
Geometrical methods for string compactifications
Alessandro Tomasiello

These notes were prepared for my lectures at LACES 2009. It should be noted that

they are a preliminary version that I initially prepared for my own reference; as such,

they are bound to contain mistakes and inaccuracies. If you think something in it looks

fishy, please let me know.

They do contain some extra material that I did not explain in class, and some that

I will explain next time. On the other hand, as of today (December 9, 2009), they

are unfinished: they do not contain the last (and most important) part, about the

application of generalized complex geometry to flux compactifications with RR fields.

1 Fluxes and supersymmetry

We will deal in these lectures with type II supergravity. Of course we are interested in

this only because it is the low–energy limit of the type II string, but for most of these

lectures the stringy effects will not be taken into account, and pure supergravity will be

enough.

1.1 Fields

Type II supergravity comes in two flavors, IIA and IIB. Let us begin by recalling the

fields of each of them. (In this subsection and the next, we will follow the conventions

and language of [1], except for a few changes noted in appendix A.) The matter fields are

given by the fermions1

ψa
M (gravitino), λa (dilatino). (1.1)

where a = 1, 2. In IIA, ψ1
M and λ1 has chirality +, and ψ2

M , λ2 have chirality −. In IIB,

all have chirality +. All of them are Majorana. The forces are mediated by the bosons

gMN (metric), BMN , (1.2)

and by a collection of fields of the form

CM1...Mp , p =

 = 1, 3, 5, 7, 9 (IIA)

= 0, 2, 4, 6, 8 (IIB)
RR− fields. (1.3)

1For notations, see appendix A.
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The metric gMN is obviously symmetric, as a metric should be. Both BMN and the

CM1...Mp are totally antisymmetric, and they should be understood as gauge potentials,

generalizing the potential AM of electro–magnetism. We will often use for them the form

notation

B ≡ 1

2
BMNdx

M ∧ dxN , Cp ≡
1

p!
CM1...Mpdx

M1 ∧ . . . ∧ dxMp . (1.4)

Using also the exterior differential d ≡ dxM ∂
∂xM , we can introduce the field–strengths2 (or

“fluxes”)

H = dB , Fp = dCp−1 −H ∧ Cp . (1.5)

These can be thought of as similar to the FMN of electro–magnetism. For example, there

is a gauge transformation B → B′ = B+dλ1, with λ1 a one–form, that leaves H invariant

(because H ′ = dB′ = d(B + dλ1) = dB = H). The gauge transformations for the Cp

potentials are more complicated, and they read

Cp → C ′p = Cp + dλp−1 −H ∧ λp−3 (1.6)

where obviously λk is a k–form. Another complication about the Cp is that their field

strengths are related by

Fp = (−1)b
p
2
c ∗ F10−p . (1.7)

In most other reviews of supergravity, the constraint (1.7) is solved by keeping as fun-

damental fields only the field–strengths of the fields with the fewest indices. For exam-

ple, [2, Vol. 2] keeps only F0, F2 and F4 in IIA, and F1, F3 and F5 in IIB. (Notice that,

for IIB, part of the constraint is still with us: we still have F5 = ∗F5.) This choice of

which field–strengths to keep is called “electric basis”. In these lectures, as we will see

later, we will choose another electric basis, one which is better adapted to the problem of

compactifying to four dimensions.

Equations (1.6) might look clumsy. It is a good idea to collect them into a single

object, a differential form of mixed degree. We can think of this as a formal sum:

C =

 C1 + C3 + C5 + C7 + C9 (IIA)

C0 + C2 + C4 + C6 + C8 (IIB)
(1.8)

In the same way, we can define

F =

 F0 + F2 + F4 + F6 + F8 + F10 (IIA)

F1 + F3 + F5 + F7 + F9 (IIB)
(1.9)

2Actually, this formula is more complicated if F0 6= 0, because that is a field–strength without a
potential, but for the time being we can simply ignore this. F0 is also called “Romans mass”.
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This allows to write the RR field strength in (1.5) as

F = dC −H ∧ C = (d−H∧)C ≡ dHC . (1.10)

Notice that

d2
H =

1

2
{dH , dH} =

1

2
{d, d}+ {d,H∧}+

1

2
{H∧, H∧} = (dH) ∧ . (1.11)

The idea of these equalities is the same as when we compute the commutator of the

derivative operator and the multiplication operator in quantum mechanics: we can imag-

ine acting on a test object (for quantum mechanics, a wave function; in our case, a

differential form), compute the (anti)commutator, and then eliminate the test object at

the end.

Equation (1.7) does not seem to simplify too much by the introduction of the formal

sum (1.9). But the signs we have in (1.7) appear often enough in string theory that it

pays off to introduce a symbol to avoid writing them out every time. We introduce an

operator λ, defined by its action on a differential form αk of degree k:

λαk = (−1)b
p
2
cαk . (1.12)

Then we can write (1.7) as3

F = ∗λF = λ ∗ F . (1.13)

1.2 Supersymmetry transformations

We can now introduce the supersymmetry transformations of type II supergravity. They

contain infinitesimal parameters εa, a = 1, 2; these are fermionic, so that the supersymme-

try transformations mix bosons and fermions (just like −×+ = −, −×− = +). In IIA,

ε1 has chirality +, ε2 has chirality −. In IIB, both have chirality +. Both are Majorana.

Before we write down the supersymmetry transformations, we need a bit of notation.

The fluxes appear in these equations multiplied by an appropriate number of gamma

matrices:

�HM ≡
1

2
HMNP ΓNP , �H ≡ 1

6
HMNP ΓMNP , �Fk ≡

1

k!
FM1...Mk

ΓM1 . . .ΓMk . (1.14)

Notice that the definition of �Fk is very similar to the form notation Fk = 1
k!
FM1...Mk

dxM1∧
. . . ∧ dxMk . One can think of �Fk as being obtained from the k–form Fk via a map that

3The operators ∗ and λ commute in dimension ten, but not in dimension six.
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sends dxM 7→ ΓM :

Clifford map : α ≡
∑

k

1

k!
αi1...ikdx

ii ∧ . . .∧dxik ←→ �α ≡
∑

k

1

k!
αi1...ikγ

ii...ik
αβ . (1.15)

Notice also that �Fk has two spinorial indices (because each of the ΓM does), so it is a

“bispinor”. The use of slashes to distinguish a form from its corresponding bispinor is

more precise, and it is indeed essential to keep track of certain subtle signs, but it can

will quickly get out of hand (and make unreadable the equations in which they appear)

as soon as one applies it to more complicated forms. In what follows, we will drop the

slash whenever it should not lead to confusion.

