Mathematical Methods for Modern Physics

LACES 2008

Lorenzo Cornalba

University of Milano Bicocca \& Centro Fermi

Outline I

(1) Simplicial Homology
(2) Cohomology and Homological Algebra
(0) de Rham Cohomology
(1) Poincaré Duality and Künneth Theorem

- Čech Cohomology
- Vector Bundles
- Characteristic Classes
(0) Complex Manifolds
- Hodge Theory
(1) Elliptic Complexes
© Hirzebruch Signature Theorem
(3) General Index Theorem

Lecture 1 : Simplicial Homology I

Simplices

- $\Delta^{n} \subset \mathbb{R}^{n+1}$ given by $\left(t_{0}, \cdots, t_{n}\right)$ with $t_{i} \geq 0$ and $\sum t_{i}=1$
- $\breve{\Delta}^{n}$ same with $t_{i}>0$
- Standard linear maps from the faces

$$
\begin{aligned}
m_{i}: \Delta^{n-1} & \rightarrow \Delta^{n} \quad(i=0, \cdots, n) \\
\left(t_{0}, \cdots, t_{n-1}\right) & \mapsto\left(t_{0}, \cdots, 0, \cdots, t_{n-1}\right)
\end{aligned}
$$

with 0 in i-th position

- For $0 \leq j \leq n-1$ and $0 \leq i \leq n$ we have

$$
\begin{aligned}
m_{i} \circ m_{j} & =m_{j} \circ m_{i-1} & & (i>j) \\
& =m_{j+1} \circ m_{i} & & (i \leq j)
\end{aligned}
$$

Definition of Finite Δ-Complex

- X topological space
- A finite list of maps $\sigma_{\alpha}: \Delta^{n_{\alpha}} \rightarrow X$ such that

Lecture 1 : Simplicial Homology II

- σ_{α} one to one from $\breve{\Delta}^{n_{\alpha}}$ to $e_{\alpha} \equiv \sigma_{\alpha}\left(\breve{\Delta}^{n_{\alpha}}\right)$
- The sets e_{α} have vanishing overlap and cover X
- If σ_{α} is in the list, then so is $\sigma_{\alpha} \circ m_{i}$ for $i=0, \cdots, n_{\alpha}$
- $A \subset X$ is open (closed) in $X \Leftrightarrow \sigma_{\alpha}^{-1}(A)$ is open (closed) in $\Delta^{n_{\alpha}}$

Homology

- X is a Δ-complex
- $\Delta_{n}(X)$ formal linear combinations with integer coefficients of maps σ_{α} with $n_{\alpha}=n$

$$
\sum_{\alpha \text { with } n_{\alpha}=n} k_{\alpha} \sigma_{\alpha} \quad\left(k_{\alpha} \in \mathbb{Z}\right)
$$

Free abelian group with basis given by maps σ_{α} with $n_{\alpha}=n$. Elements are called n-chains

Lecture 1 : Simplicial Homology III

- Boundary maps

$$
\begin{gathered}
\partial: \Delta_{n}(X) \rightarrow \Delta_{n-1}(X) \\
\partial \sigma_{\alpha}=\sum_{i=0}^{n_{\alpha}}(-)^{i} \sigma_{\alpha} \circ m_{i}
\end{gathered}
$$

- Basic fact

$$
\partial^{2}=0
$$

Proof (with $n=n_{\alpha}$)

$$
\begin{aligned}
\partial^{2} \sigma_{\alpha} & =\sum_{j=0}^{n-1} \sum_{i=0}^{n}(-)^{i+j} \sigma_{\alpha} \circ m_{i} \circ m_{j} \\
& =\sum_{n \geq i>j \geq 0}(-)^{i+j} \sigma_{\alpha} \circ m_{i} \circ m_{j}+\sum_{n-1 \geq j \geq i \geq 0}(-)^{i+j} \sigma_{\alpha} \circ m_{j+1} \circ m_{i}
\end{aligned}
$$

In the second term, $j+1 \rightarrow i$ and $i \rightarrow j$. We obtain the first term, up to an overall (-) sign

Lecture 1 : Simplicial Homology IV

- Chain complex

$$
\cdots \rightarrow C_{n+1} \xrightarrow{\partial_{n+1}} C_{n} \xrightarrow{\partial_{n}} C_{n-1} \rightarrow \cdots
$$

with

$$
\partial_{n} \circ \partial_{n+1}=0
$$

We have

C_{n}	Chains
$\operatorname{ker} \partial_{n}$	Cycles
$\operatorname{Im} \partial_{n+1}$	Boundaries

and

$$
\operatorname{Im} \partial_{n+1} \subset \operatorname{ker} \partial_{n} \subset C_{n}
$$

Lecture 1 : Simplicial Homology V

- Homology groups of chain complex

$$
H_{n}(C)=\operatorname{ker} \partial_{n} / \operatorname{Im} \partial_{n+1}
$$

Two cycles are homologous if they differ by a boundary

$$
\partial \alpha=0 \quad[\alpha]=[\beta] \text { if } \alpha=\beta+\partial \gamma
$$

- Simplicial homology of the complex $\Delta_{n}(X)$ denoted by

$$
H_{n}^{\Delta}(X)
$$

Two Dimensional Examples

- Point and S_{1}

$$
\begin{aligned}
& 0 \rightarrow \mathbb{Z} \rightarrow 0 \\
& 0 \rightarrow \mathbb{Z} \xrightarrow{0} \mathbb{Z} \rightarrow 0
\end{aligned}
$$

$$
H_{0}(\text { point })=\mathbb{Z}
$$

$$
H_{0}\left(S_{1}\right)=H_{1}\left(S_{1}\right)=\mathbb{Z}
$$

Lecture 1 : Simplicial Homology VI

- Torus

$$
\begin{aligned}
\partial U & =\partial D=a+b-c \\
\partial a & =\partial b=\partial c=0
\end{aligned}
$$

with chain complex

$$
0 \rightarrow \mathbb{Z}^{2} \xrightarrow{\partial} \mathbb{Z}^{3} \xrightarrow{0} \mathbb{Z} \rightarrow 0
$$

and

$$
\begin{aligned}
& H_{0}=\mathbb{Z} \\
& H_{1}=\mathbb{Z}^{2} \quad \text { (using the base } a, b, a+b-c \text { is obvious) } \\
& \left.H_{2}=\mathbb{Z} \quad \text { (generated by } U-D\right)
\end{aligned}
$$

Lecture 1 : Simplicial Homology VII

- Real projective plane $\mathbb{R} P^{2}=S_{2} /(x \sim-x)$

$$
\begin{array}{rlr}
\partial U & =a-b+c & \\
\partial D & =-a+b+c & \\
\partial a & =\partial b=w-v & \partial c=0
\end{array}
$$

with chain complex

$$
0 \rightarrow \mathbb{Z}^{2} \xrightarrow{\partial_{2}} \mathbb{Z}^{3} \xrightarrow{\partial_{1}} \mathbb{Z}^{2} \rightarrow 0
$$

and

$$
\begin{array}{ll}
H_{0}=\mathbb{Z} \\
H_{1}=\mathbb{Z}_{2} & \left(\text { ker } \partial_{1} \text { generated by } \tilde{c}=a-b \text { and } c\right. \\
& \left.\operatorname{lm} \partial_{2} \text { by } c+\tilde{c} \text { and } c-\tilde{c}\right) \\
H_{2}=0 &
\end{array}
$$

Lecture 1 : Simplicial Homology VIII

- Surface of genus g with κ crosscaps. Chain complex

$$
0 \rightarrow \mathbb{Z}^{4 g-2+4 \kappa} \xrightarrow{\partial_{2}} \mathbb{Z}^{6 g+6 \kappa-3} \xrightarrow{\partial_{1}} \mathbb{Z}^{1+\kappa} \rightarrow 0
$$

If $\kappa=0$ then

$$
\partial\left(U_{1}-U_{2}+\cdots\right)=0 \quad \text { unique generator of } H_{2}
$$

The c_{i} are homologous to a_{i}, b_{i}

$$
\partial_{1}=0
$$

and we get homology

$$
H_{2}=\mathbb{Z} \quad H_{1}=\mathbb{Z}^{2 g} \quad H_{0}=\mathbb{Z}
$$

If $\kappa>0$ choose $g=0$ since

$$
(g, \kappa) \sim(g-1, \kappa+2) \quad(\kappa>0)
$$

Lecture 1: Simplicial Homology IX

Then

$$
\begin{aligned}
& \operatorname{ker} \partial_{2}=0 \\
& \operatorname{ker} \partial_{1} \quad \text { generated by } \begin{cases}c_{i} & 2 \kappa-1 \\
a_{i}-d_{i}, b_{i}-d_{i} & 2 \kappa \\
d_{i+1}-d_{i} & \kappa-2\end{cases}
\end{aligned}
$$

$\operatorname{lm} \partial_{2}$ generated by $4 \kappa-2$ terms of the form $c+a-d, c+b-d$
and (reinserting g)

$$
H_{2}=0 \quad H_{1}=\mathbb{Z}^{2 g+\kappa-1} \oplus \mathbb{Z}_{2} \quad H_{0}=\mathbb{Z}
$$

- Exercise: If one starts with chains $\sum k_{\alpha} \sigma_{\alpha}$ with coefficients in an arbitrary abelian group G one obtains the homology groups with coefficients in G

$$
H_{n}^{\Delta}(X, G)
$$

Compute the homology groups for the above spaces for $G=\mathbb{Z}_{2}, \mathbb{R}$.

Lecture 2 : Cohomology and Homological Algebra I

Simplicial Cohomology

- Give chain complex $\cdots \xrightarrow{\partial} C_{n+1} \xrightarrow{\partial} C_{n} \xrightarrow{\partial} \cdots$ and abelian group G define cochains

$$
\begin{aligned}
C^{n}(G) & =\operatorname{Hom}\left(C_{n}, G\right)=C_{n}^{\star} \\
& =\operatorname{group} \text { maps from } C_{n} \text { to } G
\end{aligned}
$$

- Coboundary map δ with $\delta^{2}=0$

$$
\begin{aligned}
& \delta: C^{n}(G) \rightarrow C^{n+1}(G) \\
& C_{n+1} \xrightarrow{\partial} C_{n} \xrightarrow{\varphi} G \\
& \delta \varphi=\varphi \partial
\end{aligned}
$$

- Cocycle and coboundary

$$
\begin{aligned}
\delta \varphi & =0 & & (\varphi \text { vanishes on boundaries }) \\
\varphi & =\delta \psi & & (\varphi \text { vanishes on cycles })
\end{aligned}
$$

Lecture 2 : Cohomology and Homological Algebra II

- Cohomology of the cochain complex

$$
\cdots \xrightarrow{\delta} C^{n}(G) \xrightarrow{\delta} C^{n+1}(G) \xrightarrow{\delta} \cdots
$$

defined by

$$
H^{n}(C, G)=\operatorname{ker} \delta / \operatorname{Im} \delta
$$

- Simplicial cohomology

$$
H_{\Delta}^{n}(X, G)
$$

when $C_{n}=\Delta_{n}(X)$. A cochain $\varphi \in C^{n}$ is like giving an element $\varphi\left(\sigma_{\alpha}\right) \in G$ for each σ_{α} with $n_{\alpha}=n$, since those form a basis for $\Delta_{n}(X)$

- In general

$$
H^{n} \neq H_{n}^{\star}
$$

The above is true if $G=\mathbb{R}, \mathbb{C}$.

Lecture 2 : Cohomology and Homological Algebra III

Basic Homological Algebra

- Chain map $f: A_{n} \rightarrow B_{n}$

$$
\begin{array}{ccccc}
\ldots & \xrightarrow{\partial} & A_{n+1} & \xrightarrow{\partial} & A_{n}
\end{array} \xrightarrow{\partial} \cdots .
$$

Squares commute so that

$$
f \circ \partial=\partial \circ f
$$

- Maps

$$
\begin{aligned}
\text { cycles } & \rightarrow \text { cycles } \\
\text { boundaries } & \rightarrow \text { boundaries }
\end{aligned}
$$

and therefore

$$
H_{n}(A) \xrightarrow{f_{x}} H_{n}(B)
$$

Lecture 2 : Cohomology and Homological Algebra IV

- $f, g: A_{n} \rightarrow B_{n}$ chain maps. A chain homotopy between f and g is a map

$$
\begin{aligned}
P & : A_{n} \rightarrow B_{n+1} \\
P \partial+\partial P & =g-f
\end{aligned}
$$

In homology

$$
g_{\star}=f_{\star}
$$

since, on cycles, g and f differ by a boundary

- A chain

$$
\cdots \rightarrow A_{n+1} \xrightarrow{\partial_{n+1}} \quad A_{n} \xrightarrow{\partial_{n}} A_{n-1} \rightarrow \cdots
$$

is called exact sequence if it has vanishing homology

$$
\operatorname{ker} \partial_{n}=\operatorname{Im} \partial_{n+1}
$$

Lecture 2 : Cohomology and Homological Algebra V

- Short exact sequence

$$
0 \rightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \rightarrow 0
$$

means

$$
\begin{aligned}
& \alpha \text { injective } \\
& \beta \text { surjective } \\
& \operatorname{Im} \alpha=\operatorname{ker} \beta
\end{aligned}
$$

Lecture 2 : Cohomology and Homological Algebra VI

- Let

$$
0 \rightarrow A_{n} \xrightarrow{i} B_{n} \xrightarrow{j} C_{n} \rightarrow 0
$$

a short exact sequence of chains. There exists a map

$$
\partial: H_{n}(C) \rightarrow H_{n-1}(A)
$$

such that the long sequence below is exact

$$
\begin{aligned}
\cdots & \rightarrow H_{n}(A) \xrightarrow{i_{\star}} H_{n}(B) \xrightarrow{j_{\star}} H_{n}(C) \xrightarrow{\partial} \\
& \xrightarrow{\partial} H_{n-1}(A) \rightarrow \cdots
\end{aligned}
$$

In the proof we shall refer to the following two diagrams

$$
\begin{array}{llclcllll}
0 & \rightarrow & A_{n} & \xrightarrow{i} & B_{n} & \xrightarrow{j} & C_{n} & \rightarrow & 0 \\
& & \downarrow \partial & & \downarrow \partial & & \downarrow \partial & & \\
0 & \rightarrow & A_{n-1} & \xrightarrow{i} & B_{n-1} & \xrightarrow{j} & C_{n-1} & \rightarrow & 0
\end{array}
$$

Lecture 2 : Cohomology and Homological Algebra VII

and

To define ∂ let $c \in C_{n}$ with $\partial c=0$. Using the surjectivity of j we have $c=j b$ with ∂b such that $j \partial b=0$. Since ker $j=\operatorname{Im} i$ we have $\partial b=i a$ with $\partial a=0$ since $i \partial a=\partial^{2} b=0$ and i is injective. Then

$$
\partial[c]=[a]
$$

To show that the above is well defined, assume $c=\partial \tilde{c}$. Then $\tilde{c}=j \tilde{b}$ and $b=\partial \tilde{b}+i \tilde{a}$ for some \tilde{a}. But then $i a=\partial b=i \partial a ̃$ and $a=\partial \tilde{a}$.

