U is good and on the intersections we use
Poincaré’s Lemma (it is exact in dimension zero at Kk,0 since we are
quotenting by constant functions Ck (U, R))
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The rows are exact. Define the map

P : Kp,q → Kp−1,q

(Pω)α0···αp−1
= (−)p ∑

αp

ωα0···αp ραp

We have that
Pδ + δP = 1

and each cocycle is a coboundary

Proof

(Pδω)α0···αp
= (−)p+1 ∑

αp+1

p+1

∑
i=0

(−)i ωα0···α̂i ···αp+1
ραp+1

(δPω)α0···αp
= (−)p

p

∑
i=0

∑
αp

(−)i ωα0···α̂i ···αp+1
ραp+1

All terms cancel aside from the term with i = p + 1 in the first sum
which equals ω since ∑αp+1

ραp+1 = 1
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The maps r? and i? are isomorphisms. We have therefore

H?
deRham

r ?

→̃ H?
CD

i?

←̃ H?
Čech

' H?
∆

r? surjective : Let ω ∈ K2 with Dω = 0 (the general case is
analogous)

ω1

α1 ω2

α2 ω3
δ→ 0

η → ω̃1

0
0

Since δω3 = 0 choose α2 so that δα2 = −ω3. Then ω + Dα2 has
no elements in K2,0. Analogously I can choose α1 so that
ω + D (α1 + α2) has only a non–vanishing element ω̃1 ∈ K0,2.
Since δω̃1 = 0 it must be the image of a globally defined closed
2–form η

r?, i? injective and i? surjective are proved in similar ways
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Basic Construction

Manifold M and open cover Uα

Smooth maps
gαβ : Uα ∩ Uβ → GL (n, R)

such that

gαβ gβγ = gαγ (on Uα ∩ Uβ ∩ Uγ)

(this implies gαα = 1 and gαβ = g−1
βα )

Building blocks
Eα = Uα ×Rn

with equivalence relation

(x , v) ∈ Eα ∼ (y , w) ∈ Eβ if x = y and v = gαβw

Total space
π : E → M
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A section sα is given by

sα : Uα → Rn

sα = gαβ sβ

Given a map f : N → M the open cover Vα = f −1 (Uα) and maps
gαβ ◦ f define the pullback vector bundle on N

f −1E → E
↓ π ↓ π

N
f→ M

Complex bundles : replace R with C

Holomorphic bundles : M complex manifold, replace R with C and
smooth with holomorphic
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Two vector bundles
(
Uα, gαβ

)
and

(
Uα, hαβ

)
on M are equivalent if

there are smooth maps

λα : Uα → GL (n, R)

such that

gαβ = λα hαβ λ−1
β

If the open covers are different, pass to a common refinement first.
Various equivalent representations

(
Uα, gαβ

)
are called trivializations

Basic Examples

Trivial Bundle

E = M ×Rn
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Tangent bundle TN with transition functions

(
gαβ

)
ij

=
∂x i

α

∂x j
β

where x i
α are coordinates on Uα. Sections Vα : Uα → Rn are vector

fields

∑
i

V i
α

∂

∂x i
α

Holomorphic tangent bundle TN with N a complex manifold and
with transition functions

(
gαβ

)
ij

=
∂z i

α

∂z j
β

where z i
α are holomorphic coordinates on Uα
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Orientable Bundles

A real vector bundle is orientable if it has a trivialization with
transition functions gαβ such that

det gαβ > 0

Two simple facts

A manifold M is orientable if TM → M is an orientable vector bundle

If M is an orientable manifold and E → M and orientable vector
bundle, then E is an orientable manifold

Basic facts

A real vector bundle always admits an O (n) trivialization

A complex vector bundle always admits a U (n) trivialization

A real orientable vector bundle always admits an SO (n) trivialization
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Operations on Vector Bundles

Basic operations on vector spaces

V ⊕W

V ⊗W
(

also Symk V and
∧kV

)
V ?

extend to operations on vector bundles V , W → M, with transition
functions given by

gαβ ⊕ hαβ

gαβ ⊗ hαβ

t(g−1
αβ )

Important is the line bundle
∧dim V V with transition functions

det
(
gαβ

)
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Complex conjugation Ē of a complex vector bundle E has transition
functions g?

αβ

The complexification EC of a real vector bundle E has
dimC EC = dimR E and the same transition functions using the
inclusion

GL (n, R) → GL (n, C)
↑ ↑

O (n) → U (n)

The realization ER of a complex vector bundle E has
dimR ER = 2 dimC E with transition functions

(
gαβ

)
R

= M−1
(

Re gαβ − Im gαβ

Im gαβ Re gαβ

)
M with M =


1
001 · · ·
· · ·
01
0001
· · ·
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and M ∈ O (2n), defining the map (since det(gαβ)R =
∣∣det gαβ

∣∣2)

GL (n, C) → GL (2n, R)
↑ ↑

U (n) → SO (2n)

Therefore ER is orientable

Exercises: show the isomorphisms as complex bundles

(ER)C ' E ⊕ Ē
Ē ' E ?