They can be written as [1]

δψ1
M =

(
DM +

1

4
HM

)
ε1 +

eφ

16
F ΓMΓε2 ,

δψ2
M =

(
DM −

1

4
HM

)
ε2 − eφ

16
λ(F )ΓMΓε1 ;

ΓMδψ1
M − δλ1 =

(
D − ∂φ− 1

4
H

)
ε1 ,

ΓMδψ2
M − δλ2 =

(
D − ∂φ+

1

4
H

)
ε2 .

(1.16)

In the third and fourth equations, D = ΓMDM and ∂φ = ΓM∂Mφ; these definitions are

in the spirit of (1.14), and, just as for those definitions, we decided to drop the slashes.

Fortunately, in (1.16) we were able to assemble here all the RR fluxes in the combi-

nation F from (1.9), without any extra factors. Notice also that (1.16) are valid both in

IIA and IIB.

If we are looking for supersymmetric solutions of the equations of motion, we can

follow a standard strategy: set to zero the expectation values of the fermions ψa
M and λa.

Invariance under supersymmetry then means that all the variations in (1.16) should be

set to zero.

This gives rise to four equations. As we will now explain, these are almost all we need.

Because of the supersymmetry algebra {Q,Q} = �P , one expects that the Hamiltonian

can be written as some kind of square. In supersymmetric field theories, this leads to the

BPS bound on the energy; in particular, one finds that supersymmetric configurations

also solve the equations of motion.

For example, in four–dimensional N = 1 super–Yang–Mills, invariance under super-

symmetry gives the self–duality equations F = ∗F . If one recalls the Bianchi identity

dF = 0 (in absence of monopoles), the equations of motion d∗F = 0 follow automatically.
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The situation in type II supergravity is similar. The Bianchi identities that have to

be imposed are

(d−H∧)F = 0 , dH = 0 (almost everywhere). (1.17)

The reason to specify “almost everywhere” is that there could be sources. We will see

later that only some kind of sources are allowed by supersymmetry.

Once one imposes (1.17), almost all the equations of motion follow automatically.

Those that do not (the ones for g01) will not play any role in the rest of our lectures.

In fact, we will see that, for compactifications, half of the equations in (1.17) are also a

consequence of supersymmetry. That is because half of the equations for F should be

thought of as true Bianchi identities; the other half are actually the equations of motion

for F . Just which half is which depends on one’s choice of electric basis.

To summarize, to find supersymmetric solutions of type II supergravity, we need to

• Set to zero the right hand sides of (1.16);

• Impose (1.17);

up to some subtleties that play no role for compactifications.

1.3 Compactifications

We will now specialize the transformations (1.16) to the case we want to focus on in these

lectures: solutions that are also “vacua” arising from compactifications. First of all, “com-

pactification” means that the spacetime M10 is fibred over a four–dimensional spacetime

M4. Next, we want to define what we mean by the word “vacuum”. It should mean a

configuration for which that there are no particles in our four–dimensional space–time.

One would expect, then, the maximal amount of possible symmetry in four dimensions. In

absence of a cosmological constant Λ, that is simply Poincaré symmetry, and M4 = Mink4;

if Λ < 0, the Poincaré algebra gets deformed to SO(3, 2), and M4 = AdS4. As for dS4, we

do not consider it because it is incompatible with unbroken supersymmetry4.

To summarize this preliminary discussion:

4There are several very general arguments to show this, but perhaps the most direct is to notice that
the potential of N = 1 supergravity in four dimensions is schematiacally of the form V = eK(|DW |2 −
3|W |2)+D2, where W is the superpotential and D are the D–terms; for supersymmetric vacua, DW = 0
and D = 0, which gives a negative cosmological constant
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Definition 1.1. A vacuum of type II supergravity is a solution of its equations of motion

and Bianchi identities, such that M10 is fibered over a spacetime M4, and such that the

whole solution (and not just M4) enjoys maximal symmetry in four dimensions (that is,

Poincaré for M4 = Mink4, and SO(3, 2) for M4 = AdS4.)

Let us see what else follows (other than the geometry of M4) from this definition.

Let us first look at the metric of M10. We said that, a priori, it is fibred over M4.

Such a fibration, however, would involve a connection Aµ. This connection would be a

vector in M4. But the choice of any such vector would break maximal symmetry in four

dimensions. (Alternatively, just think about the off–diagonal components gµm as a vector

in four dimensions.) Hence, we should choose Aµ = 0.

Since gµm = 0, the metric is a product. The internal metric gmn is unconstrained by

the four–dimensional maximal symmetry. The external metric gµν is fully constrained

by that symmetry, were it not for a possible dependence on the internal coordinates ym.

(Such a dependence is actually important in Randall–Sundrum models.) We can take this

into account by introducing a function A(y), called warping, and by writing gµν = e2Ag
(4)
µν .

If we call ds2
4 the volume element of Mink4 or AdS4, we can then summarize this

discussion on the metric by writing

ds2
10 = e2Ads2

4 + ds2
M6

. (1.18)

Let us now look at the other fields. First of all, all of them should only depend on the

internal coordinates ym, or else they would break translational symmetry.

This is all that needs to be said about the dilaton φ. As for the three–form flux H,

we also have to look at its allowed indices. They can only be purely internal: any other

choice would select one or more directions in M4, and thus break maximal symmetry. So

Hµνρ = Hµνp = Hµnp = 0.