Exactness of the long homology sequence is shown by proving $\operatorname{ker} \partial \subset \operatorname{Im} j_{\star}, \operatorname{ker} j_{\star} \subset \operatorname{Im} i_{\star}, \operatorname{ker} i_{\star} \subset \operatorname{Im} \partial$ and the opposite

Lecture 2 : Cohomology and Homological Algebra VIII

inclusions. As an example, let us show the first inclusion. With reference to the above constrution, assume

$$
a=\partial a ̃
$$

Then

$$
\partial(b-i \tilde{a})=0 \quad j(b-i \tilde{a})=j b=c
$$

- Five Lemma. In the commutative diagram below, if the rows are exact and $\alpha, \beta, \delta, \epsilon$ are isomorphisms, then γ is also an isomorphism

$$
\begin{array}{ccccccccc}
A & \rightarrow & B & \rightarrow & C & \rightarrow & D & \rightarrow & E \\
\downarrow \alpha & & \downarrow \beta & & \downarrow \gamma & & \downarrow \delta & & \downarrow \epsilon \\
A^{\prime} & \rightarrow & B^{\prime} & \rightarrow & C^{\prime} & \rightarrow & D^{\prime} & \rightarrow & E^{\prime}
\end{array}
$$

Lecture 2 : Cohomology and Homological Algebra IX

Examples

Homology of the simplex Δ^{N}

- We will prove that (clear for $N=0$)

$$
\begin{aligned}
& H_{0}^{\Delta}\left(\Delta^{N}\right)=\mathbb{Z} \\
& H_{n}^{\Delta}\left(\Delta^{N}\right)=0 \quad(1 \leq n \leq N)
\end{aligned}
$$

- Let $A_{n}=\Delta_{n}\left(\Delta^{N}\right)$ and $B_{n}=\Delta_{n}\left(\Delta^{N+1}\right)$
- Define two maps

$$
\begin{gathered}
i: A_{n} \rightarrow B_{n} \\
P: A_{n} \rightarrow B_{n+1}
\end{gathered}
$$

where i is the inclusion and P is defined by

$$
\left[v_{0}, \cdots, v_{n}\right] \mapsto\left[w, v_{0}, \cdots, v_{n}, w\right]
$$

Lecture 2 : Cohomology and Homological Algebra X

We have

$$
\begin{aligned}
i \partial & =\partial i \\
\partial P & =-P \partial+i
\end{aligned} \quad \text { (map of chains) }
$$

$$
\begin{array}{ll}
B_{0}=i A_{0} \oplus \mathbb{Z} & (\mathbb{Z} \text { generated by }[w]) \\
B_{n}=i A_{n} \oplus P A_{n-1} & (n \geq 1)
\end{array}
$$

- Let $b \in B_{n}$ with $\partial b=0$. If $n \geq 1$ then

$$
b=i a+P a^{\prime}=\partial P a+P\left(\partial a+a^{\prime}\right)
$$

Also

$$
\partial b=i\left(\partial a+a^{\prime}\right)-P \partial a^{\prime}=0
$$

implies $\partial a+a^{\prime}=0$ and $\partial a^{\prime}=0$.

- If $n=0$ then

$$
b=i a+k[w]=\partial P a+k[w]
$$

Lecture 2 : Cohomology and Homological Algebra XI

Homology of the sphere $S_{N} \simeq \partial \Delta^{N+1}$

- Chain complex of Δ^{N+1}

$$
0 \rightarrow \Delta_{N+1}=\mathbb{Z}^{\partial_{N+1}} \Delta_{N}=\mathbb{Z}^{N+2} \xrightarrow{\partial_{N}} \Delta_{N-1} \rightarrow \cdots
$$

with

$$
\operatorname{ker} \partial_{N}=\operatorname{Im} \partial_{N+1}=\mathbb{Z}
$$

But ker ∂_{N} computes the N homology of $\partial \Delta^{N+1}$ which equals Δ^{N+1} aside from a single simplex of dimension $N+1$. Therefore the non-vanishing homology groups of the sphere are

$$
\begin{aligned}
H_{N}\left(S_{N}\right) & =\mathbb{Z} \\
H_{0}\left(S_{N}\right) & =\mathbb{Z}
\end{aligned}
$$

Lecture 3 : de Rham Cohomology I

Forms

- M a manifold. A k-form is written localy as

$$
\omega=\frac{1}{k!} \omega_{i_{1} \cdots i_{k}}(x) d x^{i_{1}} \wedge \cdots \wedge d x^{i_{k}}=\omega_{I}(x) d x^{\prime}
$$

$\Omega^{k}(M)$ space of smooth k-forms on M (with $0 \leq k \leq \operatorname{dim}_{\mathbb{R}} M$)

- Assiciative wedge product defined by

$$
\left(d x^{i_{1}} \wedge \cdots \wedge d x^{i_{k}}\right) \wedge\left(d x^{j_{1}} \wedge \cdots \wedge d x^{j_{q}}\right)=d x^{i_{1}} \wedge \cdots \wedge d x^{j_{q}}
$$

- Exterior derivative

$$
d: \Omega^{k}(M) \rightarrow \Omega^{k+1}(M)
$$

defined by

$$
d\left(\omega_{I}(x) d x^{\prime}\right)=\partial_{i} \omega_{I}(x) d x^{i} \wedge d x^{\prime}
$$

Lecture 3 : de Rham Cohomology II

- Basic properties

$$
\begin{array}{ll}
d(\alpha \wedge \beta)=d \alpha \wedge \beta+(-)^{\alpha} \alpha \wedge d \beta & \\
d^{2}=0 & \left(\partial_{i} \partial_{j} f(x) d x^{i} \wedge d x^{j}=0\right)
\end{array}
$$

- Pullback

$$
\begin{aligned}
& f: N \rightarrow M \\
& f^{\star}: \Omega^{k}(M) \rightarrow \Omega^{k}(N)
\end{aligned}
$$

locally defined by

$$
\left(f^{\star} \omega\right)_{j_{1} \cdots j_{k}}(y)=\frac{\partial x^{i_{1}}}{\partial y y_{1}} \cdots \frac{\partial x^{i_{k}}}{\partial y^{j_{k}}} \omega_{i_{1} \cdots i_{k}}(x(y))
$$

and satisfying

$$
\begin{aligned}
f^{\star}(d \alpha) & =d f^{\star}(\alpha) \\
(f \circ g)^{\star} & =g^{\star} \circ f^{\star} \\
f^{\star}(\alpha \wedge \beta) & =f^{\star}(\alpha) \wedge f^{\star}(\beta)
\end{aligned}
$$

Lecture 3 : de Rham Cohomology III

de Rham Cohomology

- Complex

$$
0 \rightarrow \Omega^{0}(M) \xrightarrow{d} \Omega^{1}(M) \xrightarrow{d} \Omega^{2}(M) \xrightarrow{d} \cdots \xrightarrow{d} \Omega^{\operatorname{dim}_{\mathbb{R}} M}(M) \rightarrow 0
$$

- Cohomology

$$
H^{n}(M)=\frac{\operatorname{ker} d}{\operatorname{lm} d}
$$

(closed form / exact forms)

- Given $f: N \rightarrow M$ the map f^{\star} descends in cohomology (chain map)

$$
f^{\star}: H^{n}(M) \rightarrow H^{n}(N)
$$

Lecture 3 : de Rham Cohomology IV

- Cohomology ring. The wedge produce on forms descends in cohomology

$$
\begin{aligned}
H^{\star}(M) & =\oplus_{k} H^{k}(M) \\
H^{k} \times H^{q} & \xrightarrow[\rightarrow]{ } H^{k+q}
\end{aligned}
$$

$$
[\alpha] \wedge[\beta] \mapsto[\alpha \wedge \beta]
$$

Compatible with pullback

$$
f^{\star}([\alpha] \wedge[\beta])=f^{\star}[\alpha] \wedge f^{\star}[\beta]
$$

- Cohomology ring with compact support

$$
H_{c}^{\star}(M)=\oplus_{k} H_{c}^{k}(M)
$$

using forms with compact support $\Omega_{c}^{k}(M)$ with $d: \Omega_{c}^{k}(M) \rightarrow \Omega_{c}^{k+1}(M)$
Note : Pullbacks do not send forms with compact support in forms with compact support

Lecture 3 : de Rham Cohomology V

Mayer-Vietoris

- If $A \subset M$ is open with $i: A \rightarrow M$ inclusion, we have the chain maps

$$
\begin{array}{ll}
i^{\star}: \Omega^{\star}(M) \rightarrow \Omega^{\star}(A) & \text { restriction map } \\
i_{\star}: \Omega_{c}^{\star}(A) \rightarrow \Omega_{c}^{\star}(M) & \text { extension map }
\end{array}
$$

- Assume

$$
M=A \cup B \quad(A, B \text { open })
$$

- Chain maps

$$
\begin{aligned}
& 0 \rightarrow \Omega^{\star}(M) \rightarrow \Omega^{\star}(A) \oplus \Omega^{\star}(B) \xrightarrow{i_{A}^{\star}-i_{B}^{\star}} \Omega^{\star}(A \cap B) \rightarrow 0 \\
& 0 \rightarrow \Omega_{c}^{\star}(A \cap B) \rightarrow \Omega_{c}^{\star}(A) \oplus \Omega_{c}^{\star}(B)^{j_{A \star}-j_{B \star}} \Omega_{c}^{\star}(M) \rightarrow 0
\end{aligned}
$$

with i_{A}, i_{B} and j_{A}, j_{B} inclusions

$$
A \cap B \xrightarrow{i_{A}} A \xrightarrow{j_{A}} M \quad A \cap B \xrightarrow{i_{B}} B \xrightarrow{j_{B}} M
$$

Lecture 3 : de Rham Cohomology VI

- Short exact sequences. To show surjectivity of $i_{A}^{\star}-i_{B}^{\star}$ choose a partition of unity ρ_{A}, ρ_{B}. Given a form ω on $A \cap B$ it comes from

$$
\rho_{B} \omega \oplus-\rho_{A} \omega
$$

Surjectivity of $j_{A \star}-j_{B \star}$. A form ω on M comes from

$$
\rho_{A} \omega \oplus-\rho_{B} \omega
$$

- Long exact sequences

$$
\begin{aligned}
& \cdots \rightarrow H^{k}(M) \rightarrow H^{k}(A) \oplus H^{k}(B) \rightarrow H^{k}(A \cap B) \rightarrow H^{k+1}(M) \rightarrow \cdots \\
& \cdots \rightarrow H_{c}^{k}(A \cap B) \rightarrow H_{c}^{k}(A) \oplus H_{c}^{k}(B) \rightarrow H_{c}^{k}(M) \rightarrow H_{c}^{k+1}(A \cap B) \rightarrow .
\end{aligned}
$$

Poincaré Lemmas

- Basic statement

$$
\begin{aligned}
& H^{k}\left(M \times \mathbb{R}^{n}\right)=H^{k}(M) \\
& H_{c}^{k}\left(M \times \mathbb{R}^{n}\right)=H_{c}^{k-n}(M)
\end{aligned}
$$

Lecture 3 : de Rham Cohomology VII

- Projection and zero section

$$
\mathbb{R}^{n} \times \mathbb{R} \underset{s}{\stackrel{\pi}{\rightleftarrows}} \mathbb{R}^{n} \quad \pi \circ s=1_{\mathbb{R}^{n}}
$$

- Map

$$
K: \Omega^{k}\left(\mathbb{R}^{n} \times \mathbb{R}\right) \rightarrow \Omega^{k-1}\left(\mathbb{R}^{n} \times \mathbb{R}\right)
$$

defined by

$$
\begin{aligned}
a_{l}(x, t) d x^{\prime} & \mapsto 0 \\
a_{l}(x, t) d x^{\prime} d t & \mapsto\left(\int_{0}^{t} a_{l}(x, s) d s\right) d x^{\prime}
\end{aligned}
$$

- Basic fact

$$
\begin{aligned}
& s^{\star} \circ \pi^{\star}-1=0 \\
& \pi^{\star} \circ s^{\star}-1=(-)^{k}(d K-K d) \quad \text { (chain homotopy) }
\end{aligned}
$$

Therefore in cohomology s^{\star} and π^{\star} are inverses and the cohomologies conincide

Lecture 3 : de Rham Cohomology VIII

- Sample computation

$$
\begin{aligned}
& (d K-K d)\left(a_{l} d x^{\prime}\right)=-K\left(\partial_{i} a_{l} d x^{i} d x^{\prime}\right)-K\left(\partial_{t} a_{l} d t d x^{\prime}\right) \\
& \quad=(-)^{k-1}\left(\int_{0}^{t} \partial_{t} a_{l}\right) d x^{\prime}=(-)^{k-1}\left(a_{l}(x, t)-a_{l}(x, 0)\right) d x^{\prime}
\end{aligned}
$$

- Let

$$
\begin{aligned}
e & =e(t) d t \quad \text { with compact support } \\
\int e & =1
\end{aligned}
$$

and

$$
E(t)=\int_{-\infty}^{t} e(s) d s
$$

Lecture 3 : de Rham Cohomology IX

- Chain maps

$$
\Omega_{c}^{k}\left(\mathbb{R}^{n}\right) \underset{\pi_{\star}}{\stackrel{e_{\star}}{\rightleftarrows}} \Omega_{c}^{k+1}\left(\mathbb{R}^{n} \times \mathbb{R}\right)
$$

given by

$$
\phi \stackrel{e_{\star}}{\mapsto} \phi \wedge e
$$

and

$$
\begin{aligned}
& a_{l} d x^{\prime} \stackrel{\pi_{\star}}{\mapsto} 0 \\
& a_{l} d x^{\prime} d t \stackrel{\pi_{\star}}{\mapsto}\left(\int_{-\infty}^{\infty} a_{l}(x, s) d s\right) d x^{\prime}
\end{aligned}
$$

- Map

$$
K: \Omega_{c}^{k}\left(\mathbb{R}^{n} \times \mathbb{R}\right) \rightarrow \Omega_{c}^{k-1}\left(\mathbb{R}^{n} \times \mathbb{R}\right)
$$

defined by

$$
\begin{aligned}
a_{l}(x, t) d x^{\prime} & \mapsto 0 \\
a_{l}(x, t) d x^{\prime} d t & \mapsto\left(\int_{-\infty}^{t} a_{l} d s-E(t) \int_{-\infty}^{\infty} a_{l} d s\right) d x^{\prime}
\end{aligned}
$$

Lecture 3 : de Rham Cohomology X

- Again (exercise)

$$
\begin{aligned}
& \pi_{\star} \circ e_{\star}-1=0 \\
& e_{\star} \circ \pi_{\star}-1=(-)^{k}(d K-K d)
\end{aligned}
$$

(chain homotopy)

Homotopy invariance

- Let

$$
M \underset{\pi}{\stackrel{s_{t}}{\rightleftarrows}} M \times \mathbb{R} \xrightarrow{F} N
$$

- The maps

$$
f_{t}=F \circ s_{t}: M \rightarrow N
$$

define a smooth family parameterized by t

- In cohomology the map $s_{t}^{\star}=\left(\pi^{\star}\right)^{-1}$ is independent of t and so is

$$
f_{t}^{\star}=s_{t}^{\star} \circ F^{\star}: H^{\star}(N) \rightarrow H^{\star}(M)
$$