More Examples

Cotangent bundle T ?M with sections one–forms

Bundles TM ⊕ · · · ⊕TM ⊕T ?M ⊕ · · · ⊕T ?M with sections tensors∧kT ?M with sections k–forms

Holomorphic cotangent bundle T ?
M and

∧kT ?
M

Canonical line bundle KM =
∧dimC MT ?

M
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A basic relations
TMC = TM ⊕ T̄M

Connection and curvature

E
π→ M vector bundle with trivialization Uα and gαβ

Section

sα : Uα → Kn (K = R, C with n = dimK E )
sα = gαβsβ

A connection are one–forms Aα on Uα with values in gl (K , n) such
that

(d + Aα) sα ≡ Dsα

is a section of E ⊗ T ?M so that

Dsα = gαβDsβ

This implies
Aα = gαβ Aβ gβα + gαβ dgβα
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Curvature

Fα = dAα + Aα ∧ Aα

so that

Fα = gαβ Fβ gβα

DFα = dFα + Aα ∧ Fα − Fα ∧ Aα = 0 (Bianchi Identity)
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First Chern Class

M of finite type with Uα a good cover and ρα partition of unity

L
π→ M complex line bundle with gαβ : Uα ∩ Uβ → U (1) ∈ C?

(since U (1) = SO (2) it is like considering real orientable vector
bundles with dimR = 2)

Define

ωαβ = − 1

2πi
gαβ dgβα ∈ K1,1

One has

ωαβ ∝ d ln gαβ → dω = 0

gαβ gβγ = gαγ → δω = 0
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Define

θαβ =
1

2πi
ln gαβ ∈ K1,0 (choice of ln possible since Uα is good)

Aα = −2πi ∑βωαβ ρβ ∈ K0,1 (it defines a connection )

so that

dθ =
δA

2πi
= ω

ω is cohomologous to

1. − 1

2πi
dA = − 1

2πi
F

2. (δθ)αβγ = θαβ + θβγ − θαγ = nαβγ

1 Cohomology class in H2 (M, C). If we change connection to A + a,
then aα = aβ defines a global one–form and F → F + da changes by
a boundary

2 nαβγ ∈ Z constants on Uα ∩Uβ ∩Uγ. Integer class in H2 (M, Z)
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Denote with
c1 (L)

Chern Classes

E
π→ M complex vector bundle with dimC E = n and with

connection A and curvature F . We define the total Chern class of E
as

c (E ) = det

(
1− 1

2πi
F

)
= c0 (E )+ c1 (E )+ · · ·+ cn (E ) ∈ H? (M)

where

c0 (E ) = 1 ci (E ) ∈ H2i (M)

Classes independent of connection

1 For an infinitesimal variation Aα → Aα + εα one has εα = gαβ εβ gβα

and Fα → Fα + Dεα with Dεα = dεα + Aα ∧ εα + εα ∧ Aα
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2 The variation of
Tr (F n)

is proportional to (using Bianchi identity)

Tr(Dε F n−1) = Tr(D(ε F n−1)) = d Tr(ε F n−1)

3 Given two connections A and A′ so is the convex combination
xA + (1− x) A′

Basic Properties

Naturality : given E → M complex vector bundle and f : N → M
one has

c(f −1E ) = f ?c (E )

since f ?Aα defines a connection on f −1E → N

Whitney sum rule

c (E ⊕ F ) = c (E ) c (F )

Given connections Aα and Bα for E and F , choose Aα ⊕ Bα as
connection for E ⊕ F
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Splitting principle : Given vector bundles Ei → M there is a
σ : N → M such that

σ−1Ei is a sum of line bundles

σ? : H? (M)→ H? (N) is injective

Suppose P (c (Ei )) is a polynomial on the Chern classes, and
suppose that we have shown that P = 0 when the Ei ’s are sums of
line bundles. Then in general

σ?P (c (Ei )) = P(c(σ−1Ei )) (naturality)

= 0 (the σ−1Ei are sums of line bundles)

Since σ? is injective we conclude

P (c (Ei )) = 0
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Some computations

Given two line bundles L1 and L2 one has (trivial check)

c1 (L1 ⊗ L2) = c1 (L1) + c1 (L2) c1 (L?
1) = −c1 (L1)

Let E = L1 ⊕ · · · ⊕ Ln with c (Li ) = 1 + xi . Then

c (E ) = ∏i (1 + xi )

ci (E ) =
1

k ! ∑
iα 6=iβ

xi1 · · · xik

Let F = L̃1 ⊕ · · · ⊕ L̃m with c
(
L̃i

)
= 1 + yi . Then

c (E ⊗ F ) = ∏i ,j

(
1 + xi + yj

)
= 1 + ∑i ,j

(
xi + yj

)
+ · · ·

= 1 + m c1 (E ) + n c1 (F ) + · · ·

If m = 1 then

c (E ⊗ F ) = ∏i (1 + xi + y) = ∑ici (E ) cn−i (F )
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Exercise : Show that ci (E ?) = (−)i ci (E ) and compute Chern
classes as symmetric polynomials in the xi and explicitly for low
degrees for ⊗kE =