The situation is slightly more involved for the RR fluxes Fp. If p < 4, the considerations

we just saw for H apply verbatim, and the flux is purely internal. For p > 6, some of the

four–dimensional indices will have necessarily to be on. We can still preserve maximal

symmetry, however, with components of the type F0123m1...m6−p : these do not select any

particular direction in M4. For 4 ≤ p ≤ 6, both possibilities are allowed.

We can summarize this discussion by writing

F = f + vol4 ∧ f̃ . (1.19)

Here, both f and f̃ are forms on M6. We will call the first term in (1.19) “internal”, and
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the second “external”. Notice that self–duality (1.7) becomes, in this case,

f̃ = λ(∗6f) . (1.20)

We now turn to ask what happens when one imposes that the vacuum should also be

supersymmetric. As we reviewed in the previous subsection, supersymmetric solutions are

found by setting to zero the right hand sides of equation (1.16) and the Bianchi identities

(1.17). In the case of a vacuum, we have to ask whether the supersymmetry parameters

εa that appear in (1.16) will break maximal symmetry in four dimensions.

To answer this question, it is a good idea to use the fact that M10 = M4 ×M6 and

that the metric is a (warped) product. This implies that the gamma matrices can be

represented as tensor products:

Γµ = eAγµ ⊗ 1 , Γm = γ5 ⊗ γm , (1.21)

where Γ’s are with respect to ds2
10, γµ with respect to ds2

4, γ
m with respect to ds2

6. In the

same way, the spinors on which these gamma matrices act should belong to the tensor

of the space of the four–dimensional spinors and the space of six–dimensional spinors.

In other words, any ten–dimensional spinor ε can be written as a linear combination of

spinors of the form ζ ⊗ η. If ε is Majorana–Weyl, it is convenient to write

ε± = ζ+ ⊗ η± + ζ− ⊗ η∓ . (1.22)

This is automatically Weyl (if ζ± and η± have chirality ±), and it satisfies the Majorana

condition ε = ε∗ if5

ζ− = ζ∗+ , η− = η∗+ . (1.23)

The decomposition (1.22), supplemented by (1.23), can be applied to any of the εa in

(1.16). If we found only one solution to (1.16), that would certainly mean that maximal

symmetry is broken: choosing a ζ is a bit like choosing a direction (and in fact, one can

connect the two by defining a vector vµ = ζtγµζ). In other words, maximal symmetry

acting on a ζ will yield another four–dimensional spinor, ζ ′. This suggests a way of

preserving maximal symmetry: impose that there (1.16) is solved not just by one choice

5In general, the Majorana condition would read ε = Bε∗, with B an appropriate intertwiner between
the representations ΓM and (ΓM )∗ of the Clifford algebra. For simplicity, however, we will take particular
bases in which γµ are real, γm are purely imaginary (it is non–trivial that such bases exist in four
Lorentzian and six Euclidean dimensions). From (1.21) one can then see that the ΓM are real, and one
can choose B = 1. (As usual, γ0 is anti–hermitian, all the others are hermitian. We will also define the
chiral gamma’s as γ5 = iγ0123, γ = −iγ456789, Γ = Γ0123456789).
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of εa, but by all those connected to it by maximal symmetry. In other words, one can

look for a solution to (1.16) of the form

ε1 = ζ+ ⊗ η1
+ + ζ− ⊗ η1

− ,

ε2 = ζ+ ⊗ η2
∓ + ζ− ⊗ η2

± ,
(1.24)

but one has to impose that the solution works for any four–dimensional spinor ζ± (related

by (1.23)). (The upper sign is for IIA, the lower for IIB.)

The reason we have written the same ζ in ε1 and ε2 is that, at least for the time being,

we are trying to discuss a “minimal” possibility: the smallest amount of supersymmetry

we can preserve without breaking maximal spacetime symmetry. This is obtained by

having only one ζ+: since this is a Weyl spinor in four dimensions, this amount is called

N = 1. Had we taken two different ζ’s, we would have had N = 2. The choice (1.24) is

actually the most general one can make if one wants N = 1 supersymmetry.

Coming back to (1.24), if we plug it in (1.16) and we impose that it should give a

solution for any ζ, we see that we can actually factor out ζ altogether. For example, if

we take the first of (1.16) in IIB and choose M to be an internal index, M = m, we get,

using also (1.21) and (1.19):

ζ+ ⊗
[(
Dm −

1

4
Hm

)
η1

+ +
eφ

8
f γmη

2
+

]
+ ζ− ⊗

[(
Dm −

1

4
Hm

)
η1
− +

eφ

8
f γmη

2
−

]
= 0 .

(1.25)

Since this equation should be satisfied by any ζ, we can simply conclude that
(
Dm − 1

4
Hm

)
η1

++
eφ

8
f γmη

2
+ = 0; notice that the bracket multiplied by ζ− is the complex conjugate of this

equation, and thus need not be imposed again.

We can continue this process for the other equations in (1.16). The only subtlety worth

mentioning appears in the terms Dµζ±. For M4 =Mink4, these vanish. For M4 = AdS4,

they do not; but we can take for the ζ’s a basis with the property Dµζ− = 1
2
µγµζ+; µ is

a number such that Λ = −|µ|2. (That such a basis exists can be seen explicitly, see for

example [3].)

If we apply this to (1.16), the first two split in two cases each, M = m and M = µ;
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this gives a total of six equations:(
Dm −

1

4
Hm

)
η1

+ ∓
eφ

8
f γmη

2
∓ = 0 , (1.26a)(

Dm +
1

4
Hm

)
η2
∓ −

eφ

8
λ(f) γmη

1
+ = 0 ; (1.26b)

µe−Aη1
+ + ∂Aη1

+ −
eφ

4
f η2
∓ = 0 , (1.26c)

µe−Aη2
± + ∂Aη2

∓ −
eφ

4
λ(f) η1

+ = 0 ; (1.26d)

2µe−Aη1
− +Dη1

+ +

(
∂(2A− φ) +

1

4
H

)
η1

+ = 0 , (1.26e)

2µe−Aη2
± +Dη1

∓ +

(
∂(2A− φ)− 1

4
H

)
η1
∓ = 0 . (1.26f)

These equations certainly look scary at this point; the aim of these lectures is to refor-

mulate them in terms of exterior calculus only (that is, in terms of differential forms and

their wedges and differentials). As we will see, they will look much more intelligible then.