Lecture 3 : de Rham Cohomology XI

- Two spaces M and N are homotopic if we have two maps $f: M \rightarrow N$ and $g: N \rightarrow M$ with $g \circ f$ and $f \circ g$ smoothly deformable to the identity on M and N respectively. Homotopic spaces have the same cohomology
- $A \subset M$ is a deformation retract if there is a smooth family of maps $f_{t}: M \rightarrow M$ with $\left.f_{t}\right|_{A}=1_{A}$ and with $f_{0}=1_{M}$ and $f_{1}(M)=A$.
Then A and M are homotopic
- Example: Spheres S_{N}

$$
S_{N}=A \cup B \text { with } A \cap B \sim S_{N-1}
$$

Long exact sequence

$$
\begin{aligned}
\cdots & \rightarrow H^{N-1}(A) \oplus H^{N-1}(B) \rightarrow H^{N-1}(A \cap B) \rightarrow \\
& \rightarrow H^{N}\left(S_{N}\right) \rightarrow H^{N}(A) \oplus H^{N}(B) \rightarrow \cdots
\end{aligned}
$$

implies

$$
H^{N-1}\left(S_{N-1}\right)=H^{N}\left(S_{N}\right)
$$

Lecture 4: Poincaré Duality and Künneth Theorem I

Integration and Stokes Theorem

- N manifold with boundary if you can cover it with coordinate patches $\left(U_{\alpha}, x_{\alpha}\right)$ with U_{α} diffeomorphic to either \mathbb{R}^{n} or \mathbb{H}^{n} (given by (x_{1}, \cdots, x_{n}) with $x_{n} \geq 0$)
- ∂N given by points corresponding to $\partial \mathbb{H}^{n}\left(x_{n}=0\right)$ with local coordinates $\left(x_{1}, \cdots, x_{n-1}\right)$
- N orientable if you can choose coordinates with

$$
\operatorname{det} \frac{\partial y}{\partial x}>0
$$

- Let $\omega \in \Omega_{c}^{n}(N)$. Given an oriented ($\left.U_{\alpha}, x_{\alpha}\right)$ and a partition of unity ρ_{α} define

$$
\int_{N} \omega=\sum_{\alpha} \int_{U_{\alpha}} \rho_{\alpha} \omega \quad \int_{U_{\alpha}} \eta \equiv \int_{\mathbb{R}^{n}, \mathbb{H}^{n}} \eta_{1 \cdots n}\left(x_{\alpha}\right) d x_{\alpha}^{1} \cdots d x_{\alpha}^{n}
$$

Lecture 4: Poincaré Duality and Künneth Theorem II

- If $\left(V_{\beta}, y_{\beta}\right)$ has the same orientation and χ_{β} is a corresponding partition of unity we have

$$
\int_{U_{\alpha}} \rho_{\alpha} \chi_{\beta} \omega=\int_{V_{\beta}} \rho_{\alpha} \chi_{\beta} \omega
$$

since

$$
\begin{aligned}
d y_{\beta}^{1} \wedge \cdots \wedge d y_{\beta}^{n} & =\operatorname{det}\left(\frac{\partial y_{\beta}}{\partial x_{\alpha}}\right) d x_{\alpha}^{1} \wedge \cdots \wedge d x_{\alpha}^{n} \\
d y_{\beta}^{1} \cdots d y_{\beta}^{n} & =\left|\operatorname{det}\left(\frac{\partial y_{\beta}}{\partial x_{\alpha}}\right)\right| d x_{\alpha}^{1} \cdots d x_{\alpha}^{n}
\end{aligned}
$$

- Summing over α, β we obtain

$$
\sum_{\alpha} \int_{U_{\alpha}} \rho_{\alpha} \omega=\sum_{\beta} \int_{V_{\beta}} \chi_{\beta} \omega
$$

Lecture 4: Poincaré Duality and Künneth Theorem III

- Stokes Theorem

$$
\int_{N} d \omega=\int_{\partial N} \omega
$$

where, given oriented coordinates x_{1}, \cdots, x_{n} on N with $x_{n} \geq 0$, the orientation on ∂N is given by $(-)^{n} x_{1}, \cdots, x_{n-1}$

Using linearity it suffices to show it for $\mathbb{R}^{n}, \mathbb{H}^{n}$. For instance

$$
\begin{aligned}
\omega & =f d x^{1} \wedge \cdots \wedge d x^{n-1} \\
d \omega & =(-)^{n-1} \partial_{n} f d x^{1} \wedge \cdots \wedge d x^{n} \\
\int_{\mathbb{H}^{n}} d \omega & =(-)^{n-1} \int_{x^{n} \geq 0} \partial_{n} f d x^{1} \cdots d x^{n} \\
& =(-)^{n} \int_{x^{n}=0} f d x^{1} \cdots d x^{n-1}=\int_{\partial \mathbb{H}^{n}} \omega
\end{aligned}
$$

Lecture 4: Poincaré Duality and Künneth Theorem IV

$\operatorname{dim} H^{n}<0$

- M with good finite cover $U_{1} \cdots U_{p}$ (of finite type) and

$$
\begin{aligned}
& A=U_{1} \cup \cdots \cup U_{p-1} \quad \text { (of finite type) } \\
& B=U_{p}
\end{aligned}
$$

- $A \cap B$ of finite type (covered by $U_{i} \cap U_{p}$ with $i=1, \cdots, p-1$)
- Long exact sequences

$$
\begin{aligned}
& H^{k-1}(A \cap B) \rightarrow H^{k}(M) \rightarrow H^{k}(A) \oplus H^{k}(B) \\
& H_{c}^{k+1}(A \cap B) \leftarrow H_{c}^{k}(M) \leftarrow H_{c}^{k}(A) \oplus H_{c}^{k}(B)
\end{aligned}
$$

- Left and right factors above have a finite dimension by induction on p. By exactness

$$
\operatorname{dim} H^{k}(M)<\infty \quad \operatorname{dim} H_{c}^{k}(M)<\infty
$$

Lecture 4: Poincaré Duality and Künneth Theorem V

Poincaré Duality

- M orientable of finite type (with $\operatorname{dim} M=n$)
- $M=A \cup B$ with ρ_{A}, ρ_{B} partition of unity
- Integration maps

$$
\begin{aligned}
H^{k}(M) \times H_{c}^{n-k}(M) & \rightarrow \mathbb{R} \\
{[\alpha] \times[\beta] } & \mapsto \int_{M} \alpha \wedge \beta \quad \text { (well defined using Stokes) }
\end{aligned}
$$

or equivalently

$$
\begin{aligned}
H^{k}(M) & \rightarrow H_{c}^{n-k} *(M) \\
{[\alpha] } & \mapsto \int_{M} \alpha \wedge
\end{aligned}
$$

The above map is an isomorphism

Lecture 4: Poincaré Duality and Künneth Theorem VI

- Look at the diagram

We shall show that it is a commutative diagram up to signs. The theorem then follows by the five-lemma and induction on the size of the finite cover

The only subdle point is the last square. Let $[\gamma] \in H^{k}(A \cap B)$ and $[\omega] \in H_{c}^{n-k-1}(M)$

Lecture 4: Poincaré Duality and Künneth Theorem VII

- The class $d^{\star}[\gamma]$ is defined by

$$
\begin{array}{ll}
d\left(\rho_{B} \gamma\right) & \text { on } A \\
d\left(-\rho_{A} \gamma\right) & \text { on } B
\end{array}
$$

which coincide and have support on $A \cap B$ and define an element of $H^{k+1}(M)$

- The class $d_{\star}[\omega]$ is defined by

$$
\begin{aligned}
d\left(\rho_{A} \omega\right) & \in H_{c}^{n-k}(A) \\
d\left(-\rho_{B} \omega\right) & \in H_{c}^{n-k}(B)
\end{aligned}
$$

which coincide and have support on $A \cap B$ and define an element of $H_{c}^{n-k}(A \cap B)$

Lecture 4: Poincaré Duality and Künneth Theorem VIII

- We must show that

$$
\int_{M} d^{\star}[\gamma] \wedge[\omega]= \pm \int_{A \cap B}[\gamma] \wedge d_{\star}[\omega]
$$

This follows from

$$
\begin{aligned}
& \int_{A} \rho_{A} d\left(\rho_{B} \gamma\right) \wedge \omega+\int_{B} \rho_{B} d\left(-\rho_{A} \gamma\right) \wedge \omega \\
& = \pm \int_{A} \rho_{B} \gamma \wedge d\left(\rho_{A} \omega\right) \pm \int_{B} \rho_{A} \gamma \wedge d\left(-\rho_{B} \omega\right) \\
& = \pm \int_{A \cap B}\left(\rho_{A}+\rho_{B}\right) \gamma \wedge d\left(\rho_{A} \omega\right)= \pm \int_{A \cap B} \gamma \wedge d\left(\rho_{A} \omega\right)
\end{aligned}
$$

Künneth Theorem

- Consider the space $M \times N$ with M of finite type
- Look at projections

$$
\begin{array}{cll}
M \times N & \xrightarrow{\eta} & N \\
\downarrow \pi & & \\
M & &
\end{array}
$$

Lecture 4: Poincaré Duality and Künneth Theorem IX

- The map

$$
\begin{aligned}
H^{\star}(M) \times H^{\star}(N) & \rightarrow H^{\star}(M \times N) \\
{[\alpha] \times[\beta] } & \mapsto\left[\pi^{\star} \alpha \wedge \eta^{\star} \beta\right]
\end{aligned}
$$

(well defined! Check)
is an isomorphism
Proof similar in spirit to that used to show Poincaré duality, relying on the Meyer-Vietoris sequence and induction on size of the finite cover of M

Lecture 5: Čech Cohomology I

Sheafs

- Sheaf \mathcal{F} on X
- U open $\mapsto \mathcal{F}(U)$ abelian group
- $V \subset U \mapsto$ restriction maps $\mathcal{F}_{U}^{V}: \mathcal{F}(U) \rightarrow \mathcal{F}(V)$
such that

$$
\begin{aligned}
\mathcal{F}_{V}^{W} \circ \mathcal{F}_{U}^{V} & =\mathcal{F}_{U}^{W} \\
\mathcal{F}_{U}^{U} & =1
\end{aligned}
$$

and such that, if $U=\bigcup_{i} U_{i}$, then

- given $f \in \mathcal{F}(U)$ such that $\left.f\right|_{U_{i}}=0$ then $f=0$
- given $f_{i} \in \mathcal{F}\left(U_{i}\right)$ such that $f_{i}=f_{j}$ on $U_{i} \cap U_{j}$, then there is an $f \in \mathcal{F}(U)$ with $f_{i}=\left.f\right|_{U_{i}}$
- Examples of interest to us
- Constant sheafs with $\mathcal{F}(U)=G$ fixed abelian group $(\mathbb{Z}, \mathbb{R}, \mathbb{C}, \cdots)$ and $\mathcal{F}_{U}^{V}=1_{G}$
- Smooth and holomorphic sections of vector bundles

Lecture 5: Čech Cohomology II

- Map of sheafs $f: \mathcal{F} \rightarrow \mathcal{G}$ are maps

$$
f_{U}: \mathcal{F}(U) \rightarrow \mathcal{G}(U)
$$

compatible with restrictions

$$
\begin{array}{lll}
\mathcal{F}(U) & \xrightarrow{f_{U}} & \mathcal{G}(U) \\
\downarrow \mathcal{F}_{U}^{V} & & \downarrow \mathcal{G}_{U}^{V} \\
\mathcal{F}(V) & \xrightarrow{f_{V}} & \mathcal{G}(V)
\end{array}
$$

Čech Cohomology

- U_{α} open cover of X with $\alpha \in I$ ordered countable set

Lecture 5: Čech Cohomology III

- Čech cochains

$$
C^{p}(U, \mathcal{F})=\prod_{\alpha_{0}<\cdots<\alpha_{p}} \mathcal{F}\left(U_{\alpha_{0} \cdots \alpha_{p}}\right)
$$

with

$$
U_{\alpha_{0} \cdots \alpha_{\rho}}=U_{\alpha_{0}} \cap \cdots \cap U_{\alpha_{\rho}}
$$

A cochain is the following data

$$
\omega_{\alpha_{0} \cdots \alpha_{p}} \in \mathcal{F}\left(U_{\alpha_{0} \cdots \alpha_{p}}\right)
$$

Convention: extend $\omega_{\alpha_{0} \cdots \alpha_{p}}$ to all indices by requiring antisymmetry

- Coboundary map

$$
\begin{aligned}
\delta: & C^{p} \rightarrow C^{p+1} \\
(\delta \omega)_{\alpha_{0} \cdots \alpha_{p+1}} & =\sum_{i=0}^{p+1}(-)^{i} \omega_{\alpha_{0} \cdots \hat{\alpha}_{i} \cdots \alpha_{p+1}} \\
\delta^{2} & =0
\end{aligned}
$$

(restriction maps suppressed)

Lecture 5: Čech Cohomology IV

- Cohomology

$$
H^{\star}(U, \mathcal{F})
$$

Relation to Simplicial Cohomology

- X finite simplicial complex (double baricentric subdivision of a Δ-complex)
- U_{α} with $\alpha=1, \cdots, N$ one of the ordered vertices of X is the open-star of α (union of the interiors $\breve{\Delta}$ of all simplices which contain α)
- U_{α} is a good finite cover and

$$
\begin{aligned}
U_{\alpha} & \leftrightarrow & \text { Vertices } \\
U_{\alpha \beta} & \leftrightarrow & 1 \text {-simplices }\left(U_{\alpha \beta} \neq \varnothing \text { iff the } 1 \text {-simplex } \alpha-\beta\right. \text { is } \\
& & \text { part of the simplicial complex } X)
\end{aligned}
$$

Lecture 5: Čech Cohomology V

- Cochains coincide

$$
C^{p}(U, G)=\operatorname{Hom}\left(\Delta_{n}(X), G\right)
$$

where G is the contant sheaf. Also coboundaries coincide and therefore

$$
H_{\text {Čech }}^{p}(U, G)=H_{\Delta}^{p}(X, G)
$$

Čech-deRham Complex

- Good cover U_{α} of X with partition of unity ρ_{α}
- Double complex

$$
\begin{aligned}
& K^{p, q}=C^{p}\left(U, \Omega^{q}\right) \\
& \delta: K^{p, q} \rightarrow K^{p+1, q} \\
& d: K^{p, q} \rightarrow K^{p, q+1}
\end{aligned}
$$

Lecture 5: Čech Cohomology VI

- Čech-deRham complex

$$
\begin{aligned}
K^{n} & =\underset{p+q=n}{\oplus} K^{p, q} \\
D & =\delta+(-)^{p} d
\end{aligned}
$$

with

$$
D^{2}=\delta^{2}+d^{2}+(-)^{p} \delta d+(-)^{p+1} d \delta=(-)^{p}[\delta, d]=0
$$

- Čech-deRham cohomology

$$
H_{C D}^{\star}=\frac{\operatorname{ker} D}{\operatorname{lm} D}
$$

Lecture 5: Čech Cohomology VII

- Double inclusion

$$
\begin{array}{cccc}
0 \rightarrow \Omega^{2} \xrightarrow{r} & K^{0,2} & K^{1,2} & K^{2,2} \\
0 \rightarrow \Omega^{1} \xrightarrow{r} & K^{0,1} & K^{1,1} & K^{2,1} \\
0 \rightarrow \Omega^{0} \xrightarrow{r} & K^{0,0} & K^{1,0} & K^{2,0} \\
& \uparrow i & \uparrow i & \uparrow i \\
& C^{0}(U, \mathbb{R}) & C^{1}(U, \mathbb{R}) & C^{2}(U, \mathbb{R}) \\
& \uparrow & \uparrow & \uparrow \\
& 0 & 0 & 0
\end{array}
$$

induce maps in cohomology

$$
\begin{aligned}
& r^{\star}: H^{\star}(X) \rightarrow H_{C D}^{\star} \\
& i^{\star}: H^{\star}(U, \mathbb{R}) \rightarrow H_{C D}^{\star}
\end{aligned}
$$

- Colums are exact since U is good and on the intersections we use Poincaré's Lemma (it is exact in dimension zero at $K^{k, 0}$ since we are quotenting by constant functions $\left.C^{k}(U, \mathbb{R})\right)$

Lecture 5: Čech Cohomology VIII

- The rows are exact. Define the map

$$
\begin{gathered}
P: K^{p, q} \rightarrow K^{p-1, q} \\
(P \omega)_{\alpha_{0} \cdots \alpha_{p-1}}=(-)^{p} \sum_{\alpha_{p}} \omega_{\alpha_{0} \cdots \alpha_{p}} \rho_{\alpha_{p}}
\end{gathered}
$$