⊕ (
Li1 ⊗ · · · ⊗ Lik

)
∧kE =

⊕
i1<···<ik

(
Li1 ⊗ · · · ⊗ Lik

)
Sym k E =

⊕
i1≤···≤ik

(
Li1 ⊗ · · · ⊗ Lik

)
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More Complex Classes

Classes defined using the splitting principle

Td (E ) = ∏i
xi

1− e−xi
Td (E ⊕ F ) = Td (E ) Td (F )

L (E ) = ∏i
xi

tanh xi
L (E ⊕ F ) = L (E ) L (F )

Â (E ) = ∏i
xi /2

sinh (xi /2)
Â (E ⊕ F ) = Â (E ) Â (F )

ch (E ) = ∑ie
xi ch (E ⊕ F ) = ch (E ) + ch (F )

ch (E ⊗ F ) = ch (E ) ch (F )

Pontrjagin Classes

Given a real vector bundle E → M of dimR = n we define the
Pontrjagin classes as

p (E ) = c (EC)
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Since EC = E ?
C and since ci

(
E ?

C

)
= (−)i c (EC) we have that

2c2i+1 (EC) = 0 (pure torsion of order 2)

The above classes are usually discarded and one defines

p = p0 − p1 + p2 − · · · = c0 + c2 + c4 + · · ·

pi (E ) = (−)i c2i (EC)

Since (E ⊕ F )C = EC ⊕ FC we have

p (E ⊕ F ) = p (E ) p (F )

For a complex manifold M

TMC = TM ⊕ T̄M

p (TM) = c (TM ) c (T̄M ) = ∏i (1− x2
i )
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Euler Class

Real orientable vector bundle E of dimR E = 2n with SO (2n)
transition functions

Choose so (2n) connection with curvature Fα

Euler class

e (E ) = Pf

(
Fα

2π

)
where

Pf (X ) =
1

2nn! ∑
σ

(−)σ Xσ1σ2 · · ·Xσ2n−1σ2n

Pf (X )2 = det (X )

The class is closed and independent of the connection in cohomology
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For a complex vector bundle F of dimC F = n

cn (F ) = e (FR)

Choose U (N) transition functions and u (n) connection with
curvature fα. Then FR was so (2n) curvature

Fα = (fα)R

Clearly

det

(
Fα

2π

)
=
∣∣∣∣det

(
ifα
2π

)∣∣∣∣2 = Pf

(
Fα

2π

)2

To check phase consider case n = 1 with fα = −2πi . Then

Fα
2π =

(
0 1
−1 0

)
and det

(
ifα
2π

)
= Pf

(
Fα
2π

)
= 1.

Exercise : Compute the Euler class of the tangent bundle TM of an
orientable manifold M of dimension 2n as a function of the Riemann
curvature Rµν

α
β and the volume form

√
det gµνdx1 · · · dx2n for

n = 1, 2.
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Dolbeault Cohomology

Since T ?MC = T ?
M ⊕ T̄ ?

M we have that

Ωn
C (M) =

⊕
p+q=nΩp,q (M)

with Ωp,q forms with p dz ’s and q dz̄ ’s

Differentials
d = dza ∂a + dz̄ ā ∂̄ā = ∂ + ∂̄

with

∂ : Ωp,q → Ωp+1,q

∂̄ : Ωp,q → Ωp,q+1

and
∂2 = ∂̄2 = ∂∂̄ + ∂̄∂ = 0
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Dolbeault cohomology

Hp,q
∂̄

(M) =
ker ∂̄ : Ωp,q → Ωp,q+1

im ∂̄ : Ωp,q−1 → Ωp,q

In particular

Hp,0
∂̄

(M) holomorphic (p, 0) –forms

Exact Sequences in Čech cohomology

A sequence of sheaf maps

→ F α→ H β→ G →

is exact with respect to a covering Ui if the induced sequence

→ F (Ui0···ip )
α→ H(Ui0···ip )

β→ G(Ui0···ip )→

is exact for each Ui0···ip
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Given a short exact sequence

0→ F → H → G → 0

we have a long exact sequence in cohomology

0→ H0 (F )→ H0 (H)→ H0 (G)→
→ H1 (F )→ · · ·

Given a sheaf map F α→ H define the kernel sheaf ker (α) by

ker (α) (U) = ker αU : F (U)→ H (U)

A long sequence

→ Fn−1
αn−1→ Fn

αn→ Fn+1 →

is exact if and only if αn ◦ αn+1 = 0 and if

0→ ker αn → Fn → ker αn+1 → 0

is short exact
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Dolbeault’s Isomorphism

Dolbeault’s Lemma. Locally (on Cn) if ∂̄ω = 0 then ω = ∂̄η. As an
example, if n = 1 and ω = ω (z , z̄) dz̄ then we can choose

η (z , z̄) =
i

2π

∫
dw ∧ dw̄

z − w
ω (w , w̄) (recall ∂̄

1

z
= π δ2 (z , z̄) )

Ωp,q smooth (p, q) forms and Ap holomorphic (p, 0) forms

With respect to a good cover on M

0→ Ap → Ωp,0 ∂̄0→ Ωp,1 ∂̄1→ Ωp,2 → · · ·

is exact. Equivalent short exact sequences

0→ Ap → Ωp,0 → ker ∂̄1 → 0

0→ ker ∂̄i → Ωp,i → ker ∂̄i+1 → 0 (i ≥ 1)
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Use