For completeness, we can also decompose here (1.17) using (1.19):

dH = 0 , (d−H∧)f = 0 , (d+H∧)(e4A ∗6 f) = 0 (almost everywhere);

(1.27)

once again, the “almost everywhere” is there to allow for sources.

To summarize this lecture, we have found that a supersymmetric vacuum satisfies the

following properties:

• all fields only depend on the internal coordinates y;

• the metric is given by (1.18), with ds2
4 the volume element of either Mink4 or AdS4,

and ds2
6 a metric on an arbitrary six–manifold M6;

• the three–form flux H is a closed three–form on M6;

• the RR flux obeys (1.19), (1.20), and f obeys (1.27);

• the six–dimensional spinors η1,2 satisfy (1.26).

2 SU(3) structures

During this lecture we will start learning how to reformulate the equations (1.26) in terms

of exterior calculus, by analyzing some easy particular case.
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2.1 Spinors and forms

Equations (1.26) contain two internal spinors of definite chirality, η1,2
+ (and their com-

plex conjugates η1,2
− , see (1.23)). We will start by considering one such a spinor, and

reformulating its data in terms of differential forms.

The existence of a six–dimensional spinor of positive chirality η+ tells us, first of all,

that M6 has to be spin: its frame bundle (the principal SO(6) bundle associated to its

tangent bundle) will have a lift to a Spin(6) bundle Σ. We can say more if we use the fact

(that we will show only later, as a consequence of (1.26)), that η1,2 vanish nowhere on

M6. In that case, the transition functions of M6 can be taken to be in SU(3)⊂ SO(6). To

see why, consider an atlas of M6, and a spinor ηα on each chart Uα. On each chart, ηα can

be made to have a certain fixed form, for example ηα = (1, 0, 0, 0)t. Now, the transition

functions should obey

ηα = gαβηβ ; (2.1)

but this means that gαβ all keep invariant a certain spinor (which we took to be (1, 0, 0, 0)t).

In other words, gαβ ∈ SU(3).

One says that η gives a reduction of the structure group to SU(3), or that it defines

an SU(3) structure. If we look back at (2.1), we see that the crucial point is that the

stabilizer in SO(6) of any given spinor η is SU(3): there was nothing special to the choice

η = (1, 0, 0, 0)t.

We can try to define an SU(3) structure by using tensors instead. To that end, let us

define

Definition 2.1. An almost complex structure (ACS) is a tensor Im
n such that I2 = −1

(in indices, Im
pI

p
n = −δm

n). We will also always assume that it is hermitian, namely

that J ≡ gI is antisymmetric. A (hermitian) ACS defines an U(3) structure. As we saw

above, the way to see this is to show that the stabilizer of a given I is U(3). This is best

seen at the level of Lie algebras: pick I =
(

0 13

−13 0

)
. If we take m =

(
a b
c d

)
, with a, b, c, d four

3×3 matrices, and impose that it commutes with I and that it is antisymmetric (as an

element of so(6) should be), we get a matrix of the form m =
(

a s
s a

)
, with a antisymmetric

and s symmetric. This is the way a hermitian 3×3 matrix u = s+ ia (an element of u(3))

is embedded in so(6).

A U(3) structure is thus given by the data I, g, J ; two of these three can always be

used to derive the third. For example, g = −JI. The existence of an U(3) structure on

M6 is equivalent to the vanishing of a certain topological class, W3 = 0, but this will not

play any role for us.
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Notice that at this point there are no “complex coordinates” zi, because I is an almost

complex structure, and not a complex structure. Still, we can define (1, 0) forms eα by

I teα = ieα ; (2.2)

in components, Im
ne

α
n = ieα

m. Since we have learned how to define holomorphic indices

without having holomorphic coordinates, we can also define (p, q)–forms in similar ways.

Another thing we can do is to talk about the gij components of a metric. Notice, then,

that an ACS is hermitian if and only if

gij = 0 . (2.3)

If we now want to reduce further to SU(3), we have to select a nowhere–vanishing

“holomorphic volume form” Ω: a (3, 0)–form. This is because Ω would transform under

action by U ∈ U(3) as Ω → det(U)Ω. Imposing that Ω be invariant gives det(U) = 1,

which means U ∈ SU(3). The existence of such an Ω imposes a new topological condition

on the space. One can introduce the “canonical bundle” KI of (3, 0)–forms, which has C
as a fibre, which makes it a “line bundle”. The existence of a nowhere–vanishing Ω says

that the canonical bundle is trivial topologically. This is expressed by saying that

c1(I) = 0 . (2.4)

(You might have already heard that a Calabi–Yau manifold is a Kähler manifold with

c1 = 0; the condition c1 = 0 is a topological one, and there are many more manifolds

which have c1 = 0 than there are Calabi–Yau’s.)

We have seen now how to introduce an SU(3) structure using (g, J,Ω). In fact, with

some more work one can show that a pair (J,Ω) with an appropriate list of properties

is enough to define an SU(3) structure by itself, without even specifying a metric g, and

that in fact a g is defined by such a pair. Let us see how this is possible.

Definition 2.2. A three–form Ω is said to be decomposable if it is locally of the form

e1∧e2∧e3, for ei some one–forms, and nondegenerate if Ω∧ Ω̄ is never–vanishing. Notice

that a nondegenerate three–form is necessarily complex. We have a

Theorem 2.1. A nondegenerate decomposable three–form Ω defines an ACS IΩ.

The idea is that the three one–forms in the definition of decomposability are defined to

be the (1, 0)–forms of IΩ, as defined by (2.2) (there should be three of them). Conversely,

given an almost complex structure I, the three–form Ω is determined uniquely (when it

exists) up to rescalings

Ω→ αΩ , (2.5)
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with α ∈ C.