We have that

$$
P \delta+\delta P=1
$$

and each cocycle is a coboundary

- Proof

$$
\begin{aligned}
& (P \delta \omega)_{\alpha_{0} \cdots \alpha_{p}}=(-)^{p+1} \sum_{\alpha_{p+1}} \sum_{i=0}^{p+1}(-)^{i} \omega_{\alpha_{0} \cdots \hat{\alpha}_{i} \cdots \alpha_{p+1}} \rho_{\alpha_{p+1}} \\
& (\delta P \omega)_{\alpha_{0} \cdots \alpha_{p}}=(-)^{p} \sum_{i=0}^{p} \sum_{\alpha_{p}}(-)^{i} \omega_{\alpha_{0} \cdots \hat{\alpha}_{i} \cdots \alpha_{p+1}} \rho_{\alpha_{p+1}}
\end{aligned}
$$

All terms cancel aside from the term with $i=p+1$ in the first sum which equals ω since $\sum_{\alpha_{p+1}} \rho_{\alpha_{p+1}}=1$

Lecture 5: Čech Cohomology IX

- The maps r^{\star} and i^{\star} are isomorphisms. We have therefore

$$
H_{\text {deRham }}^{\star} \stackrel{r^{\star}}{\rightarrow} H_{C D}^{\star} \stackrel{i^{\star}}{\leftarrow} H_{\text {Čech }}^{\star} \simeq H_{\Delta}^{\star}
$$

- r^{\star} surjective : Let $\omega \in K^{2}$ with $D \omega=0$ (the general case is analogous)

$$
\begin{array}{llll}
\omega_{1} & & \eta \rightarrow \tilde{\omega}_{1} \\
\alpha_{1} & \omega_{2} & &
\end{array}
$$

Since $\delta \omega_{3}=0$ choose α_{2} so that $\delta \alpha_{2}=-\omega_{3}$. Then $\omega+D \alpha_{2}$ has no elements in $K^{2,0}$. Analogously I can choose α_{1} so that $\omega+D\left(\alpha_{1}+\alpha_{2}\right)$ has only a non-vanishing element $\tilde{\omega}_{1} \in K^{0,2}$. Since $\delta \tilde{\omega}_{1}=0$ it must be the image of a globally defined closed 2-form η

- r^{\star}, i^{\star} injective and i^{\star} surjective are proved in similar ways

Lecture 6: Vector Bundles I

Basic Construction

- Manifold M and open cover U_{α}
- Smooth maps

$$
g_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow G L(n, \mathbb{R})
$$

such that

$$
\begin{aligned}
g_{\alpha \beta} g_{\beta \gamma} & =g_{\alpha \gamma} \quad\left(\text { on } U_{\alpha} \cap U_{\beta} \cap U_{\gamma}\right) \\
\text { (this implies } g_{\alpha \alpha} & =1 \text { and } g_{\alpha \beta}=g_{\beta \alpha}^{-1} \text {) }
\end{aligned}
$$

- Building blocks

$$
E_{\alpha}=U_{\alpha} \times \mathbb{R}^{n}
$$

with equivalence relation

$$
(x, v) \in E_{\alpha} \sim(y, w) \in E_{\beta} \quad \text { if } \quad x=y \text { and } v=g_{\alpha \beta} w
$$

- Total space

$$
\pi: E \rightarrow M
$$

Lecture 6: Vector Bundles II

- A section s_{α} is given by

$$
\begin{aligned}
& s_{\alpha}: U_{\alpha} \rightarrow \mathbb{R}^{n} \\
& s_{\alpha}=g_{\alpha \beta} s_{\beta}
\end{aligned}
$$

- Given a map $f: N \rightarrow M$ the open cover $V_{\alpha}=f^{-1}\left(U_{\alpha}\right)$ and maps $g_{\alpha \beta} \circ f$ define the pullback vector bundle on N

$$
\begin{array}{ccc}
f^{-1} E & \rightarrow & E \\
\downarrow \pi & & \downarrow \pi \\
N & \xrightarrow{f} & M
\end{array}
$$

- Complex bundles : replace \mathbb{R} with \mathbb{C} Holomorphic bundles: M complex manifold, replace \mathbb{R} with \mathbb{C} and smooth with holomorphic

Lecture 6: Vector Bundles III

- Two vector bundles $\left(U_{\alpha}, g_{\alpha \beta}\right)$ and $\left(U_{\alpha}, h_{\alpha \beta}\right)$ on M are equivalent if there are smooth maps

$$
\lambda_{\alpha}: U_{\alpha} \rightarrow G L(n, \mathbb{R})
$$

such that

$$
g_{\alpha \beta}=\lambda_{\alpha} h_{\alpha \beta} \lambda_{\beta}^{-1}
$$

If the open covers are different, pass to a common refinement first. Various equivalent representations $\left(U_{\alpha}, g_{\alpha \beta}\right)$ are called trivializations

Basic Examples

- Trivial Bundle

$$
E=M \times \mathbb{R}^{n}
$$

Lecture 6: Vector Bundles IV

- Tangent bundle $T N$ with transition functions

$$
\left(g_{\alpha \beta}\right)_{i j}=\frac{\partial x_{\alpha}^{i}}{\partial x_{\beta}^{j}}
$$

where x_{α}^{i} are coordinates on U_{α}. Sections $V_{\alpha}: U_{\alpha} \rightarrow \mathbb{R}^{n}$ are vector fields

$$
\sum_{i} V_{\alpha}^{i} \frac{\partial}{\partial x_{\alpha}^{i}}
$$

- Holomorphic tangent bundle T_{N} with N a complex manifold and with transition functions

$$
\left(g_{\alpha \beta}\right)_{i j}=\frac{\partial z_{\alpha}^{i}}{\partial z_{\beta}^{j}}
$$

where z_{α}^{i} are holomorphic coordinates on U_{α}

Lecture 6: Vector Bundles V

Orientable Bundles

- A real vector bundle is orientable if it has a trivialization with transition functions $g_{\alpha \beta}$ such that

$$
\operatorname{det} g_{\alpha \beta}>0
$$

- Two simple facts
- A manifold M is orientable if $T M \rightarrow M$ is an orientable vector bundle
- If M is an orientable manifold and $E \rightarrow M$ and orientable vector bundle, then E is an orientable manifold
- Basic facts
- A real vector bundle always admits an $O(n)$ trivialization
- A complex vector bundle always admits a $U(n)$ trivialization
- A real orientable vector bundle always admits an $S O$ (n) trivialization

Lecture 6: Vector Bundles VI

Operations on Vector Bundles

- Basic operations on vector spaces

$$
\begin{aligned}
& V \oplus W \\
& V \otimes W
\end{aligned} \quad\left(\text { also } \operatorname{Sym}^{k} V \text { and } \Lambda^{k} V\right)
$$

V^{\star}
extend to operations on vector bundles $V, W \rightarrow M$, with transition functions given by

$$
\begin{aligned}
& g_{\alpha \beta} \oplus h_{\alpha \beta} \\
& g_{\alpha \beta} \otimes h_{\alpha \beta} \\
& { }^{t}\left(g_{\alpha \beta}^{-1}\right)
\end{aligned}
$$

Important is the line bundle $\bigwedge^{\operatorname{dim} V} V$ with transition functions

$$
\operatorname{det}\left(g_{\alpha \beta}\right)
$$

Lecture 6: Vector Bundles VII

- Complex conjugation \bar{E} of a complex vector bundle E has transition functions $g_{\alpha \beta}^{\star}$
- The complexification E_{C} of a real vector bundle E has $\operatorname{dim}_{\mathbb{C}} E_{\mathbb{C}}=\operatorname{dim}_{\mathbb{R}} E$ and the same transition functions using the inclusion

- The realization $E_{\mathbb{R}}$ of a complex vector bundle E has $\operatorname{dim}_{\mathbb{R}} E_{\mathbb{R}}=2 \operatorname{dim}_{\mathbb{C}} E$ with transition functions

$$
\left(g_{\alpha \beta}\right)_{\mathbb{R}}=M^{-1}\left(\begin{array}{cc}
\operatorname{Re} g_{\alpha \beta} & -\operatorname{Im} g_{\alpha \beta} \\
\operatorname{Im} g_{\alpha \beta} & \operatorname{Re} g_{\alpha \beta}
\end{array}\right) M \quad \text { with } \quad M=\left(\begin{array}{l}
1 \\
001 \cdots \\
\cdots \\
01 \\
0001 \\
\cdots
\end{array}\right)
$$

Lecture 6: Vector Bundles VIII

and $M \in O(2 n)$, defining the map $\left(\right.$ since $\left.\operatorname{det}\left(g_{\alpha \beta}\right)_{\mathbb{R}}=\left|\operatorname{det} g_{\alpha \beta}\right|^{2}\right)$

$$
\begin{array}{ccc}
G L(n, \mathbb{C}) & \rightarrow & G L(2 n, \mathbb{R}) \\
\uparrow & & \uparrow \\
U(n) & \rightarrow & S O(2 n)
\end{array}
$$

Therefore $E_{\mathbb{R}}$ is orientable

- Exercises: show the isomorphisms as complex bundles
- $\left(E_{\mathbb{R}}\right)_{\mathrm{C}} \simeq E \oplus \bar{E}$
- $\bar{E} \simeq E^{\star}$

More Examples

- Cotangent bundle $T^{\star} M$ with sections one-forms
- Bundles $T M \oplus \cdots \oplus T M \oplus T^{\star} M \oplus \cdots \oplus T^{\star} M$ with sections tensors
- $\wedge^{k} T^{\star} M$ with sections k-forms
- Holomorphic cotangent bundle T_{M}^{\star} and $\Lambda^{k} T_{M}^{\star}$
- Canonical line bundle $K_{M}=\Lambda^{\operatorname{dim}_{C} M} T_{M}^{\star}$

Lecture 6: Vector Bundles IX

- A basic relations

$$
T M_{\mathbb{C}}=T_{M} \oplus \bar{T}_{M}
$$

Connection and curvature

- $E \xrightarrow{\pi} M$ vector bundle with trivialization U_{α} and $g_{\alpha \beta}$
- Section

$$
\begin{aligned}
& s_{\alpha}: U_{\alpha} \rightarrow K^{n} \quad\left(K=\mathbb{R}, \mathbb{C} \text { with } n=\operatorname{dim}_{K} E\right) \\
& s_{\alpha}=g_{\alpha \beta} s_{\beta}
\end{aligned}
$$

- A connection are one-forms A_{α} on U_{α} with values in $\mathfrak{g l}(K, n)$ such that

$$
\left(d+A_{\alpha}\right) s_{\alpha} \equiv D s_{\alpha}
$$

is a section of $E \otimes T^{\star} M$ so that

$$
D s_{\alpha}=g_{\alpha \beta} D s_{\beta}
$$

This implies

$$
A_{\alpha}=g_{\alpha \beta} A_{\beta} g_{\beta \alpha}+g_{\alpha \beta} d g_{\beta \alpha}
$$

Lecture 6: Vector Bundles X

- Curvature

$$
F_{\alpha}=d A_{\alpha}+A_{\alpha} \wedge A_{\alpha}
$$

so that

$$
\begin{aligned}
F_{\alpha} & =g_{\alpha \beta} F_{\beta} g_{\beta \alpha} \\
D F_{\alpha} & =d F_{\alpha}+A_{\alpha} \wedge F_{\alpha}-F_{\alpha} \wedge A_{\alpha}=0
\end{aligned}
$$

(Bianchi Identity)

Lecture 7: Characteristic Classes I

First Chern Class

- M of finite type with U_{α} a good cover and ρ_{α} partition of unity
- $L \xrightarrow{\pi} M$ complex line bundle with $g_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow U(1) \in \mathbb{C}^{\star}$ (since $U(1)=S O(2)$ it is like considering real orientable vector bundles with $\operatorname{dim}_{\mathbb{R}}=2$)
- Define

$$
\omega_{\alpha \beta}=-\frac{1}{2 \pi i} g_{\alpha \beta} d g_{\beta \alpha} \in K^{1,1}
$$

One has

$$
\begin{aligned}
\omega_{\alpha \beta} \propto d \ln g_{\alpha \beta} & \rightarrow & d \omega=0 \\
g_{\alpha \beta} g_{\beta \gamma}=g_{\alpha \gamma} & \rightarrow & \delta \omega=0
\end{aligned}
$$

Lecture 7: Characteristic Classes II

- Define

$$
\begin{aligned}
\theta_{\alpha \beta} & =\frac{1}{2 \pi i} \ln g_{\alpha \beta} \in K^{1,0} \quad \text { (choice of In possible since } U_{\alpha} \text { is good) } \\
A_{\alpha} & =-2 \pi i \sum_{\beta} \omega_{\alpha \beta} \rho_{\beta} \in K^{0,1} \quad \text { (it defines a connection) }
\end{aligned}
$$

so that

$$
d \theta=\frac{\delta A}{2 \pi i}=\omega
$$

- ω is cohomologous to

$$
\begin{array}{ll}
\text { 1. } & -\frac{1}{2 \pi i} d A=-\frac{1}{2 \pi i} F \\
\text { 2. } & (\delta \theta)_{\alpha \beta \gamma}=\theta_{\alpha \beta}+\theta_{\beta \gamma}-\theta_{\alpha \gamma}=n_{\alpha \beta \gamma}
\end{array}
$$

(1) Cohomology class in $H^{2}(M, \mathbb{C})$. If we change connection to $A+a$, then $a_{\alpha}=a_{\beta}$ defines a global one-form and $F \rightarrow F+d a$ changes by a boundary
(2) $n_{\alpha \beta \gamma} \in \mathbb{Z}$ constants on $U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$. Integer class in $H^{2}(M, \mathbb{Z})$

Lecture 7: Characteristic Classes III

Denote with

$$
c_{1}(L)
$$

Chern Classes

- $E \xrightarrow{\pi} M$ complex vector bundle with $\operatorname{dim}_{C} E=n$ and with connection A and curvature F. We define the total Chern class of E as

$$
c(E)=\operatorname{det}\left(1-\frac{1}{2 \pi i} F\right)=c_{0}(E)+c_{1}(E)+\cdots+c_{n}(E) \in H^{\star}(M)
$$

where

$$
c_{0}(E)=1 \quad c_{i}(E) \in H^{2 i}(M)
$$

- Classes independent of connection
(1) For an infinitesimal variation $A_{\alpha} \rightarrow A_{\alpha}+\epsilon_{\alpha}$ one has $\epsilon_{\alpha}=g_{\alpha \beta} \epsilon_{\beta} g_{\beta \alpha}$ and $F_{\alpha} \rightarrow F_{\alpha}+D \epsilon_{\alpha}$ with $D \epsilon_{\alpha}=d \epsilon_{\alpha}+A_{\alpha} \wedge \epsilon_{\alpha}+\epsilon_{\alpha} \wedge A_{\alpha}$

Lecture 7: Characteristic Classes IV

(2) The variation of

$$
\operatorname{Tr}\left(F^{n}\right)
$$

is proportional to (using Bianchi identity)

$$
\operatorname{Tr}\left(D \epsilon F^{n-1}\right)=\operatorname{Tr}\left(D\left(\epsilon F^{n-1}\right)\right)=d \operatorname{Tr}\left(\epsilon F^{n-1}\right)
$$

(3) Given two connections A and A^{\prime} so is the convex combination $x A+(1-x) A^{\prime}$

Basic Properties

- Naturality : given $E \rightarrow M$ complex vector bundle and $f: N \rightarrow M$ one has

$$
c\left(f^{-1} E\right)=f^{\star} c(E)
$$

since $f^{\star} A_{\alpha}$ defines a connection on $f^{-1} E \rightarrow N$

- Whitney sum rule

$$
c(E \oplus F)=c(E) c(F)
$$

Given connections A_{α} and B_{α} for E and F, choose $A_{\alpha} \oplus B_{\alpha}$ as connection for $E \oplus F$

Lecture 7: Characteristic Classes V

- Splitting principle : Given vector bundles $E_{i} \rightarrow M$ there is a $\sigma: N \rightarrow M$ such that

$$
\begin{aligned}
& \sigma^{-1} E_{i} \text { is a sum of line bundles } \\
& \sigma^{\star}: H^{\star}(M) \rightarrow H^{\star}(N) \text { is injective }
\end{aligned}
$$