Hk (Ωp,q) = 0 for k ≥ 1

H0 (F ) = F (M)

and long exact sequences in cohomology

Hq (Ap) = Hq−1 (ker ∂̄1
)

= Hq−2 (ker ∂̄2
)

= · · ·

= H1 (ker ∂̄q−1
)

=
ker ∂̄q

Im ∂̄q−1

Therefore

Hq (Ap) = Hp,q
∂̄

(M)
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Let L be a holomorphic vector bundle (and the sheaf of holomorphic
sections) Then

0→ L→ L⊗Ω0,0 ∂̄0→ L⊗Ω0,1 ∂̄1→ · · ·

produces the isomorphism

Hq (L) =
ker ∂̄q

Im ∂̄q−1
closed/exact (0, q) forms with values in L

To obtain an integrable form on M we must integrate against a
section of

L? ⊗K ⊗Ω0,n−q

Serre duality
Hq (L) = Hn−q (L? ⊗K )

Note : the Čech–deRham isomorphism H? (U, R) ' H?
deRham (X )

can be shown as above starting from 0→ R→ Ω0 d→ Ω1 d→ · · ·



Lecture 8: Complex Manifolds VII

Hermitian Metrics

Definition
gab = gāb̄ = 0 (always exists)

Kähler form

ω ∈ Ω1,1 (M) (real form)

ω = i gab̄ dza ∧ dz̄ b̄

Volume form (exercise)

1

m!
ωm =

√
det gij dx1dy1 · · · dxmdym

Hermitian connection Γa
µb on TM defined by

Γa
āb = 0 (possible since TM is holomorphic)
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metric covariantly constant

∂agbc̄ − Γc
abgcc̄ = 0

with connection on T̄M

Γb̄
āc̄ = Γb

ac

Explicit form

Γb
ac = gbb̄∂agb̄c

Non–vanishing torsion

Γb
ac − Γb

ca = gbb̄ (∂agb̄c − ∂cgb̄a)

Curvature

Rc
dab̄ = −∂b̄Γc

ad Rc
dab = 0

Kähler Manifolds

Equivalent definitions

dω = 0
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Hermitian and Levi–Civita connections coincide
Vanishing torsion
In components

∂agb̄c − ∂cgb̄a and c.c.

Curvature is Riemannian and satisfies Rµ
(αβγ) = 0 so that

Rab̄ = Rc
acb̄ + R c̄

ac̄b̄

= Rc
cab̄ + Rc

ab̄c = Rc
cab̄

We have

c1 (TM ) =
i

2π
Rab̄ dza ∧ dz̄ b̄

Kähler potential : Given a good cover Uα of M then (Poincaré
Lemma and decomposition of forms) one has real functions Kα on
Uα and holomorphic functions fαβ on Uα ∩Uβ such that

ω = i ∂∂̄Kα on Uα

Kα −Kβ = fαβ + f̄αβ on Uα ∩ Uβ
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CPn

Homogenous coordinates (z0, · · · , zn) not all zero up to
non–vanishing complex rescaling

Tautological line bundle S in the exact sequence

0→ S → CPn ×Cn+1 → Q → 0

Exercise: Given the open cover Ui ⊂ CPn defined by zi 6= 0 we
have transition functions for S

gij =
zi
zj

Moreover

TCPn = Q ⊗ S?
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Fubini–Study Kähler potential

Ki = ln
∑j zj z̄j

zi z̄i

Ki −Kj = ln
zj z̄j
zi z̄i

Gives a connection on S

Ai = ∂Ki Ai − Aj = d ln
(
zi /zj

)
with

x = −c1 (S) = − i

2π
dAi =

1

2π
ω

Cohomology of CPn

H2k (CPn, G ) = G for k = 0, · · · , n

= 0 otherwise

Cohomology H2k generated by xk



Lecture 9: Hodge Theory I

Hodge Dual

N real orientable manifold of dimR = n with metric g (with s
negative eigenvalues) and volume form ε

EA orthonormal basis of T ?N with norm ηA = ±1 and with

ε = E1 ∧ · · · ∧ En

Let
ω = EA1 ∧ · · · ∧ EAk

If B1 · · ·Bn−k are the complementary indices to A1 · · ·Ak and π
the permutation of 1 · · · n to A1 · · ·AkB1 · · ·Bn−k we define

?ω = ηA1
· · · ηAk

(−)π EB1 ∧ · · · ∧ EBn−k

Clearly

? : Ωk → Ωn−k

?2 = (−)s (−)k(n−k)
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If {
α
β

=
1

k !
EA1 ∧ · · · ∧ EAk

αA1···Ak

βA1···Ak

we define

α · β =
1

k !
αA1···Ak

βA1···Ak

Then (exercise)

α ∧ ?β = β ∧ ?α = α · β ε

In components

(?α)B1···Bn−k
=

1

k !
αA1···Ak

εA1···Ak
B1···Bn−k
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Laplacian

Assume N compact and define symmetric form on k–forms (positive
definite if s = 0)