Once one has an almost complex structure IΩ, one can add a two–form J and define a

metric g = −JIΩ as before. That g given by this formula is nondegenerate and symmetric

is not obvious: it is a condition of compatibility between J and Ω. We have seen before

how to formulate compatibility between g and I, for example in (2.3). One can see that

this can be reformulated as a condition between J and I: namely, that J is (1, 1) with

respect to I. This motivates the following

Definition 2.3. An SU(3) structure is a pair (J,Ω), where J is a real two–form and Ω

a decomposable, non–degenerate complex three–form, such that

J ∧ Ω = 0 , J3 =
3

4
iΩ ∧ Ω̄ (2.6)

and such that the metric g = −JIΩ is positive definite. The first condition in (2.6) is

nothing but the condition that J be (1, 1) with respect to I. The second is meant to fix

the freedom of rescaling Ω as in (2.5) without changing IΩ.

Notice that we had already called SU(3) structure a nowhere–vanishing spinor η (in

addition, this time, to a given metric g; without a metric it does not even make sense to

talk of spinors, since the gamma matrices are defined with a metric). For consistency of

notation there should be a bijection

(g, η)←→ (J,Ω) . (2.7)

The map from (g, η) to (J,Ω) is easy to describe:

Jmn = η†+γmnη+ , Ωmnp = ηt
+γmnpη+ . (2.8)

At this point it is not obvious why these should satisfy (2.6), but it follows from certain

properties of the gamma matrices, the so–called “Fierz identities” that we will learn in

detail later. The map from (J,Ω) is as follows: once one identifies IΩ, one has three

complex gamma matrices γi, and one can define η+ by imposing

γiη+ = 0 . (2.9)

J then gives us g, as explained above.

We have seen that an SU(3) exists on M6 if and only if W3 = 0 (for the existence of an

ACS I) and c1 = 0 (for the existence of Ω). Once one exists, how many are there? since

we have not imposed any differential properties on (J,Ω), we can modify them locally

more or less as we want. In fact, it makes sense to count the dimension of the space of
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SU(3) structures at every point. There dimension of the space of metrics is 6·7
2

= 21. The

space of U(3) structures compatible with a given metric (which is known as twistor space)

is given by SO(6)/U(3), which is isomorphic to CP3 and thus has dimension 6. Finally,

for every U(3) structure the space of (3, 0)–forms is real one–dimensional (the volume

form is fixed already by the volume condition in (2.6)). That gives us 21 + 6 + 1 = 28

for the dimension of the space of SU(3) structures at every point. A more direct way of

counting this dimension is by the dimension of the quotient Gl(6,R)/SU(3), which gives

36− 8 = 28.

One can also obtain the same number using only J and Ω, without using the induced

ACS. The dimension of the space of real two–forms is 6·5
2

= 15; the requirement that it

should be non–degenerate is an inequality, so it does not change the dimension. As for Ω,

the space of complex three–forms has complex dimension 6·5·4
3!

= 20, or real dimension 40.

Non–degeneracy is again an inequality; decomposability, however, reduces this dimension

significantly. It turns out [4] that a decomposable three–form is completely determined

by its real part, which belongs to the space Λ3 of three–forms. Moreover, the space of

real three–forms which can be the real part of a decomposable form is an open set in Λ3.

So the real dimension of the space of decomposable three–forms is 20. We still have the

compatibility constraints (2.6). J ∧ Ω is a priori a (3, 2) form; imposing that it vanishes

then gives 3 complex (or 6 real) constraints. Both J3 and iΩ ∧ Ω̄ are real forms, so this

is 1 real constraint. Summing up, we get a space of real dimension 15 + 20− 6− 1 = 28.

2.2 Intermezzo: operators on differential forms

To go on, we would like to start imposing some differential conditions on the “flabby”

geometrical structures we have seen so far. Before we do that, I want to pause to review

some differential geometry. In the previous lecture I assumed knowledge of exterior cal-

culus (differential forms, their wedges ∧ and their differential d). We now need to know

one thing or two about the Lie bracket. There is the usual definition as commutator:

[v, w]Lie(f) ≡ vwf − wvf , (2.10)

but I want to promote here another point of view, which generalizes this definition nicely.

First of all, notice that one can think of wedging by one–form α∧ as an operator

acting on the space of differential forms: ω → α ∧ ω. Likewise, we can also think of the

contractions

vx≡ ιv = vmιm (2.11)
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(whose action is defined in (A.2)) as operators on the space of differential forms: ω → vxω.

Notice, moreover, that these operators obey a nice algebra among themselves:

{dxm∧, dxn∧} = 0 , {dxm∧, ιn} = δm
n , {ιm, ιn} = 0 . (2.12)

This has the form of a Clifford algebra with a 2d× 2d “metric”

I =

 0 1

1 0

 . (2.13)

We will see later that this fact is quite important for generalized complex geometry.

Once we take this point of view, many formulas in differential geometry can be shown

quite naturally using the operator formalism we know from quantum mechanics. For

example, we can check the famous Cartan formula for the Lie derivative on a differential

form:

Lv = {d, vx} = {dxm∧∂m, v
nιn} = dxm∧{∂m, v

n}ιn+vn{dxm, ιn}∂m = dxm∂mv
nιn+vm∂m

(2.14)

which can be seen to coincide with the usual expression of Lv in components, using (A.2).

Another formula that can be checked in this way is

[{d, vx}, wx] = [v, w]Liex . (2.15)

This equation will be useful later: in a sense, it shows that the Lie bracket is not a “new”

operation, but that it can be “derived” from the exterior differential d and the contraction

operators. (It is indeed an example of a so–called “derived bracket”, of which we will see

another example later on.)

2.3 Differential conditions

In section 2.1, we have not assumed much of an SU(3) structure, because we did not impose

any of the equations (1.26). In this section, we will have a look at a few natural conditions

that one can impose on an SU(3) structure mathematically. We are not imposing yet

(1.26); this subsection should be seen as a purely mathematical intermezzo – one whose

use will become apparent only later on.

The first condition one might want to impose is the integrability of I.