Suppose $P\left(c\left(E_{i}\right)\right)$ is a polynomial on the Chern classes, and suppose that we have shown that $P=0$ when the E_{i} 's are sums of line bundles. Then in general

$$
\begin{aligned}
\sigma^{\star} P\left(c\left(E_{i}\right)\right) & =P\left(c\left(\sigma^{-1} E_{i}\right)\right) \\
& =0
\end{aligned}
$$

(naturality)
(the $\sigma^{-1} E_{i}$ are sums of line bundles)
Since σ^{\star} is injective we conclude

$$
P\left(c\left(E_{i}\right)\right)=0
$$

Lecture 7: Characteristic Classes VI

Some computations

- Given two line bundles L_{1} and L_{2} one has (trivial check)

$$
c_{1}\left(L_{1} \otimes L_{2}\right)=c_{1}\left(L_{1}\right)+c_{1}\left(L_{2}\right) \quad c_{1}\left(L_{1}^{\star}\right)=-c_{1}\left(L_{1}\right)
$$

- Let $E=L_{1} \oplus \cdots \oplus L_{n}$ with $c\left(L_{i}\right)=1+x_{i}$. Then

$$
\begin{aligned}
c(E) & =\prod_{i}\left(1+x_{i}\right) \\
c_{i}(E) & =\frac{1}{k!} \sum_{i_{\alpha} \neq i_{\beta}} x_{i_{1}} \cdots x_{i_{k}}
\end{aligned}
$$

- Let $F=\tilde{L}_{1} \oplus \cdots \oplus \tilde{L}_{m}$ with $c\left(\tilde{L}_{i}\right)=1+y_{i}$. Then

$$
\begin{aligned}
c(E \otimes F) & =\prod_{i, j}\left(1+x_{i}+y_{j}\right)=1+\sum_{i, j}\left(x_{i}+y_{j}\right)+\cdots \\
& =1+m c_{1}(E)+n c_{1}(F)+\cdots
\end{aligned}
$$

- If $m=1$ then

$$
c(E \otimes F)=\prod_{i}\left(1+x_{i}+y\right)=\sum_{i} c_{i}(E) c^{n-i}(F)
$$

Lecture 7: Characteristic Classes VII

- Exercise : Show that $c_{i}\left(E^{\star}\right)=(-)^{i} c_{i}(E)$ and compute Chern classes as symmetric polynomials in the x_{i} and explicitly for low degrees for

$$
\begin{aligned}
\otimes^{k} E & =\oplus\left(L_{i_{1}} \otimes \cdots \otimes L_{i_{k}}\right) \\
\wedge^{k} E & =\bigoplus_{i_{1}<\cdots<i_{k}}\left(L_{i_{1}} \otimes \cdots \otimes L_{i_{k}}\right) \\
\text { Sym }^{k} E & =\oplus_{i_{1} \leq \cdots \leq i_{k}}\left(L_{i_{1}} \otimes \cdots \otimes L_{i_{k}}\right)
\end{aligned}
$$

Lecture 7: Characteristic Classes VIII

More Complex Classes

- Classes defined using the splitting principle

$$
\begin{array}{rlrl}
\mathrm{Td}(E) & =\prod_{i} \frac{x_{i}}{1-e^{-x_{i}}} & \mathrm{Td}(E \oplus F)=\operatorname{Td}(E) \operatorname{Td}(F) \\
\mathrm{L}(E) & =\prod_{i} \frac{x_{i}}{\tanh x_{i}} & \mathrm{~L}(E \oplus F)=\mathrm{L}(E) \mathrm{L}(F) \\
\widehat{\mathrm{A}}(E) & =\prod_{i} \frac{x_{i} / 2}{\sinh \left(x_{i} / 2\right)} & \widehat{\mathrm{A}}(E \oplus F)=\widehat{\mathrm{A}}(E) \widehat{\mathrm{A}}(F) \\
\operatorname{ch}(E) & =\sum_{i} e^{x_{i}} & & \operatorname{ch}(E \oplus F)=\operatorname{ch}(E)+\operatorname{ch}(F) \\
& & \operatorname{ch}(E \otimes F)=\operatorname{ch}(E) \operatorname{ch}(F)
\end{array}
$$

Pontrjagin Classes

- Given a real vector bundle $E \rightarrow M$ of $\operatorname{dim}_{\mathbb{R}}=n$ we define the Pontrjagin classes as

$$
p(E)=c\left(E_{\mathrm{C}}\right)
$$

Lecture 7: Characteristic Classes IX

- Since $E_{\mathbb{C}}=E_{\mathbb{C}}^{\star}$ and since $c_{i}\left(E_{\mathbb{C}}^{\star}\right)=(-)^{i} c\left(E_{\mathbb{C}}\right)$ we have that

$$
2 c_{2 i+1}\left(E_{\mathbb{C}}\right)=0 \quad(\text { pure torsion of order } 2)
$$

The above classes are usually discarded and one defines

$$
\begin{aligned}
p & =p_{0}-p_{1}+p_{2}-\cdots=c_{0}+c_{2}+c_{4}+\cdots \\
p_{i}(E) & =(-)^{i} c_{2 i}\left(E_{\mathrm{C}}\right)
\end{aligned}
$$

- Since $(E \oplus F)_{\mathrm{C}}=E_{\mathrm{C}} \oplus F_{\mathrm{C}}$ we have

$$
p(E \oplus F)=p(E) p(F)
$$

- For a complex manifold M

$$
\begin{aligned}
T M_{\mathrm{C}} & =T_{M} \oplus \bar{T}_{M} \\
p(T M) & =c\left(T_{M}\right) c\left(\bar{T}_{M}\right)=\prod_{i}\left(1-x_{i}^{2}\right)
\end{aligned}
$$

Lecture 7: Characteristic Classes X

Euler Class

- Real orientable vector bundle E of $\operatorname{dim}_{\mathbb{R}} E=2 n$ with $S O$ (2n) transition functions
- Choose $\mathfrak{s o}(2 n)$ connection with curvature F_{α}
- Euler class

$$
e(E)=\operatorname{Pf}\left(\frac{F_{\alpha}}{2 \pi}\right)
$$

where

$$
\begin{aligned}
\operatorname{Pf}(X) & =\frac{1}{2^{n} n!} \sum_{\sigma}(-)^{\sigma} X_{\sigma_{1} \sigma_{2}} \cdots X_{\sigma_{2 n-1} \sigma_{2 n}} \\
\operatorname{Pf}(X)^{2} & =\operatorname{det}(X)
\end{aligned}
$$

The class is closed and independent of the connection in cohomology

Lecture 7: Characteristic Classes XI

- For a complex vector bundle F of $\operatorname{dim}_{C} F=n$

$$
c_{n}(F)=e\left(F_{\mathbb{R}}\right)
$$

Choose $U(N)$ transition functions and $\mathfrak{u}(n)$ connection with curvature f_{α}. Then $F_{\mathbb{R}}$ was $\mathfrak{s o}(2 n)$ curvature

$$
F_{\alpha}=\left(f_{\alpha}\right)_{\mathbb{R}}
$$

Clearly

$$
\operatorname{det}\left(\frac{F_{\alpha}}{2 \pi}\right)=\left|\operatorname{det}\left(\frac{i f_{\alpha}}{2 \pi}\right)\right|^{2}=\operatorname{Pf}\left(\frac{F_{\alpha}}{2 \pi}\right)^{2}
$$

To check phase consider case $n=1$ with $f_{\alpha}=-2 \pi i$. Then

$$
\frac{F_{\alpha}}{2 \pi}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \text { and } \operatorname{det}\left(\frac{i f_{\alpha}}{2 \pi}\right)=\operatorname{Pf}\left(\frac{F_{\alpha}}{2 \pi}\right)=1 .
$$

- Exercise: Compute the Euler class of the tangent bundle TM of an orientable manifold M of dimension $2 n$ as a function of the Riemann curvature $R_{\mu v}{ }^{\alpha}{ }_{\beta}$ and the volume form $\sqrt{\operatorname{det} g_{\mu \nu}} d x^{1} \cdots d x^{2 n}$ for $n=1$, 2 .

Lecture 8: Complex Manifolds I

Dolbeault Cohomology

- Since $T^{\star} M_{\mathrm{C}}=T_{M}^{\star} \oplus \bar{T}_{M}^{\star}$ we have that

$$
\Omega_{\mathbb{C}}^{n}(M)=\bigoplus_{p+q=n} \Omega^{p, q}(M)
$$

with $\Omega^{p, q}$ forms with $p d z$'s and $q d z$'s

- Differentials

$$
d=d z^{a} \partial_{a}+d \bar{z}^{\bar{\alpha}} \bar{\partial}_{\bar{a}}=\partial+\bar{\partial}
$$

with

$$
\begin{aligned}
& \partial: \Omega^{p, q} \rightarrow \Omega^{p+1, q} \\
& \bar{\partial}: \Omega^{p, q} \rightarrow \Omega^{p, q+1}
\end{aligned}
$$

and

$$
\partial^{2}=\bar{\partial}^{2}=\partial \bar{\partial}+\bar{\partial} \partial=0
$$

Lecture 8: Complex Manifolds II

- Dolbeault cohomology

$$
H_{\bar{\partial}}^{p, q}(M)=\frac{\operatorname{ker} \bar{\partial}: \Omega^{p, q} \rightarrow \Omega^{p, q+1}}{\operatorname{im} \bar{\partial}: \Omega^{p, q-1} \rightarrow \Omega^{p, q}}
$$

In particular

$$
H_{\frac{\partial}{\partial}}^{p, 0}(M) \text { holomorphic }(p, 0) \text {-forms }
$$

Exact Sequences in Čech cohomology

- A sequence of sheaf maps

$$
\rightarrow \mathcal{F} \xrightarrow{\alpha} \mathcal{H} \xrightarrow{\beta} \mathcal{G} \rightarrow
$$

is exact with respect to a covering U_{i} if the induced sequence

$$
\rightarrow \mathcal{F}\left(U_{i_{0} \ldots i_{p}}\right) \xrightarrow{\alpha} \mathcal{H}\left(U_{i_{0} \ldots i_{p}}\right) \xrightarrow{\beta} \mathcal{G}\left(U_{i_{0} \ldots i_{p}}\right) \rightarrow
$$

is exact for each $U_{i_{0} \ldots i_{p}}$

Lecture 8: Complex Manifolds III

- Given a short exact sequence

$$
0 \rightarrow \mathcal{F} \rightarrow \mathcal{H} \rightarrow \mathcal{G} \rightarrow 0
$$

we have a long exact sequence in cohomology

$$
\begin{aligned}
& 0 \rightarrow H^{0}(\mathcal{F}) \\
& \rightarrow H^{0}(\mathcal{H}) \rightarrow H^{0}(\mathcal{G}) \rightarrow \\
& \rightarrow H^{1}(\mathcal{F})
\end{aligned} \rightarrow \cdots
$$

- Given a sheaf map $\mathcal{F} \xrightarrow{\alpha} \mathcal{H}$ define the kernel sheaf $\operatorname{ker}(\alpha)$ by

$$
\operatorname{ker}(\alpha)(U)=\operatorname{ker} \alpha_{U}: \mathcal{F}(U) \rightarrow \mathcal{H}(U)
$$

A long sequence

$$
\rightarrow \mathcal{F}_{n-1} \xrightarrow{\alpha_{n-1}} \mathcal{F}_{n} \xrightarrow{\alpha_{n}} \mathcal{F}_{n+1} \rightarrow
$$

is exact if and only if $\alpha_{n} \circ \alpha_{n+1}=0$ and if

$$
0 \rightarrow \operatorname{ker} \alpha_{n} \rightarrow \mathcal{F}_{n} \rightarrow \operatorname{ker} \alpha_{n+1} \rightarrow 0
$$

is short exact

Lecture 8: Complex Manifolds IV

Dolbeault's Isomorphism

- Dolbeault's Lemma. Locally (on \mathbb{C}^{n}) if $\bar{\partial} \omega=0$ then $\omega=\bar{\partial} \eta$. As an example, if $n=1$ and $\omega=\omega(z, \bar{z}) d \bar{z}$ then we can choose $\eta(z, \bar{z})=\frac{i}{2 \pi} \int \frac{d w \wedge d \bar{w}}{z-w} \omega(w, \bar{w}) \quad\left(\right.$ recall $\left.\bar{\partial} \frac{1}{z}=\pi \delta^{2}(z, \bar{z})\right)$
- $\Omega^{p, q}$ smooth (p, q) forms and \mathcal{A}^{p} holomorphic $(p, 0)$ forms
- With respect to a good cover on M

$$
0 \rightarrow \mathcal{A}^{p} \rightarrow \Omega^{p, 0} \xrightarrow{\bar{\partial}_{0}} \Omega^{p, 1} \xrightarrow{\bar{\partial}_{1}} \Omega^{p, 2} \rightarrow \cdots
$$

is exact. Equivalent short exact sequences

$$
\begin{aligned}
& 0 \rightarrow \mathcal{A}^{p} \rightarrow \Omega^{p, 0} \rightarrow \operatorname{ker} \bar{\partial}_{1} \rightarrow 0 \\
& 0 \rightarrow \operatorname{ker} \bar{\partial}_{i} \rightarrow \Omega^{p, i} \rightarrow \operatorname{ker} \bar{\partial}_{i+1} \rightarrow 0 \quad(i \geq 1)
\end{aligned}
$$

Lecture 8: Complex Manifolds V

- Use

$$
\begin{aligned}
H^{k}\left(\Omega^{p, q}\right) & =0 \quad \text { for } k \geq 1 \\
H^{0}(\mathcal{F}) & =\mathcal{F}(M)
\end{aligned}
$$

and long exact sequences in cohomology

$$
\begin{aligned}
H^{q}\left(\mathcal{A}^{p}\right) & =H^{q-1}\left(\operatorname{ker} \bar{\partial}_{1}\right)=H^{q-2}\left(\operatorname{ker} \bar{\partial}_{2}\right)=\cdots \\
& =H^{1}\left(\operatorname{ker} \bar{\partial}_{q-1}\right)=\frac{\operatorname{ker} \bar{\partial}_{q}}{\operatorname{lm} \bar{\partial}_{q-1}}
\end{aligned}
$$

Therefore

$$
H^{q}\left(\mathcal{A}^{p}\right)=H_{\bar{\partial}}^{p, q}(M)
$$

Lecture 8: Complex Manifolds VI

- Let L be a holomorphic vector bundle (and the sheaf of holomorphic sections) Then

$$
0 \rightarrow L \rightarrow L \otimes \Omega^{0,0} \xrightarrow{\bar{\partial}_{0}} L \otimes \Omega^{0,1} \xrightarrow{\bar{\delta}_{1}} \cdots
$$

produces the isomorphism

$$
H^{q}(L)=\frac{\operatorname{ker} \bar{\partial}_{q}}{\operatorname{lm} \bar{\partial}_{q-1}} \quad \text { closed/exact }(0, q) \text { forms with values in } L
$$

- To obtain an integrable form on M we must integrate against a section of

$$
L^{\star} \otimes K \otimes \Omega^{0, n-q}
$$

Serre duality

$$
H^{q}(L)=H^{n-q}\left(L^{\star} \otimes K\right)
$$

- Note : the Čech-deRham isomorphism $H^{\star}(U, \mathbb{R}) \simeq H_{\text {deRham }}^{\star}(X)$ can be shown as above starting from $0 \rightarrow \mathbb{R} \rightarrow \Omega^{0} \xrightarrow{d} \Omega^{1} \xrightarrow{d} \cdots$

Lecture 8: Complex Manifolds VII

Hermitian Metrics

- Definition

$$
g_{a b}=g_{\bar{a} \bar{b}}=0 \quad \text { (always exists) }
$$

- Kähler form

$$
\begin{aligned}
& \omega \in \Omega^{1,1}(M) \quad \text { (real form) } \\
& \omega=i g_{a \bar{b}} d z^{a} \wedge d \bar{z}^{\bar{b}}
\end{aligned}
$$