〈α, β〉 =
∫
N

α ∧ ?β

One has

〈dα, β〉 =
∫

dα ∧ ?β = (−)k
∫

α ∧ d ? β

= (−)k (−)s (−)(n−k+1)(k−1)
∫

α ∧ ?2d ? β

or

〈dα, β〉 = 〈α, d†β〉

d† = (−)n(k+1)+1+s ? d? : Ωk → Ωk−1
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Assume s = 0 from now on. Define the laplacian

∆ = dd† + d†d : Ωk → Ωk

Since
〈α, ∆α〉 = |dα|2 + |d†α|2

one has that

∆α = 0 ⇔ dα = 0 , d†α = 0

Consider a cohomology class [α] and assume there is a harmonic
representative ∆α = 0. Then

1 α has minimal norm in the class since

|α + dβ|2 = |α|2 + 2〈d†α, β〉+ |dβ|2 = |α|2 + |dβ|2

2 α is unique since

d† (α + dβ) = d†dβ = 0 → |dβ|2 = 〈d†dβ, β〉 = 0
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In coordinates

(d†α)A1···Ak−1
= −∇AαAA1···Ak−1

(∆α)A1···Ak
= −∇A∇AαA1···Ak

Hodge Theorem

Let Hp ⊂ Ωp the harmonic forms. Then

dimHp < ∞ and therefore the orthogonal projection P : Ωp → Hp

is well defined

There is a unique Green operator

G : Ωp → Ωp

such that GHp = 0, it commutes with d and d†and

1 = P + ∆G
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Corollary 1: Since

α = Pα + d(d†Gα) + d† (dGα)

we obtain the orthogonal decomposition

Ωp = Hp ⊕ dΩp−1︸ ︷︷ ︸
closed forms

⊕ d†Ωp+1

and the isomorphism
Hp

deRham = Hp

Corollary 2: If α is harmonic so is ?α. Since ? is invertible we
recover Poincaré duality

? : Hp → Hn−p
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Complex Version

Let N complex, compact with hermitian metric g , Kähler form ω
and dimC N = n. Then

? : Ωp,q → Ωn−q,n−p

?2 = (−)p+q

Hermitian product on Ωp,q

〈α, β〉 =
∫
N

α ∧ ?β̄

Since ∂̄ = d on Ωn,k we have〈
∂̄α, β

〉
= 〈α, ∂̄†β〉

∂̄† = − ? ∂? : Ωp,q → Ωp,q−1
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Laplacian and harmonic forms

∆∂̄ = ∂̄†∂̄ + ∂̄∂̄†

Hp,q
∂̄
⊂ Ωp,q

Hodge decomposition

Ωp,q = Hp,q
∂̄
⊕ ∂̄Ωp,q−1 ⊕ ∂̄†Ωp,q+1

Hp,q
∂̄

= Hp,q
∂̄

Isomorphism

Hp,q
∂̄

Hodge dual ?
= Hn−q,n−p

∂

complex conjugation
= Hn−p,n−q

∂̄
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If N is Kähler then

∆∂̄ = ∆∂ =
1

2
∆

Implies Kähler decomposition

Hk =
⊕

p+q=k H
p,q
∂̄

Hp,q
∂̄

= Hq,p
∂̄

Introduction to Hypersurfaces in CPn

Let p (z0, · · · , zn) a homogeneous polynomial of degree d and
assume that

M ⊂ Pn (omit C from now on)

defined by p = 0 is a complex manifold without singularities

Tangent bundle

TPn |M = TM ⊕NM (normal line bundle NM)

c(TM ) = c(TPn )|M / c(NM )
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Use the exact sequences

0→ S → Cn+1 → Q → 0

0→ C→ S?n+1 → TPn = Q ⊗ S? → 0

to get
c(TM ) = c(S?)n+1 = (1 + x)n+1

On Ui ⊂ CPn defined by zi 6= 0 define

pi = p

(
z0

zi
, · · · ,

zn
zi

)
pj

pi
=
(

zi
zj

)d

Sections of Sd are given by

fipi = fjpj

and define functions on Pn which vanish on M and therefore

Sd |M = N?
M
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Therefore (omitting |M)

c(NM ) = 1 + dx

c(TM ) = (1 + x)n+1 /(1 + dx)

and

c1(TM ) = (n + 1− d)x

cn−1(TM ) =
1

d2

[
(1− d)n+1 − 1 + (n + 1)d

]
xn−1

Euler characteristics (true for Kähler manifolds as we shall see)

χ (M) =
∫
M

cn−1(TM ) =
1

d

[
(1− d)n+1 − 1 + (n + 1)d

]
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We have used ∫
M

xn−1 = d
∫
Pn

xn = d

This can be shown using the connection for Sd

Ai = −d ln pi

with curvature a δ function on M such that∫
M

µ =
i

2π

∫
Pn

dAi ∧ µ

i

2π
dAi = d · x + coboundary

Variation of complex structure

Complex structure
z

µ
α = f

µ
αβ

(
zβ

)
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Variation is

∆f
µ

αβ holomorphic vectors on Uα ∩ Uβ

such that
δ (∆f ) = 0

modulo holomorphic reparameterization of the zα given by
z

µ
α → z

µ
α + ε

µ
α or

δε

Therefore

H1 (TM ) Serre= Hn−1 (T ?
M ⊗K )