Definition 2.4. An ACS I is said to be integrable, in which case it is also called more

simply a complex structure (CS), if the bundle T1,0 of (1, 0) vectors satisfies [T1,0, T1,0]Lie ⊂
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T1,0. If I is integrable, it is possible to find in every patch complex coordinates zi such

that ei = dzi. In many references, you will find this definition in a slightly different form:

namely, that a certain “Nijenhuis tensor” N(I)m
np should vanish. In our language, that

tensor can be seen as follows. Introduce the “holomorphic projector” Π = 1
2
(1− iI): this

projects on (1, 0) vectors. Its conjugate Π̄ = 1
2
(1 + iI) projects on (0, 1) vectors. Then,

integrability is clearly equivalent to Π̄([Πv,Πw]Lie) = 0. It turns out that the real and

imaginary parts of this equation are not independent: we can then simply impose, if {∂m}
is the coordinate basis of vectors,

N(I)m
np = (Π̄[Π∂n,Π∂p])

m = 0 . (2.16)

The integrability condition has actually a convenient reformulation when I comes from

a decomposable non–degenerate form Ω, namely I = IΩ. We have:

Theorem 2.2. IΩ is integrable if and only if there exists a form W5 such that

dΩ = W5 ∧ Ω . (2.17)

Proof. We will first give an easy argument that shows how this condition is necessary for

integrability. Then we will see a more complicated argument that also shows that it is

sufficient.

If the complex structure is integrable, so that we have complex coordinates zi, one

can define the Dolbeault operator 6

∂ = dzi ∂

∂zi
; (2.18)

it is a differential (in that ∂2 = 0), and it sends (p, q)–forms to (p+ 1, q)–forms. We also

have d = ∂ + ∂̄. This implies that d of a (1, 0)–form is the sum of a (2, 0)–form and of

a (1, 1)–form. Then, if we recall that locally Ω = e1 ∧ e2 ∧ e3 (where ei are a basis of

(1, 0)–forms), we recover (2.17).

To show that (2.17) is also sufficient, recall that Ω = e1 ∧ e2 ∧ e3. (2.17) can only be

true if the d of a (1, 0) form never contains a (0, 2) part; or, by conjugation, if

(deᾱ)(2,0) = 0 . (2.19)

consider any two (1, 0) vectors Eβ, Eγ. We have the following chain of equalities:

[Eβ, Eγ]Liee
ᾱ = [{d,Eβ}, Eγ]e

ᾱ = −Eγ{d,Eβ}eᾱ = −EγEβde
ᾱ = 0 . (2.20)

6Even if I is not integrable, one can define ∂ = dxmΠn
m∂n, but its properties are not as nice as its

counterpart when I is integrable: for example, it does not square to zero, and it does not send (p, q)–forms
to (p + 1, q)–forms.
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This means that the Lie bracket of any two (1, 0) vectors is still (1, 0), which is the

definition of integrability.

Notice that this argument can also be followed backwards, to show sufficiency again.

We can also ask what happens when W5 = 0 in (2.17). In that case, ∂̄Ω = 0, and we

can see that the canonical bundle KI not only has a section, but a holomorphic section.

So it is trivial not only as a topological bundle, but as a holomorphic bundle. (The two

notions are different, because in the holomorphic classification of bundles one only allows

holomorphic gauge transformations.) The space of bundles which are trivial topologically

but not holomorphically is called the Jacobian: it has dimension H0,1. In fact, KI can

be trivialized holomorphically even if W5 = ∂̄f , because then we have ∂̄(e−fΩ) = 0. So

what counts is the class of W5 in H0,1. For example, if H0,1(M6) = 0, W5 is ∂̄–exact, and

KI is holomorphically trivial; and this is in agreement with the fact that there should be

no Jacobian in this case.

Let us now leave the realm of complex manifolds. There is another particularly notable

class of spaces with SU(3) structures that can be considered: that of symplectic manifolds.

A symplectic structure in general is given by a non–degenerate two–form (one whose

determinant vanishes nowhere) which is closed. We have a non–degenerate two–form: it

is J . So for us M6 is symplectic if

dJ = 0 . (2.21)

We will see that this condition is in a sense “mirror” to the condition (2.17). Beware:

(2.21) does not mean the space is Kähler. A space is called Kähler if it has a U(3)

structure I such that I is integrable and dJ = 0 (where, as usual for a U(3) structure,

J = gI).

2.4 No fluxes

We now get back to physics, and to (1.26). We want to try to solve it with some simple

Ansatz.

The first, brutal try is to set all the fields to zero except the metric. To further simplify

the discussion, we can also set η1 = η2 = η. That gives us

Dmη = 0 . (2.22)

Since there are no RR terms to mix the two ε’s, in this case we can actually take the two

ζ ′s in (1.24) different, which means we have non–minimal supersymmetry, N = 2.
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The condition (2.22) has been considered in other lectures here: it says that M6 is

a Calabi–Yau manifold. The holonomy of M6 is contained in SU(3), because η is kept

invariant by the parallel transport, and the stabilizer of a non–zero η in SO(6) is SU(3).

This argument sounds superficially similar to the SU(3) structures we saw earlier, but the

difference is huge. SU(3) structures are given by the mere existence on the manifold of

a well–defined, nowhere–vanishing η; this is a topological condition. SU(3) holonomy is

there when η is also covariantly constant: this is a quite rigid constraint on the geometry.

From (2.8), we can also see that DmJnp = DmΩnpq = 0. This also implies, then,

dJ = 0 = dΩ . (2.23)

Perhaps surprisingly, these are equivalent to (2.22). Of course, dJ = 0 alone would not

be equivalent to DmJnp = 0, but together (2.23) are equivalent to DmJnp = DmΩnpq = 0

and to (2.22).

Notice that a Calabi–Yau can then be thought of as a manifold which is both complex

(because of theorem 2.2) and symplectic (see (2.21)), with some compatibility between

the two concepts (see (2.6)).

2.5 No RR fluxes

A more interesting case arises if we set to zero the RR flux f only. It is also a good idea to

set η2 = 0: not doing so would just result in a second copy of the discussion that follows.