- Volume form (exercise)

$$
\frac{1}{m!} \omega^{m}=\sqrt{\operatorname{det} g_{i j}} d x^{1} d y^{1} \cdots d x^{m} d y^{m}
$$

- Hermitian connection $\Gamma_{\mu b}^{a}$ on T_{M} defined by
- $\Gamma_{\bar{a} b}^{a}=0 \quad$ (possible since T_{M} is holomorphic)

Lecture 8: Complex Manifolds VIII

- metric covariantly constant

$$
\partial_{a} g_{b \bar{c}}-\Gamma_{a b}^{c} g_{c \bar{c}}=0
$$

with connection on \bar{T}_{M}

$$
\Gamma_{\bar{a} \bar{c}}^{\bar{b}}=\overline{\Gamma_{a c}^{b}}
$$

- Explicit form

$$
\Gamma_{a c}^{b}=g^{b \bar{b}} \partial_{a} g_{\bar{b} c}
$$

- Non-vanishing torsion

$$
\Gamma_{a c}^{b}-\Gamma_{c a}^{b}=g^{b \bar{b}}\left(\partial_{a} g_{\bar{b} c}-\partial_{c} g_{\bar{b} a}\right)
$$

- Curvature

$$
R_{d a \bar{b}}^{c}=-\partial_{\bar{b}} \Gamma_{a d}^{c} \quad R_{d a b}^{c}=0
$$

Kähler Manifolds

- Equivalent definitions
- $d \omega=0$

Lecture 8: Complex Manifolds IX

- Hermitian and Levi-Civita connections coincide
- Vanishing torsion
- In components

$$
\partial_{a} g_{\bar{b} c}-\partial_{c} g_{\bar{b} a} \quad \text { and c.c. }
$$

- Curvature is Riemannian and satisfies $R^{\mu}{ }_{(\alpha \beta \gamma)}=0$ so that

$$
\begin{aligned}
R_{a \bar{b}} & =R^{c}{ }_{a c \bar{b}}+R^{\bar{c}}{ }_{a \bar{c} \bar{b}} \\
& =R^{c}{ }_{c a \bar{b}}+R^{c}{ }_{a \bar{b} c}=R^{c}{ }_{c a \bar{b}}
\end{aligned}
$$

- We have

$$
c_{1}\left(T_{M}\right)=\frac{i}{2 \pi} R_{a \bar{b}} d z^{a} \wedge d \bar{z}^{\bar{b}}
$$

- Kähler potential : Given a good cover U_{α} of M then (Poincaré Lemma and decomposition of forms) one has real functions \mathcal{K}_{α} on U_{α} and holomorphic functions $f_{\alpha \beta}$ on $U_{\alpha} \cap U_{\beta}$ such that

$$
\begin{aligned}
\omega & =i \partial \overline{\mathcal{L}} \mathcal{K}_{\alpha} & & \text { on } U_{\alpha} \\
\mathcal{K}_{\alpha}-\mathcal{K}_{\beta} & =f_{\alpha \beta}+\bar{f}_{\alpha \beta} & & \text { on } U_{\alpha} \cap U_{\beta}
\end{aligned}
$$

Lecture 8: Complex Manifolds X

$\mathbb{C} P^{n}$

- Homogenous coordinates $\left(z_{0}, \cdots, z_{n}\right)$ not all zero up to non-vanishing complex rescaling
- Tautological line bundle S in the exact sequence

$$
0 \rightarrow S \rightarrow \mathbb{C} P^{n} \times \mathbb{C}^{n+1} \rightarrow Q \rightarrow 0
$$

Exercise: Given the open cover $U_{i} \subset \mathbb{C} P^{n}$ defined by $z_{i} \neq 0$ we have transition functions for S

$$
g_{i j}=\frac{z_{i}}{z_{j}}
$$

Moreover

$$
T_{\mathrm{C} P^{n}}=Q \otimes S^{\star}
$$

Lecture 8: Complex Manifolds XI

- Fubini-Study Kähler potential

$$
\begin{aligned}
\mathcal{K}_{i} & =\ln \frac{\sum_{j} z_{j} \bar{z}_{j}}{z_{i} \bar{z}_{i}} \\
\mathcal{K}_{i}-\mathcal{K}_{j} & =\ln \frac{z_{j} \bar{z}_{j}}{z_{i} \bar{z}_{i}}
\end{aligned}
$$

- Gives a connection on S

$$
A_{i}=\partial \mathcal{K}_{i} \quad A_{i}-A_{j}=d \ln \left(z_{i} / z_{j}\right)
$$

with

$$
x=-c_{1}(S)=-\frac{i}{2 \pi} d A_{i}=\frac{1}{2 \pi} \omega
$$

- Cohomology of $\mathbb{C} P^{n}$

$$
\begin{aligned}
H^{2 k}\left(\mathbb{C} P^{n}, G\right) & =G \text { for } k=0, \cdots, n \\
& =0 \text { otherwise }
\end{aligned}
$$

Cohomology $H^{2 k}$ generated by x^{k}

Lecture 9: Hodge Theory I

Hodge Dual

- N real orientable manifold of $\operatorname{dim}_{\mathbb{R}}=n$ with metric g (with s negative eigenvalues) and volume form ϵ
- E^{A} orthonormal basis of $T^{\star} N$ with norm $\eta_{A}= \pm 1$ and with

$$
\epsilon=E^{1} \wedge \cdots \wedge E^{n}
$$

- Let

$$
\omega=E^{A_{1}} \wedge \cdots \wedge E^{A_{k}}
$$

If $B_{1} \cdots B_{n-k}$ are the complementary indices to $A_{1} \cdots A_{k}$ and π the permutation of $1 \cdots n$ to $A_{1} \cdots A_{k} B_{1} \cdots B_{n-k}$ we define

$$
\star \omega=\eta_{A_{1}} \cdots \eta_{A_{k}}(-)^{\pi} E^{B_{1}} \wedge \cdots \wedge E^{B_{n-k}}
$$

- Clearly

$$
\begin{gathered}
\star: \Omega^{k} \rightarrow \Omega^{n-k} \\
\star^{2}=(-)^{s}(-)^{k(n-k)}
\end{gathered}
$$

Lecture 9: Hodge Theory II

- If

$$
\left\{\begin{array}{l}
\alpha \\
\beta
\end{array}=\frac{1}{k!} E^{A_{1}} \wedge \cdots \wedge E^{A_{k}} \begin{array}{l}
\alpha_{A_{1} \cdots A_{k}} \\
\beta_{A_{1} \cdots A_{k}}
\end{array}\right.
$$

we define

$$
\alpha \cdot \beta=\frac{1}{k!} \alpha_{A_{1} \cdots A_{k}} \beta^{A_{1} \cdots A_{k}}
$$

Then (exercise)

$$
\alpha \wedge \star \beta=\beta \wedge \star \alpha=\alpha \cdot \beta \epsilon
$$

- In components

$$
(\star \alpha)_{B_{1} \cdots B_{n-k}}=\frac{1}{k!} \alpha_{A_{1} \cdots A_{k}} \epsilon^{A_{1} \cdots A_{k}}{ }_{B_{1} \cdots B_{n-k}}
$$

Lecture 9: Hodge Theory III

Laplacian

- Assume N compact and define symmetric form on k-forms (positive definite if $s=0$)

$$
\langle\alpha, \beta\rangle=\int_{N} \alpha \wedge \star \beta
$$

One has

$$
\begin{aligned}
\langle d \alpha, \beta\rangle & =\int d \alpha \wedge \star \beta=(-)^{k} \int \alpha \wedge d \star \beta \\
& =(-)^{k}(-)^{s}(-)^{(n-k+1)(k-1)} \int \alpha \wedge \star^{2} d \star \beta
\end{aligned}
$$

or

$$
\begin{aligned}
\langle d \alpha, \beta\rangle & =\left\langle\alpha, d^{\dagger} \beta\right\rangle \\
d^{\dagger} & =(-)^{n(k+1)+1+s} \star d \star: \Omega^{k} \rightarrow \Omega^{k-1}
\end{aligned}
$$

Lecture 9: Hodge Theory IV

- Assume $s=0$ from now on. Define the laplacian

$$
\Delta=d d^{\dagger}+d^{\dagger} d: \Omega^{k} \rightarrow \Omega^{k}
$$

Since

$$
\langle\alpha, \Delta \alpha\rangle=|d \alpha|^{2}+\left|d^{+} \alpha\right|^{2}
$$

one has that

$$
\Delta \alpha=0 \quad \Leftrightarrow \quad d \alpha=0, d^{\dagger} \alpha=0
$$

- Consider a cohomology class [α] and assume there is a harmonic representative $\Delta \alpha=0$. Then
(1) α has minimal norm in the class since

$$
|\alpha+d \beta|^{2}=|\alpha|^{2}+2\left\langle d^{\dagger} \alpha, \beta\right\rangle+|d \beta|^{2}=|\alpha|^{2}+|d \beta|^{2}
$$

(2) α is unique since

$$
d^{\dagger}(\alpha+d \beta)=d^{\dagger} d \beta=0 \quad \rightarrow \quad|d \beta|^{2}=\left\langle d^{\dagger} d \beta, \beta\right\rangle=0
$$

Lecture 9: Hodge Theory V

- In coordinates

$$
\begin{aligned}
\left(d^{\dagger} \alpha\right)_{A_{1} \cdots A_{k-1}} & =-\nabla^{A} \alpha_{A A_{1} \cdots A_{k-1}} \\
(\Delta \alpha)_{A_{1} \cdots A_{k}} & =-\nabla_{A} \nabla^{A_{\alpha_{A_{1}} \cdots A_{k}}}
\end{aligned}
$$

Hodge Theorem

- Let $\mathcal{H}^{p} \subset \Omega^{p}$ the harmonic forms. Then
- $\operatorname{dim} \mathcal{H}^{p}<\infty$ and therefore the orthogonal projection $P: \Omega^{p} \rightarrow \mathcal{H}^{p}$ is well defined
- There is a unique Green operator

$$
G: \Omega^{p} \rightarrow \Omega^{p}
$$

such that $G \mathcal{H}^{p}=0$, it commutes with d and d^{\dagger} and

$$
1=P+\Delta G
$$

Lecture 9: Hodge Theory VI

- Corollary 1: Since

$$
\alpha=P \alpha+d\left(d^{\dagger} G \alpha\right)+d^{\dagger}(d G \alpha)
$$

we obtain the orthogonal decomposition

$$
\Omega^{p}=\underbrace{\mathcal{H}^{p} \oplus d \Omega^{p-1}}_{\text {closed forms }} \oplus d^{\dagger} \Omega^{p+1}
$$

and the isomorphism

$$
H_{\text {deRham }}^{p}=\mathcal{H}^{p}
$$

- Corollary 2: If α is harmonic so is $\star \alpha$. Since \star is invertible we recover Poincaré duality

$$
\star: \mathcal{H}^{p} \rightarrow \mathcal{H}^{n-p}
$$

Lecture 9: Hodge Theory VII

Complex Version

- Let N complex, compact with hermitian metric g, Kähler form ω and $\operatorname{dim}_{C} N=n$. Then

$$
\begin{aligned}
& \star: \Omega^{p, q} \rightarrow \Omega^{n-q, n-p} \\
& \star^{2}=(-)^{p+q}
\end{aligned}
$$

- Hermitian product on $\Omega^{p, q}$

$$
\langle\alpha, \beta\rangle=\int_{N} \alpha \wedge \star \bar{\beta}
$$

Since $\bar{\partial}=d$ on $\Omega^{n, k}$ we have

$$
\begin{aligned}
\langle\bar{\partial} \alpha, \beta\rangle & =\left\langle\alpha, \bar{\partial}^{\dagger} \beta\right\rangle \\
\bar{\partial}^{\dagger} & =-\star \partial \star: \Omega^{p, q} \rightarrow \Omega^{p, q-1}
\end{aligned}
$$

Lecture 9: Hodge Theory VIII

- Laplacian and harmonic forms

$$
\begin{aligned}
\Delta_{\bar{\partial}} & =\bar{\partial}^{\dagger} \bar{\partial}+\bar{\partial} \bar{\partial}^{\dagger} \\
\mathcal{H}_{\bar{\partial}}^{p, q} & \subset \Omega^{p, q}
\end{aligned}
$$

Hodge decomposition

$$
\begin{aligned}
\Omega^{p, q} & =\mathcal{H}_{\bar{\jmath}}^{p, q} \oplus \bar{\partial} \Omega^{p, q-1} \oplus \bar{\partial}^{\dagger} \Omega^{p, q+1} \\
H_{\bar{z}}^{p, q} & =\mathcal{H}_{\bar{\jmath}}^{p, q}
\end{aligned}
$$

- Isomorphism

$$
\mathcal{H}_{\bar{\partial}}^{p, q} \stackrel{\text { Hodge dual } \star}{=} \mathcal{H}_{\partial}^{n-q, n-p} \quad \text { complex conjugation } \quad \mathcal{H}_{\bar{\partial}}^{n-p, n-q}
$$

Lecture 9: Hodge Theory IX

- If N is Kähler then

$$
\Delta_{\bar{\partial}}=\Delta_{\partial}=\frac{1}{2} \Delta
$$

Implies Kähler decomposition

$$
\begin{aligned}
\mathcal{H}^{k} & =\oplus_{p+q=k} \quad \mathcal{H}_{\bar{\partial}}^{p, q} \\
\mathcal{H}_{\bar{\partial}}^{p, q} & =\mathcal{H}_{\bar{\partial}}^{q, p}
\end{aligned}
$$

Introduction to Hypersurfaces in $\mathbb{C} P^{n}$

- Let $p\left(z_{0}, \cdots, z_{n}\right)$ a homogeneous polynomial of degree d and assume that

$$
M \subset P^{n} \quad \text { (omit } \mathbb{C} \text { from now on) }
$$

defined by $p=0$ is a complex manifold without singularities

- Tangent bundle

$$
\begin{aligned}
& \left.T_{P^{n}}\right|_{M}=T_{M} \oplus N_{M} \quad\left(\text { normal line bundle } N_{M}\right) \\
& c\left(T_{M}\right)=\left.c\left(T_{P^{n}}\right)\right|_{M} / c\left(N_{M}\right)
\end{aligned}
$$

Lecture 9: Hodge Theory X

- Use the exact sequences

$$
\begin{aligned}
& 0 \rightarrow S \rightarrow \mathbb{C}^{n+1} \rightarrow Q \rightarrow 0 \\
& 0 \rightarrow \mathbb{C} \rightarrow S^{\star n+1} \rightarrow T_{P^{n}}=Q \otimes S^{\star} \rightarrow 0
\end{aligned}
$$

to get

$$
c\left(T_{M}\right)=c\left(S^{\star}\right)^{n+1}=(1+x)^{n+1}
$$

- On $U_{i} \subset \mathbb{C} P^{n}$ defined by $z_{i} \neq 0$ define

$$
p_{i}=p\left(\frac{z_{0}}{z_{i}}, \cdots, \frac{z_{n}}{z_{i}}\right) \quad \frac{p_{j}}{p_{i}}=\left(\frac{z_{i}}{z_{j}}\right)^{d}
$$

Sections of S^{d} are given by

$$
f_{i} p_{i}=f_{j} p_{j}
$$

and define functions on P^{n} which vanish on M and therefore

$$
\left.S^{d}\right|_{M}=N_{M}^{\star}
$$

Lecture 9: Hodge Theory XI

- Therefore (omitting $\left.\right|_{M}$)

$$
\begin{aligned}
& c\left(N_{M}\right)=1+d x \\
& c\left(T_{M}\right)=(1+x)^{n+1} /(1+d x)
\end{aligned}
$$

and

$$
\begin{aligned}
c_{1}\left(T_{M}\right) & =(n+1-d) x \\
c_{n-1}\left(T_{M}\right) & =\frac{1}{d^{2}}\left[(1-d)^{n+1}-1+(n+1) d\right] x^{n-1}
\end{aligned}
$$