When n = 1 then K = T ?
M and

H1 (TM ) = H0(K2) = K2 (M) quadratic differentials

If K is trivial
H1 (TM ) = H1,n−1

∂̄
(M)
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Definition

E , F → N complex vector bundles with N compact and oriented

Orded D differential operator

A : Γ (E )→ Γ (F )

Given local coordinates x i and trivializations of E , F

A = ∑
0≤k≤D

Ai1···ik (x) ∂i1 · · · ∂ik

with Ai1···ik (x) matricies dim E × dim F

Maximal symbol

Ai1···iD (x) ∈ Γ
(

SymD T ⊗Hom (E , F )
)

A elliptic if
Ai1···iD (x) pi1 · · · piD

invertible when pi is real and non–vanishing
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Basic fact : If A is elliptic ker A and coker A = Γ (F ) / im A are
finite dimensional. Define

index (A) = dim ker A− dim coker A

Hodge Theory

Hermitian form on sections

〈ŝ, s〉E ,F =
∫
N

hE ,F (ŝ, s) ε

with hE ,F hermitian metrics on E , F and fixed volume form ε

Integrating by parts construct adjoint

A† : Γ (F )→ Γ (E )

〈ŝ, As〉F = 〈A† ŝ, s〉E

If A is order D and elliptic so is A†



Lecture 10: Elliptic Operators III

Elliptic, selfadjoint and positive Laplacians

�E = A†A �F = AA†

Hodge Theorem : Let Γλ (E ) ⊂ Γ (E ) the eigenspace of �E with
eigenvalue λ ≥ 0. Then

dim Γλ (E ) < ∞ with discrete spectrum
L2 (E ) = ⊕λΓλ (E )
1Γ(E ) = PE + �EGE with

PE : Γ (E )→ Γ0 (E )
GE : Γ (E )→ Γ (E )

orthogonal projection and Green operator with GE Γ0 (E ) = 0 and
�EGE = GE�E

and similarly for F

Basic consequences

Γ0 (E ) = ker A
Γ0 (F ) = coker A
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A : Γλ (E )→ Γλ (F ) isomorphism for λ > 0

The second point follows from

s = PF s + A(A†GF s)

The third from

A†As = λs

for s ∈ Γλ (E ). Applying A we get

AA† (As) = λ (As)

so that As ∈ Γλ (F ). Also As = 0 implies s = 0 so that A is
injective. Finally for s ∈ Γλ (F ) we have s = A

(
A†GF s

)
and A is

surjective
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Heat Kernel and Seeley Formula

The trace (for �E ,F )

Tr(e−t �) = ∑λ e−λt dim Γλ

converges for t > 0

Asymptotic exansion for t → 0

Tr(e−t �) ∼ ∑
k≥−n

t
k

2D

∫
M

µk (�)

with µk built canonically from the coefficients of �

Index

index (A) = Tr(e−t �E )− Tr(e−t �F )

=
∫
M

µ0 (�E )−
∫
M

µ0 (�F )



Lecture 10: Elliptic Operators VI

Locally � is

∑
0≤k≤2D

�i1 ...ik (x) ∂i1 · · · ∂ik

with �i1 ...ik matricies m×m with m = dim E = dim F

Fix pi and define symbol of a differential operator a as

σ (a) = e−ipx a e ipx

σ (ab) = σ (a) σ (b)

Obtain by replacing

∂i → ∂i + ipi



Lecture 10: Elliptic Operators VII

Define

σ = σ (�− λ)
= σ0 + σ1 + · · ·+ σ2D−1︸ ︷︷ ︸

ρ

+ (σ2D − λ)

where σ` is of order p` (with λ ∼ p2D). We have in particular

σ0 = �

σ2D = maximal invertible symbol of �

Assume from now on

σ2D = a (x , p) · 1m×m
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Define

σ̂ = σ

(
1

�− λ

)
=

1

a− λ + ρ

=
1

a− λ
− 1

a− λ
ρ

1

a− λ
+ · · ·

= σ̂−2D + σ̂−2D+1 + · · ·

where σ̂` is of order p`

Acting with derivatives of ρ on the terms 1/ (a− λ) one gets

σ̂` = ∑
s

(−)s

(a− λ)s+1
σ̂s
` (` ≥ −2D)

where σ̂s
` is polynomial in the pi ’s of order

` + 2D (s + 1) ≥ 0

and polynomial in the coefficients of � and their derivatives
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Consider

〈x |e−t �|x〉 = −
∫

Γ

dλ

2πi
e−λt 〈x | 1

�− λ
|x〉

= −
∫

Γ

dλ

2πi

∫
dnp

(2π)n
e−λt 〈x | 1

�− λ
|p〉〈p|x〉

= −
∫

Γ

dλ

2πi

∫
dnp

(2π)n
e−λt σ̂ (x , p)

where σ̂ (x , p) is the symbol σ̂ without derivatives (acting on the
constant function 1) and Γ is the path circling the positive real λ
axis

Use

−
∫

Γ

dλ

2πi

1

(a− λ)s+1
e−λt = (−)s e−at ts

s !