In this case, we have

DH
mη+ ≡

(
Dm −

1

8
HmnpΓ

np

)
η+ = 0 . (2.24)

The spinor η is still covariantly constant, but with respect to the torsionful connection

ωmnp − 1
2
Hmnp. It is also interesting, however, to compute dJ and dΩ. To do that, first

we can see that

DmJnp = (Dmη)
†γnpη + η†γnpDmη+ =

1

8
Hmqrη

†[γnp, γ
qr]η = −Hmqrδ[n

qJp]
r = Hmr[nJp]

r,

(2.25)

where we have used the gamma matrix algebra {γm, γn} = 2gmn to compute [γnp, γ
qr].

Several other manipulations of this sort give [5]

d(e−2φJ) = −e−2φ ∗H , d(e−2φΩ) = 0 , d(e−2φJ2) = 0 . (2.26)

One can also write the equation for J without the dilaton, using also the other equations:

i(∂ − ∂̄)J = H . (2.27)
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From the equation on Ω in (2.26) and from theorem 2.2 we see that the manifold is

complex. However, it is not a Calabi–Yau, nor is it symplectic, since dJ 6= 0.

In type II, however, this case is in trouble, due to a simple argument in [5]. If M6 is

compact, we have∫
M6

e−2φH ∧ ∗H = −
∫

M6

H ∧ d(e−2φJ) = −
∫

M6

dH ∧ e−2φJ = 0 , (2.28)

where we have used the Bianchi identity for H; this implies that H = 0. So there are no

compact vacua of this type.

In the so–called “heterotic” version of string theory, however, the Bianchi identity is

no longer dH = 0, and one can indeed find compact solutions [6], although even there

there are subtleties due to the importance of stringy corrections; we will not comment on

those solutions any further here.

3 SU(3)× SU(3) structures

So far we have seen what kind of geometry can be defined by one spinor. In the equations

(1.26) we actually have two six–dimensional spinors η1,2. In this lecture we will see what

kind of geometry one can define with two spinors. We will first describe briefly the

situation from the point of view of the structure group on M6. Then we will turn to a

review of generalized complex geometry, adapted from [7, Sec. 3].

If you do not particularly like the math in this section, what you need to know is theo-

rem 3.3, that tells us that many of the data of a supergravity vacuum can be reformulated

in terms of two differential forms Φ± obeying a certain set of algebraic constraints. These

forms define a “so–called SU(3) × SU(3) structure”. You also need to know the most

important example of solution to those constraints, namely (3.17).

3.1 The traditional point of view

One possible approach is trying to use the same logic we followed in the previous section,

and asking what kind of reduction of structure they define. The answer is that they give

an SU(2) structure on M6, as long as they are never parallel, i. e. if there are no points

in which one of the two is zero or proportional to the other.

There are several ways to see this, but the best is probably to consider the vector

vm = η1 †
− γmη

2
+ = η1 t

+ γmη
2
+ . (3.1)
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At a point where η1 and η2 are proportional, vm = 0, because then we have vm ∝ ηtγmη,

and this vanishes because γm are antisymmetric. If η1,2 are nowhere proportional, vm

has no zeros. The presence of a vector without zeros on a manifold has a non–trivial

topological consequence: namely, that the Euler characteristic χ = 0. Actually, vm is a

complex vector, and in a sense it selects two privileged directions out of six. This reduces

the structure group from SU(3) to SU(2).

Treating this SU(2) structure with differential forms is trickier than the SU(3) struc-

ture case, however. The reason is that there are many possible generalizations to (2.8),

with many constraints among them, even though geometrically it is enough to have a

triple (v, J,Ω) to describe an SU(2) structure. The problem becomes even more acute

once one tries to use these bilinears together with the supersymmetry equations (1.26):

one gets horrible equations without any clear interpretation.

For these reasons, we will now try a different route.

3.2 Generalized complex structures

In the rest of this section, we will introduce a different point of view, one in which the two

spinors will be understood from the point of view generalized complex geometry. This

geometry was introduced by Hitchin [8] and developed by Gualtieri [9]. We will review it

in d = 6 for ease of reading, but most (though not all) of it can be generalized to arbitrary

dimensions.

Generalized complex geometry is the generalization of complex geometry to T ⊕ T ∗,
the sum of the tangent and cotangent bundle of a manifold. One starts by introducing on

T⊕T ∗ the analogues of the concepts we have already seen for ordinary complex structures.

Definition 3.1. A generalized almost complex structure (GACS) is a map J : T ⊕T ∗ →
T ⊕ T ∗ such that J 2 = −16+6. We will always assume that it is also hermitian, namely

it obeys J tIJ = I where I is the natural metric on T ⊕ T ∗ given in (2.13). The metric

(2.13) is just the pairing ( , ) between vectors and one–forms:

(v1 + ξ1, v2 + ξ2) = v1xξ2 + v2xξ1 ; (3.2)

also, I it has signature (6, 6). It reduces the structure group of T ⊕ T ∗ to O(6, 6), just

like an ordinary metric reduces the structure group of T to O(6).

The hermiticity condition implies that a generalized almost complex structure should

have the form

J =

(
I P

L −I t

)
, (3.3)
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with P and L antisymmetric matrices. The condition J 2 = −16 imposes further con-

straints on I, P and L; for example, I2 + PL = −16. J reduces the structure group of

T ⊕ T ∗ further, to U(3, 3).

Example 3.1. There are two “motivating” examples of GACS. One is associated to an

ACS I and another to a non–degenerate two–form J :

JI ≡

(
I 0

0 −I t

)
, JJ ≡

(
0 J

−J−1 0

)
. (3.4)

These two examples will be of fundamental importance for us.

It is also possible to give an integrability condition for a GACS. The role of T(1,0) is

played by the i–eigenbundle

LJ ≡ {X ∈ T ⊕ T ∗|JX = iX} ; (3.5)

the projector on LJ reads

Π =
1

2
(16+6 − iJ ) . (3.6)

LJ is null (or “isotropic”) with respect to the metric I in (2.13), since, for A,B ∈ LJ ,

(A,B) = AIB = AJ tIJB = (iA)I(iB) = −AIB = −(A,B) . (3.7)

Also it has the maximal dimension that a null space can have in signature (6, 6) (namely,

6), since ΠA ∈ LJ for any real A. One says that LJ is a maximally isotropic subbundle

of T ⊕ T ∗.