- Euler characteristics (true for Kähler manifolds as we shall see)

$$
\chi(M)=\int_{M} c_{n-1}\left(T_{M}\right)=\frac{1}{d}\left[(1-d)^{n+1}-1+(n+1) d\right]
$$

Lecture 9: Hodge Theory XII

- We have used

$$
\int_{M} x^{n-1}=d \int_{P^{n}} x^{n}=d
$$

This can be shown using the connection for S^{d}

$$
A_{i}=-d \ln p_{i}
$$

with curvature a δ function on M such that

$$
\begin{aligned}
\int_{M} \mu & =\frac{i}{2 \pi} \int_{P^{n}} d A_{i} \wedge \mu \\
\frac{i}{2 \pi} d A_{i} & =d \cdot x+\text { coboundary }
\end{aligned}
$$

Variation of complex structure

- Complex structure

$$
z_{\alpha}^{\mu}=f_{\alpha \beta}^{\mu}\left(z_{\beta}\right)
$$

Lecture 9: Hodge Theory XIII

- Variation is

$$
\Delta f_{\alpha \beta}^{\mu} \quad \text { holomorphic vectors on } U_{\alpha} \cap U_{\beta}
$$

such that

$$
\delta(\Delta f)=0
$$

modulo holomorphic reparameterization of the z_{α} given by $z_{\alpha}^{\mu} \rightarrow z_{\alpha}^{\mu}+\epsilon_{\alpha}^{\mu}$ or

$$
\delta \epsilon
$$

Therefore

$$
H^{1}\left(T_{M}\right) \quad \stackrel{\text { Serre }}{=} \quad H^{n-1}\left(T_{M}^{\star} \otimes K\right)
$$

- When $n=1$ then $K=T_{M}^{\star}$ and

$$
H^{1}\left(T_{M}\right)=H^{0}\left(K^{2}\right)=K^{2}(M) \quad \text { quadratic differentials }
$$

- If K is trivial

$$
H^{1}\left(T_{M}\right)=H_{\bar{\partial}}^{1, n-1}(M)
$$

Lecture 10: Elliptic Operators I

Definition

- $E, F \rightarrow N$ complex vector bundles with N compact and oriented
- Orded D differential operator

$$
A: \Gamma(E) \rightarrow \Gamma(F)
$$

- Given local coordinates x^{i} and trivializations of E, F

$$
A=\sum_{0 \leq k \leq D} A^{i_{1} \cdots i_{k}}(x) \partial_{i_{1}} \cdots \partial_{i_{k}}
$$

with $A^{i_{1} \cdots i_{k}}(x)$ matricies $\operatorname{dim} E \times \operatorname{dim} F$

- Maximal symbol

$$
A^{i_{1} \cdots i_{D}}(x) \in \Gamma\left(\operatorname{Sym}^{D} T \otimes \operatorname{Hom}(E, F)\right)
$$

A elliptic if

$$
A^{i_{1} \cdots i_{D}}(x) p_{i_{1}} \cdots p_{i_{D}}
$$

invertible when p_{i} is real and non-vanishing

Lecture 10: Elliptic Operators II

- Basic fact: If A is elliptic $\operatorname{ker} A$ and $\operatorname{coker} A=\Gamma(F) / \operatorname{im} A$ are finite dimensional. Define

$$
\operatorname{index}(A)=\operatorname{dim} \operatorname{ker} A-\operatorname{dim} \text { coker } A
$$

Hodge Theory

- Hermitian form on sections

$$
\langle\hat{s}, s\rangle_{E, F}=\int_{N} h_{E, F}(\hat{s}, s) \epsilon
$$

with $h_{E, F}$ hermitian metrics on E, F and fixed volume form ϵ

- Integrating by parts construct adjoint

$$
\begin{aligned}
& A^{\dagger}: \Gamma(F) \rightarrow \Gamma(E) \\
&\langle\hat{s}, A s\rangle_{F}=\left\langle A^{\dagger} \hat{s}, s\right\rangle_{E}
\end{aligned}
$$

If A is order D and elliptic so is A^{\dagger}

Lecture 10: Elliptic Operators III

- Elliptic, selfadjoint and positive Laplacians

$$
\square_{E}=A^{\dagger} A \quad \square_{F}=A A^{\dagger}
$$

- Hodge Theorem : Let $\Gamma_{\lambda}(E) \subset \Gamma(E)$ the eigenspace of \square_{E} with eigenvalue $\lambda \geq 0$. Then
- $\operatorname{dim} \Gamma_{\lambda}(E)<\infty$ with discrete spectrum
- $L_{2}(E)=\oplus_{\lambda} \Gamma_{\lambda}(E)$
- $1_{\Gamma(E)}=P_{E}+\square_{E} G_{E}$ with

$$
\begin{aligned}
& P_{E}: \Gamma(E) \rightarrow \Gamma_{0}(E) \\
& G_{E}: \Gamma(E) \rightarrow \Gamma(E)
\end{aligned}
$$

orthogonal projection and Green operator with $G_{E} \Gamma_{0}(E)=0$ and $\square_{E} G_{E}=G_{E} \square_{E}$
and similarly for F

- Basic consequences
- $\Gamma_{0}(E)=\operatorname{ker} A$
- $\Gamma_{0}(F)=\operatorname{coker} A$

Lecture 10: Elliptic Operators IV

- $A: \Gamma_{\lambda}(E) \rightarrow \Gamma_{\lambda}(F)$ isomorphism for $\lambda>0$

The second point follows from

$$
s=P_{F} s+A\left(A^{\dagger} G_{F} s\right)
$$

The third from

$$
A^{\dagger} A s=\lambda s
$$

for $s \in \Gamma_{\lambda}(E)$. Applying A we get

$$
A A^{+}(A s)=\lambda(A s)
$$

so that $A s \in \Gamma_{\lambda}(F)$. Also $A s=0$ implies $s=0$ so that A is injective. Finally for $s \in \Gamma_{\lambda}(F)$ we have $s=A\left(A^{\dagger} G_{F} s\right)$ and A is surjective

Lecture 10: Elliptic Operators V

Heat Kernel and Seeley Formula

- The trace (for $\square_{E, F}$)

$$
\operatorname{Tr}\left(e^{-t \square}\right)=\sum_{\lambda} e^{-\lambda t} \operatorname{dim} \Gamma_{\lambda}
$$

converges for $t>0$

- Asymptotic exansion for $t \rightarrow 0$

$$
\operatorname{Tr}\left(e^{-t \square}\right) \sim \sum_{k \geq-n} t^{\frac{k}{2 D}} \int_{M} \mu_{k}(\square)
$$

with μ_{k} built canonically from the coefficients of \square

- Index

$$
\begin{aligned}
\operatorname{index}(A) & =\operatorname{Tr}\left(e^{-t \square_{E}}\right)-\operatorname{Tr}\left(e^{-t \square_{F}}\right) \\
& =\int_{M} \mu_{0}\left(\square_{E}\right)-\int_{M} \mu_{0}\left(\square_{F}\right)
\end{aligned}
$$

Lecture 10: Elliptic Operators VI

- Locally \square is

$$
\sum_{0 \leq k \leq 2 D} \square^{i_{1} \ldots i_{k}}(x) \partial_{i_{1}} \cdots \partial_{i_{k}}
$$

with $\square^{i_{1} \ldots i_{k}}$ matricies $m \times m$ with $m=\operatorname{dim} E=\operatorname{dim} F$

- Fix p_{i} and define symbol of a differential operator a as

$$
\begin{aligned}
\sigma(a) & =e^{-i p x} a e^{i p x} \\
\sigma(a b) & =\sigma(a) \sigma(b)
\end{aligned}
$$

Obtain by replacing

$$
\partial_{i} \rightarrow \partial_{i}+i p_{i}
$$

Lecture 10: Elliptic Operators VII

- Define

$$
\begin{aligned}
\sigma & =\sigma(\square-\lambda) \\
& =\underbrace{\sigma_{0}+\sigma_{1}+\cdots+\sigma_{2 D-1}}_{\rho}+\left(\sigma_{2 D}-\lambda\right)
\end{aligned}
$$

where σ_{ℓ} is of order p^{ℓ} (with $\lambda \sim p^{2 D}$). We have in particular

$$
\begin{aligned}
\sigma_{0} & =\square \\
\sigma_{2 D} & =\text { maximal invertible symbol of } \square
\end{aligned}
$$

- Assume from now on

$$
\sigma_{2 D}=a(x, p) \cdot \mathbf{1}_{m \times m}
$$

Lecture 10: Elliptic Operators VIII

- Define

$$
\begin{aligned}
\hat{\sigma} & =\sigma\left(\frac{1}{\square-\lambda}\right)=\frac{1}{a-\lambda+\rho} \\
& =\frac{1}{a-\lambda}-\frac{1}{a-\lambda} \rho \frac{1}{a-\lambda}+\cdots \\
& =\hat{\sigma}_{-2 D}+\hat{\sigma}_{-2 D+1}+\cdots
\end{aligned}
$$

where $\hat{\sigma}_{\ell}$ is of order p^{ℓ}

- Acting with derivatives of ρ on the terms $1 /(a-\lambda)$ one gets

$$
\hat{\sigma}_{\ell}=\sum_{s} \frac{(-)^{s}}{(a-\lambda)^{s+1}} \hat{\sigma}_{\ell}^{s} \quad(\ell \geq-2 D)
$$

where $\hat{\sigma}_{\ell}^{s}$ is polynomial in the p_{i} 's of order

$$
\ell+2 D(s+1) \geq 0
$$

and polynomial in the coefficients of \square and their derivatives

Lecture 10: Elliptic Operators IX

- Consider

$$
\begin{aligned}
\langle x| e^{-t \square}|x\rangle & =-\int_{\Gamma} \frac{d \lambda}{2 \pi i} e^{-\lambda t}\langle x| \frac{1}{\square-\lambda}|x\rangle \\
& =-\int_{\Gamma} \frac{d \lambda}{2 \pi i} \int \frac{d^{n} p}{(2 \pi)^{n}} e^{-\lambda t}\langle x| \frac{1}{\square-\lambda}|p\rangle\langle p \mid x\rangle \\
& =-\int_{\Gamma} \frac{d \lambda}{2 \pi i} \int \frac{d^{n} p}{(2 \pi)^{n}} e^{-\lambda t} \hat{\sigma}(x, p)
\end{aligned}
$$

where $\hat{\sigma}(x, p)$ is the symbol $\hat{\sigma}$ without derivatives (acting on the constant function 1) and Γ is the path circling the positive real λ axis

- Use

$$
-\int_{\Gamma} \frac{d \lambda}{2 \pi i} \frac{1}{(a-\lambda)^{s+1}} e^{-\lambda t}=(-)^{s} e^{-a t} \frac{t^{s}}{s!}
$$

to get

$$
\langle x| e^{-t \square}|x\rangle \sim \sum_{\ell, s} \int \frac{d^{n} p}{(2 \pi)^{n}} e^{-a t} \frac{t^{s}}{s!} \hat{\sigma}_{\ell}^{s}(x, p)
$$

Lecture 10: Elliptic Operators X

- Write the $d^{n} p$ integral as

$$
d^{n} p=\frac{1}{2 D} \frac{d \eta}{\eta} \eta^{\frac{n}{2 D}} d \Omega_{p}
$$

where $\eta^{1 / 2 D}$ is the radial variable $\left(p^{2 D} \sim \eta\right)$. We then get

$$
\begin{aligned}
& \langle x| e^{-t \square}|x\rangle \sim \frac{(2 \pi)^{-n}}{2 D} \sum_{\ell, s} \int d \Omega_{p} \hat{\sigma}_{\ell}^{s}(x, p) . \\
& \cdot \int \frac{d \eta}{\eta} \eta^{\frac{n}{2 D}} e^{-\eta a t} \frac{t^{s}}{s!} \eta^{\frac{\ell+2 D}{2 D}+s}
\end{aligned}
$$

- Define

$$
k=-2 D-\ell-n \geq-n
$$

Lecture 10: Elliptic Operators XI

- Integrate on η to get

$$
\begin{aligned}
\langle x| e^{-t \square}|x\rangle & \sim \sum_{k \geq-n} t^{\frac{k}{2 D}} \mu_{k}(\square) \\
\mu_{k}(\square) & =\frac{(2 \pi)^{-n}}{2 D} \sum_{s \geq \frac{k+n}{2 D}} \int d \Omega_{p} . \\
& \cdot \frac{\Gamma\left(s-\frac{k}{2 D}\right)}{s!}[a(x, p)]^{-s+\frac{k}{2 D}} \hat{\sigma}_{\ell}^{s}(x, p)
\end{aligned}
$$

- Invariance of trace under $\square \rightarrow \lambda \square, t \rightarrow \lambda^{-1} t$ implies

$$
\mu_{k}(\lambda \square)=\lambda^{\frac{k}{2 D}} \mu_{k}(\square)
$$

Lecture 11: Hirzebruch Signature Theorem I

Gilkey's Argument

- Let $\mu(g)$ be an n-form built from the metric $g_{a b}$, its inverse $g^{a b}$ and derivatives of the metric up to a finite order. Going to normal coordinates it is constructed terms of the form

$$
\nabla_{a_{1}} \cdots \nabla_{a_{n}} R_{b_{1} \cdots b_{4}}
$$

- Assume that $\mu(g)$ is of weight k

$$
\mu\left(\lambda^{2} g\right)=\lambda^{k} \mu(g)
$$

- Consider a monomial with r terms of the form (\star) with a total of d covariant derivatives. Out of the $4 r+d$ indices $4 r+d-q$ are contracted with $g^{a b}$ and the other q are antisymmetrized. Since the weights of $R_{b_{1} \cdots b_{4}}$ and $g_{a b}$ are 2 we have

$$
k=q-2 r-d
$$

Lecture 11: Hirzebruch Signature Theorem II

- In $R_{b_{1} \cdots b_{4}}$ at most two indices can be antisymmetrized otherwise one gets a vanishing contribution. Therefore

$$
\begin{aligned}
& q \leq 2 r+d \\
& k \leq 0
\end{aligned}
$$

- Consider the case $k=0$. Then $d=0$. This follows from the fact that (\star) vanishes also if we antisymmetize two b indices and one a index due to the Bianchi identity. This implies $q=2 r$
- Using

$$
\begin{aligned}
R_{a b c d} & =R_{c d a b}=-R_{a b d c} \\
R_{a[b c] d} & =\frac{1}{2} R_{a d b c}
\end{aligned}
$$

every monomial is built from terms of the form

$$
R_{i_{1} i_{2}\left[j_{1} j_{2}\right.} R_{i_{2} i_{3} j_{3} j_{4}} \cdots R_{\left.i_{r} i_{1} j_{q-1} j_{1}\right]} \quad \text { (} j \text { indices antisymmetrized) }
$$

Lecture 11: Hirzebruch Signature Theorem III

- Therefore $\mu(g)$ is built from Pontrjagin classes when $k=0$
- More generally, let $E \rightarrow N$ be a complex vector bundle with g a metric on N and h a metric on the fibers on E with ∇_{m} a connection on E such that h is covariantly constant
- Let $\mu(g, h)$ have weights

$$
\begin{aligned}
& \mu\left(\lambda^{2} g, h\right)=\lambda^{k} \mu(g, h) \\
& \mu\left(g, \lambda^{2} h\right)=\lambda^{\ell} \mu(g, h)
\end{aligned}
$$

By similar arguments

- $\mu=0$ if $k>0$ or if $\ell \neq 0$
- μ built from $p(T N)$ and $c(E)$ if $k=\ell=0$