to get

〈x |e−t �|x〉 ∼∑
`,s

∫
dnp

(2π)n
e−at ts

s !
σ̂s
` (x , p)
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Write the dnp integral as

dnp =
1

2D

dη

η
η

n
2D dΩp

where η1/2D is the radial variable (p2D ∼ η). We then get

〈x |e−t �|x〉 ∼ (2π)−n

2D ∑
`,s

∫
dΩp σ̂s

` (x , p) ·

·
∫

dη

η
η

n
2D e−ηat ts

s !
η

`+2D
2D +s

Define

k = −2D − `− n ≥ −n
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Integrate on η to get

〈x |e−t �|x〉 ∼ ∑
k≥−n

t
k

2D µk (�)

µk (�) =
(2π)−n

2D ∑
s≥ k+n

2D

∫
dΩp ·

·
Γ
(
s − k

2D

)
s !

[a (x , p)]
−s+ k

2D
σ̂s
` (x , p)

Invariance of trace under �→ λ�, t → λ−1t implies

µk (λ�) = λ
k

2D µk (�)
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Gilkey’s Argument

Let µ (g) be an n–form built from the metric gab, its inverse gab

and derivatives of the metric up to a finite order. Going to normal
coordinates it is constructed terms of the form

∇a1 · · · ∇anRb1···b4
(?)

Assume that µ (g) is of weight k

µ(λ2g) = λkµ (g)

Consider a monomial with r terms of the form (?) with a total of d
covariant derivatives. Out of the 4r + d indices 4r + d − q are
contracted with gab and the other q are antisymmetrized. Since the
weights of Rb1···b4

and gab are 2 we have

k = q − 2r − d
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In Rb1···b4
at most two indices can be antisymmetrized otherwise

one gets a vanishing contribution. Therefore

q ≤ 2r + d

k ≤ 0

Consider the case k = 0. Then d = 0. This follows from the fact
that (?) vanishes also if we antisymmetize two b indices and one a
index due to the Bianchi identity. This implies q = 2r

Using

Rabcd = Rcdab = −Rabdc

Ra[bc ]d =
1

2
Radbc

every monomial is built from terms of the form

Ri1i2[j1j2Ri2i3j3j4 · · ·Rir i1jq−1j1] (j indices antisymmetrized)
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Therefore µ (g) is built from Pontrjagin classes when k = 0

More generally, let E → N be a complex vector bundle with g a
metric on N and h a metric on the fibers on E with ∇m a
connection on E such that h is covariantly constant

Let µ (g , h) have weights

µ(λ2g , h) = λkµ (g , h)

µ(g , λ2h) = λ`µ (g , h)

By similar arguments

µ = 0 if k > 0 or if ` 6= 0

µ built from p (TN) and c (E ) if k = ` = 0
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The Signature Theorem

N compact oriented Riemannian manifold of dimension n = 4k

Elliptic selfadjoint operator

A = d + d† : Ω→ Ω
Ω =

⊕
pΩp

� = A2 = dd† + d†d = ∆Hodge

Involution

τ : Ωp → Ω4k−p

τ = ip(p−1)+2k ?

τ2 = 1

Aτ + τA = 0
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Decomposition

Ω =Ω+ ⊕Ω− (τ on Ω± is ± 1)
A :Ω+ → Ω−

A† = A :Ω− → Ω+

Index of A

ker A = Harmonic forms ∩ Ω+

ker A† = Harmonic forms ∩ Ω−

By Poincaré duality, for p 6= 2k

Hp ⊕H4k−p =
(

1− τ

2

)
Hp ⊕

(
1 + τ

2

)
Hp

The two spaces on the right have the same dimension and do not
contribute to the index
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Also

H2k = H2k
+ ⊕H2k

−

ind (A) = dimH2k
+ − dimH2k

−

Note that for n = 4k we have τ|Ωn/2 = ?. In the case n/2 odd then

?2 = −1 and τ|Ωn/2 = ±i?. In this case complex conjugation

exchanges H2k
+ and H2k

− and the index vanishes

Nondegenerate (by Poincaré) bilinear form · on H2k (N, R) given by

[α] · [β] =
∫
N

α ∧ β

Signature of · denoted by sign (N). Since on H2k
±

±α · α =
∫

α ∧ ?α = |α|2 ≥ 0

we have that
sign (N) = ind (A)
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Since under g → λ2g one has �→ λ−2� by Gilkey one has

sign (N) =
∫
N

fk (p1, · · · , pk )

with fk a polynomial in the Pontryagin classes pi

To fix fk it suffices to consider the spaces

P2k1
× · · · × P2kr

(∑iki = k)

using

sign (M ×N) = sign (M) sign (N)
sign (P2n) = 1
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Note that ∫
P2q

L(TP2q
) = 1

since

L(TP2q
) = L (S?)2q+1 =

( x

tanh x

)2q+1

= · · ·+ x2q + · · ·

and that L (M ×N) = L (M) L (N)
Therefore

sign (N) =
∫
N

L (N)
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Notation : For a complex manifold we denote with L (N) = L (TN ).
Since L is even in the xi it actually is only a function of the
Pontrjagin classes

pk (TN) = ∑
i1<···<ik

x2
i1
· · · x2

ik

For a general manifold we define L (N) using its expression in terms
of the Pontrjagin classes, which starts as

L (TN) = 1 +
1

3
p1 +

1

45

(
7p2 − p2

1

)
+ · · ·

The same comments apply to Â (TN)
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General Index Theorem

N compact orientable of even dimension dimR N = n

Eq → N complex vector bundles

Complex

0→ Γ (E0) d0→ Γ (E1) d1→ · · · → Γ (Em)→ 0

di+1 ◦ di = 0

The maximal symbols σi (p) of di give maps

0→ E0
σ0→ E1

σ1→ · · · → Em → 0

Complex is elliptic if the above is exact
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Like before

A : Γ
( ⊕

i even
Ei

)
→ Γ

( ⊕
i odd

Ei

)
A = ∑

i even

di + d†
i

A† = ∑
i odd

di + d†
i

Index Theorem

ind(d) =
m

∑
i=0

(−)i dim
ker di

im di−1

= (−)
n
2

∫
N

∑i (−)i ch (Ei ) ∧
Td (TNC)

e (TN)
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Hirzebruch–Riemann–Roch

N complex manifold of dimC N = n

Elliptic complex (exercise)

0→ Ω0,0
V

∂̄→ · · · ∂̄→ Ω0,n
V → 0

with

Ω0,q
V = Γ (Eq)

Eq = V ⊗∧qT̄ ?
N

V holomorphic vector bundle

Use splitting principle

TN =
⊕

i Li∧qT̄ ?
N =

⊕
i1<···<iq

(
L̄?
i1
⊗ · · · ⊗ L̄?

iq

)
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Obtain

c (Li ) = 1 + xi

ch (Eq) = ch (V ) ∑
i1<···<iq

exi1
+···+xiq

and

∑
q

(−)q ch (Eq) = ch (V ) ∏i (1− exi )

Todd class

Td (TNC) = Td (TN ⊕ T̄N ) = Td (TN ) Td (T̄N )

= Td (TN ) ∏i
−xi

(1− exi )

Note that

(TN )R = TN

∏ixi = cn (TN ) = e (TN)
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Therefore

ind
(
∂̄V

)
=
∫

ch (V ) Td (TN )

= h0 (V )− h1 (V ) + · · ·

where hq (V ) = dimC Hq (V ). Recall also Serre duality

hq (V ) = hn−q (V ? ⊗K ) ( K =
∧nT ?

N )

Riemann–Roch

N Riemann surface of genus g (n = 1)

Use x/ (1− e−x ) = x/2 + · · · and

ind
(
∂̄
)

=
1

2

∫
c1 (TN ) = h0,0 − h0,1

= 1− g

We use that N is Käher and h0,1 = h1,0 = g
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Given a holomorphic line bundle L

ind
(
∂̄L

)
= h0 (L)− h1 (L)

= h0 (L)− h0 (K ⊗ L?)

Index theorem

ind
(
∂̄L

)
=
∫
N

(1 +
1

2
c1 (TN )) (1 + c1 (L))

= 1− g + deg (L)

Degree

deg (L) =
∫
N

c1 (L)

= # of zeros − # of poles of meromorphic sections
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To show use connection

Aα = −d ln sα

sα = gαβsβ meromorphic section

When

sα = zn

Aα = −n
dz

z

− 1

2πi
Fα = n δ (z , z̄)

i

2
dz ∧ dz̄

Clearly

h0 (L) > 0 ⇒ deg (L) ≥ 0

and

h0 (C) = 1 deg (C) = 0

h0 (K ) = g deg (K ) = 2g − 2
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Finally

h1 (TN ) = 3g − 3 + h0 (TN )

h0 (TN ) = 0 for g > 1 since deg (TN ) = 2− 2g

Twisted Hirzebruch Signature Index

N real manifold of dimR N = 4k

Given complex vector bundle V look at V –valued q–forms

Ωq
V = Γ (

∧q (TN?)C ⊗ V )

D : Ωq
V → Ωq+1

V

D = d + connection on V

and

A : Ω+ → Ω−

A = D + D†
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Index theorem

ind (A) = 2n/2
∫

ch (V ) L (TN
C
)

L (E ) = ∏i
xi /2

tanh xi /2

Dirac Index

N real manifold of even dimension n with fixed metric and spin
structure

V complex vector bundle with connection

S± positive and negative chirality spinor bundles

Elliptic complex

6 D : Γ (S+ ⊗ V )→: Γ (S− ⊗ V )

with adjoint
6 D : Γ (S− ⊗ V )→: Γ (S+ ⊗ V )
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Index theorem

ind ( 6 D) = # of zeros od 6 D with positive chirality

−# of zeros od 6 D with negative chirality

=
∫
N

ch (V ) Â (TN)

with

Â (TN) = 1− 1

24
p1 +

1

5760

(
7p2

1 − 4p2

)
+ · · ·
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Euler Index

deRham complex

0→ Ω0 d→ · · · d→ Ωn → 0

has index the Euler characteristic

χ (N) = ind (d) = h0 − h1 + · · ·

=
∫
N

e (TN) (n even)

and 0 for n odd by Poincaré duality