Lecture 11: Hirzebruch Signature Theorem IV

The Signature Theorem

- N compact oriented Riemannian manifold of dimension $n=4 k$
- Elliptic selfadjoint operator

$$
\begin{aligned}
A & =d+d^{+}: \Omega \rightarrow \Omega \\
\Omega & =\oplus_{p} \Omega^{p} \\
\square & =A^{2}=d d^{\dagger}+d^{\dagger} d=\Delta_{\text {Hodge }}
\end{aligned}
$$

- Involution

$$
\begin{aligned}
\tau & : \Omega^{p} \rightarrow \Omega^{4 k-p} \\
\tau & =i^{p(p-1)+2 k} \star \\
\tau^{2} & =1 \\
A \tau+\tau A & =0
\end{aligned}
$$

Lecture 11: Hirzebruch Signature Theorem V

- Decomposition

$$
\begin{aligned}
& \Omega=\Omega_{+} \oplus \Omega_{-} \\
A: \Omega_{+} \rightarrow \Omega_{-} & \left(\tau \text { on } \Omega_{ \pm} \text {is } \pm 1\right) \\
A^{+}=A: \Omega_{-} \rightarrow \Omega_{+} &
\end{aligned}
$$

- Index of A

$$
\begin{aligned}
\operatorname{ker} A & =\text { Harmonic forms } \cap \Omega_{+} \\
\operatorname{ker} A^{\dagger} & =\text { Harmonic forms } \cap \Omega_{-}
\end{aligned}
$$

- By Poincaré duality, for $p \neq 2 k$

$$
\mathcal{H}^{p} \oplus \mathcal{H}^{4 k-p}=\left(\frac{1-\tau}{2}\right) \mathcal{H}^{p} \oplus\left(\frac{1+\tau}{2}\right) \mathcal{H}^{p}
$$

The two spaces on the right have the same dimension and do not contribute to the index

Lecture 11: Hirzebruch Signature Theorem VI

- Also

$$
\begin{aligned}
\mathcal{H}^{2 k} & =\mathcal{H}_{+}^{2 k} \oplus \mathcal{H}_{-}^{2 k} \\
\operatorname{ind}(A) & =\operatorname{dim} \mathcal{H}_{+}^{2 k}-\operatorname{dim} \mathcal{H}_{-}^{2 k}
\end{aligned}
$$

- Note that for $n=4 k$ we have $\left.\tau\right|_{\Omega^{n / 2}}=\star$. In the case $n / 2$ odd then $\star^{2}=-1$ and $\left.\tau\right|_{\Omega^{n / 2}}= \pm i \star$. In this case complex conjugation exchanges $\mathcal{H}_{+}^{2 k}$ and $\mathcal{H}_{-}^{2 k}$ and the index vanishes
- Nondegenerate (by Poincaré) bilinear form • on $H^{2 k}(N, \mathbb{R})$ given by

$$
[\alpha] \cdot[\beta]=\int_{N} \alpha \wedge \beta
$$

- Signature of \cdot denoted by $\operatorname{sign}(N)$. Since on $\mathcal{H}_{ \pm}^{2 k}$

$$
\pm \alpha \cdot \alpha=\int \alpha \wedge \star \alpha=|\alpha|^{2} \geq 0
$$

we have that

$$
\operatorname{sign}(N)=\operatorname{ind}(A)
$$

Lecture 11: Hirzebruch Signature Theorem VII

- Since under $g \rightarrow \lambda^{2} g$ one has $\square \rightarrow \lambda^{-2} \square$ by Gilkey one has

$$
\operatorname{sign}(N)=\int_{N} f_{k}\left(p_{1}, \cdots, p_{k}\right)
$$

with f_{k} a polynomial in the Pontryagin classes p_{i}

- To fix f_{k} it suffices to consider the spaces

$$
P_{2 k_{1}} \times \cdots \times P_{2 k_{r}} \quad\left(\sum_{i} k_{i}=k\right)
$$

using

$$
\begin{aligned}
\operatorname{sign}(M \times N) & =\operatorname{sign}(M) \operatorname{sign}(N) \\
\operatorname{sign}\left(P_{2 n}\right) & =1
\end{aligned}
$$

Lecture 11: Hirzebruch Signature Theorem VIII

- Note that

$$
\int_{P_{2 q}} \mathrm{~L}\left(T_{P_{2 q}}\right)=1
$$

since

$$
\begin{aligned}
\mathrm{L}\left(T_{P_{2 q}}\right) & =\mathrm{L}\left(S^{\star}\right)^{2 q+1}=\left(\frac{x}{\tanh x}\right)^{2 q+1} \\
& =\cdots+x^{2 q}+\cdots
\end{aligned}
$$

and that $\mathrm{L}(M \times N)=\mathrm{L}(M) \mathrm{L}(N)$

- Therefore

$$
\operatorname{sign}(N)=\int_{N} \mathrm{~L}(N)
$$

Lecture 11: Hirzebruch Signature Theorem IX

- Notation: For a complex manifold we denote with $\mathrm{L}(N)=\mathrm{L}\left(T_{N}\right)$. Since L is even in the x_{i} it actually is only a function of the Pontrjagin classes

$$
p_{k}(T N)=\sum_{i_{1}<\cdots<i_{k}} x_{i_{1}}^{2} \cdots x_{i_{k}}^{2}
$$

For a general manifold we define $\mathrm{L}(N)$ using its expression in terms of the Pontrjagin classes, which starts as

$$
\mathrm{L}(T N)=1+\frac{1}{3} p_{1}+\frac{1}{45}\left(7 p_{2}-p_{1}^{2}\right)+\cdots
$$

The same comments apply to $\widehat{\mathrm{A}}(T N)$

Lecture 12: General Index Theorem I

General Index Theorem

- N compact orientable of even dimension $\operatorname{dim}_{\mathbb{R}} N=n$
- $E_{q} \rightarrow N$ complex vector bundles
- Complex

$$
\begin{aligned}
& 0 \rightarrow \Gamma\left(E_{0}\right) \xrightarrow{d_{0}} \Gamma\left(E_{1}\right) \xrightarrow{d_{1}} \cdots \rightarrow \Gamma\left(E_{m}\right) \rightarrow 0 \\
& d_{i+1} \circ d_{i}=0
\end{aligned}
$$

- The maximal symbols $\sigma_{i}(p)$ of d_{i} give maps

$$
0 \rightarrow E_{0} \xrightarrow{\sigma_{0}} E_{1} \xrightarrow{\sigma_{1}} \cdots \rightarrow E_{m} \rightarrow 0
$$

Complex is elliptic if the above is exact

Lecture 12: General Index Theorem II

- Like before

$$
\begin{aligned}
A & : \Gamma\left(\underset{i \text { even }}{\oplus} E_{i}\right) \rightarrow \Gamma\left(\underset{i \text { odd }}{\oplus} E_{i}\right) \\
A & =\sum_{i \text { even }} d_{i}+d_{i}^{+} \\
A^{+} & =\sum_{i \text { odd }} d_{i}+d_{i}^{+}
\end{aligned}
$$

- Index Theorem

$$
\begin{aligned}
\operatorname{ind}(d) & =\sum_{i=0}^{m}(-)^{i} \operatorname{dim} \frac{\operatorname{ker} d_{i}}{\operatorname{im} d_{i-1}} \\
& =(-)^{\frac{n}{2}} \int_{N} \sum_{i}(-)^{i} \operatorname{ch}\left(E_{i}\right) \wedge \frac{\operatorname{Td}\left(T N_{\mathbb{C}}\right)}{\mathrm{e}(T N)}
\end{aligned}
$$

Lecture 12: General Index Theorem III

Hirzebruch-Riemann-Roch

- N complex manifold of $\operatorname{dim}_{C} N=n$
- Elliptic complex (exercise)

$$
0 \rightarrow \Omega_{V}^{0,0} \xrightarrow{\bar{\partial}} \cdots \xrightarrow{\bar{\partial}} \Omega_{\stackrel{V}{0, n}}^{0,0}
$$

with

$$
\begin{aligned}
& \Omega_{V}^{0, q}=\Gamma\left(E_{q}\right) \\
& E_{q}=V \otimes \Lambda^{q} \bar{T}_{N}^{\star}
\end{aligned}
$$

V holomorphic vector bundle

- Use splitting principle

$$
\begin{aligned}
T_{N} & =\bigoplus_{i} L_{i} \\
\Lambda^{q} \bar{T}_{N}^{\star} & =\oplus_{i_{1}<\cdots<i_{q}}\left(\bar{L}_{i_{1}}^{\star} \otimes \cdots \otimes \bar{L}_{i_{q}}^{\star}\right)
\end{aligned}
$$

Lecture 12: General Index Theorem IV

- Obtain

$$
\begin{aligned}
c\left(L_{i}\right) & =1+x_{i} \\
\operatorname{ch}\left(E_{q}\right) & =\operatorname{ch}(V) \sum_{i_{1}<\cdots<i_{q}} e^{x_{i_{1}}+\cdots+x_{i q}}
\end{aligned}
$$

and

$$
\sum_{q}(-)^{q} \operatorname{ch}\left(E_{q}\right)=\operatorname{ch}(V) \Pi_{i}\left(1-e^{x_{i}}\right)
$$

- Todd class

$$
\begin{aligned}
\operatorname{Td}\left(T N_{\mathrm{C}}\right) & =\operatorname{Td}\left(T_{N} \oplus \bar{T}_{N}\right)=\operatorname{Td}\left(T_{N}\right) \operatorname{Td}\left(\bar{T}_{N}\right) \\
& =\operatorname{Td}\left(T_{N}\right) \Pi_{i} \frac{-x_{i}}{\left(1-e^{x_{i}}\right)}
\end{aligned}
$$

- Note that

$$
\begin{aligned}
\left(T_{N}\right)_{\mathbb{R}} & =T N \\
\prod_{i} x_{i} & =c_{n}\left(T_{N}\right)=e(T N)
\end{aligned}
$$

Lecture 12: General Index Theorem V

- Therefore

$$
\text { ind } \begin{aligned}
\left(\bar{\partial}_{V}\right) & =\int \operatorname{ch}(V) \operatorname{Td}\left(T_{N}\right) \\
& =h^{0}(V)-h^{1}(V)+\cdots
\end{aligned}
$$

where $h^{q}(V)=\operatorname{dim}_{\mathbb{C}} H^{q}(V)$. Recall also Serre duality

$$
h^{q}(V)=h^{n-q}\left(V^{\star} \otimes K\right) \quad\left(K=\Lambda^{n} T_{N}^{\star}\right)
$$

Riemann-Roch

- N Riemann surface of genus $g(n=1)$
- Use $x /\left(1-e^{-x}\right)=x / 2+\cdots$ and

$$
\operatorname{ind} \begin{aligned}
(\bar{\partial}) & =\frac{1}{2} \int c_{1}\left(T_{N}\right)=h^{0,0}-h^{0,1} \\
& =1-g
\end{aligned}
$$

We use that N is Käher and $h^{0,1}=h^{1,0}=g$

Lecture 12: General Index Theorem VI

- Given a holomorphic line bundle L

$$
\operatorname{ind} \begin{aligned}
\left(\bar{\partial}_{L}\right) & =h^{0}(L)-h^{1}(L) \\
& =h^{0}(L)-h^{0}\left(K \otimes L^{\star}\right)
\end{aligned}
$$

- Index theorem

$$
\text { ind } \begin{aligned}
\left(\bar{\partial}_{L}\right) & =\int_{N}\left(1+\frac{1}{2} c_{1}\left(T_{N}\right)\right)\left(1+c_{1}(L)\right) \\
& =1-g+\operatorname{deg}(L)
\end{aligned}
$$

- Degree

$$
\begin{aligned}
\operatorname{deg}(L) & =\int_{N} c_{1}(L) \\
& =\# \text { of zeros }-\# \text { of poles of meromorphic sections }
\end{aligned}
$$

Lecture 12: General Index Theorem VII

- To show use connection

$$
\begin{aligned}
A_{\alpha} & =-d \ln s_{\alpha} \\
s_{\alpha} & =g_{\alpha \beta} s_{\beta} \text { meromorphic section }
\end{aligned}
$$

When

$$
\begin{aligned}
s_{\alpha} & =z^{n} \\
A_{\alpha} & =-n \frac{d z}{z} \\
-\frac{1}{2 \pi i} F_{\alpha} & =n \delta(z, \bar{z}) \quad \frac{i}{2} d z \wedge d \bar{z}
\end{aligned}
$$

- Clearly

$$
h^{0}(L)>0 \quad \Rightarrow \quad \operatorname{deg}(L) \geq 0
$$

and

$$
\begin{array}{ll}
h^{0}(\mathbb{C})=1 & \operatorname{deg}(\mathbb{C})=0 \\
h^{0}(K)=g & \operatorname{deg}(K)=2 g-2
\end{array}
$$

Lecture 12: General Index Theorem VIII

- Finally

$$
\begin{aligned}
& h^{1}\left(T_{N}\right)=3 g-3+h^{0}\left(T_{N}\right) \\
& h^{0}\left(T_{N}\right)=0 \text { for } g>1 \text { since } \operatorname{deg}\left(T_{N}\right)=2-2 g
\end{aligned}
$$

Twisted Hirzebruch Signature Index

- N real manifold of $\operatorname{dim}_{\mathbb{R}} N=4 k$
- Given complex vector bundle V look at V-valued q-forms

$$
\begin{aligned}
& \Omega_{V}^{q}=\Gamma\left(\Lambda^{q}\left(T N^{\star}\right)_{\mathrm{C}} \otimes V\right) \\
& \quad D: \Omega_{V}^{q} \rightarrow \Omega_{V}^{q+1} \\
& D=d+\text { connection on } V
\end{aligned}
$$

and

$$
\begin{aligned}
& A: \Omega_{+} \rightarrow \Omega_{-} \\
& A=D+D^{+}
\end{aligned}
$$

Lecture 12: General Index Theorem IX

- Index theorem

$$
\begin{aligned}
\operatorname{ind}(A) & =2^{n / 2} \int \operatorname{ch}(V) \mathcal{L}\left(T N_{\mathrm{C}}\right) \\
\mathcal{L}(E) & =\prod_{i} \frac{x_{i} / 2}{\tanh x_{i} / 2}
\end{aligned}
$$

Dirac Index

- N real manifold of even dimension n with fixed metric and spin structure
- V complex vector bundle with connection
- $S_{ \pm}$positive and negative chirality spinor bundles
- Elliptic complex

$$
D: \Gamma\left(S_{+} \otimes V\right) \rightarrow: \Gamma\left(S_{-} \otimes V\right)
$$

with adjoint

$$
D: \Gamma\left(S_{-} \otimes V\right) \rightarrow: \Gamma\left(S_{+} \otimes V\right)
$$

Lecture 12: General Index Theorem X

- Index theorem

$$
\text { ind } \begin{aligned}
(D) & =\# \text { of zeros od } D \text { with positive chirality } \\
& -\# \text { of zeros od } D \text { with negative chirality } \\
& =\int_{N} \operatorname{ch}(V) \widehat{\mathrm{A}}(T N)
\end{aligned}
$$

with

$$
\widehat{\mathrm{A}}(T N)=1-\frac{1}{24} p_{1}+\frac{1}{5760}\left(7 p_{1}^{2}-4 p_{2}\right)+\cdots
$$

Lecture 12: General Index Theorem XI

Euler Index

- deRham complex

$$
0 \rightarrow \Omega^{0} \xrightarrow{d} \cdots \xrightarrow{d} \Omega^{n} \rightarrow 0
$$

has index the Euler characteristic

$$
\begin{aligned}
\chi(N) & =\operatorname{ind}(d)=h^{0}-h^{1}+\cdots \\
& =\int_{N} e(T N) \quad(n \text { even })
\end{aligned}
$$

and 0 for n odd by Poincaré duality