Example 3.2. In the examples (3.4), we have

LJI
= T 1,0 ⊕ (T ∗)0,1 , LJJ

= {vm + ivmJmn, ∀v = vm∂m ∈ T} . (3.8)

Both have dimension six, as they should.

To define a notion of integrability, we also need a bracket that will play the role the

Lie bracket had for T . There is no bracket satisfying the Jacobi identity on T ⊕ T ∗, but

fortunately there is one that satisfies it when restricted on isotropic subbundles. This is

the Courant bracket. We define it in analogy to (2.15):

1

2

(
[{A·, d}, B·]− [{B·, d}, A·]

)
≡ [A,B]Courant· , (3.9)

where A and B are sections of T ⊕ T ∗. Again all variables are considered as operators on

differential forms: A· = vx+ζ∧, namely vectors act by contraction, and one–forms act by

wedging. From now on we will write [ , ]Courant = [ , ]C. One can compute explicitly

[v + ζ, w + η]C = [v, w] + Lvη − Lwζ −
1

2
d(ιvη − ιwζ) . (3.10)
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but fortunately this complicated formula is seldom needed.

In this formalism the definitions of the Lie (2.15) and Courant (3.9) brackets are very

similar (indeed, Courant contains Lie as a particular case, when A = v and B = w).

The main feature of a derived bracket is that it contains a differential. For both Lie and

Courant the differential is d, but one can generalize it to other differentials, as we will do

in (3.23) below.

We are now ready to define integrablity for a GACS. As you will notice, this is very

similar to the definition of integrability for an ACS given in section 2.3.

Definition 3.2. A generalized almost complex structure J is integrable if its i–eigenbundle

LJ is closed under the Courant bracket:

[LJ , LJ ]C ⊂ LJ . (3.11)

In this case, J is called a generalized complex structure (GCS). A manifold on which

such a tensor exists is called a generalized complex manifold.

In the two examples (3.4), the integrability of J turns into a condition on the building

blocks, Im
n and Jmn. Integrability of JI forces I to be an integrable almost complex

structure on T and hence a complex structure. In other words, M6 is complex. For JJ ,

integrability imposes dJ = 0, thus making J into a symplectic form, and M6 a symplectic

manifold.

3.3 Pure spinors

We saw in section 2.1 a close relationship between almost complex structures I (that

define U(3) structures) and Weyl spinors η (that define SU(3) structures). An analogous

property holds on T ⊕ T ∗ between generalized almost complex structures and a new type

of object that we will call pure spinors.

We noticed in (2.12) that the list of operators

ΓΛ = {∂1x, ∂2x, . . . , ∂6x, dx
1∧, dx2∧, . . . , dx6∧} (3.12)

satisfy a Clifford algebra with respect to the metric (2.13). Since the signature of that I
is (6, 6), the corresponding Clifford algebra is called Cliff(6, 6). The spinor bundle is then

nothing but the bundle of differential forms of all degrees, Λ•T ∗ =
∑

p ΛpT ∗. In other

words,

differential forms = Cliff(6, 6) spinors ; (3.13)
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the gamma matrices are (3.12). Forms of even (odd) degree can then be thought of as

spinors of positive (negative) chirality. Chirality in this sense will be denoted by an index,

as in Φ±.

One can also define an inner product between two forms A and B:

〈A,B〉 ≡ (A ∧ λ(B))6 (3.14)

where 6 means we only keep the six–form part, and λ was defined in (1.12). A top form is

proportional to the volume form vol6, which means that using the volume form one can

extract a number from the Mukai pairing (the constant of proportionality). In d = 6 this

pairing is antisymmetric; it is then convenient to define the norm of a form Φ as

〈Φ, Φ̄〉 = −i||Φ||2vol . (3.15)

One defines the annihilator of a Cl(6, 6) spinor as

LΦ = {v + ζ ∈ T ⊕ T ∗ | (v + ζ) · Φ = 0} . (3.16)

From standard Clifford algebra, (X·)2 = (X,X)1; because of this, the annihilator space

LΦ of any spinor Φ is isotropic. It can have at most dimension 6, in which case it is

maximally isotropic.

Definition 3.3. A pure spinor is a form such that LΦ has dimension 6 and which is non–

degenerate (namely, (Φ, Φ̄) never vanishes). As for GACS, we have two “motivating”

examples of pure spinors:

Example 3.3.

ΦΩ = Ω , ΦJ = e−iJ . (3.17)

The first is a decomposable form (as defined in section 2.1); in the second, J is a non–

degenerate two–form. The annihilators are given by

LΦΩ
= T 1,0

IΩ
⊕ (T ∗)0,1

IΩ
, LΦJ

= {vm + ivmJmn, ∀v = vm∂m ∈ T} ; (3.18)

they both have dimension 6. It is also easy to check that both Φ in (3.17) are non–

degenerate.

LΦ for a pure spinor Φ is maximal isotropic; so it makes sense to associate

J ↔ Φ if LJ = LΦ , (3.19)

which means, we recall, that the i–eigenbundle of J is equal to the annihilator of Φ.

An alternative definition of the generalized almost complex structure J associated to Φ,
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maybe more suitable for computations, can be given by

J ΛΣ
± = 〈Re(Φ±)),ΓΛΣRe(Φ±)〉 , (3.20)

where ΓΛ are the gamma matrices of Cliff(6, 6) given in (3.12).

The correspondence (3.19) is not exactly one to one because rescaling Φ does not

change its annihilator LΦ. Hence, it is more convenient to think about a correspondence

between a J and a line bundle of pure spinors. This line bundle need not have a global

section, in general; when it does, the structure group on T ⊕ T ∗ is further reduced from

U(d/2)×U(d/2) (which was already accomplished by J ) to SU(d/2)×SU(d/2).

Example 3.4. Going back to our examples (3.17) of pure spinors, by comparing (3.8)

with (3.18), we see that their associated GACS are given by (3.4),

What is remarkable about this correspondence is that integrability of J can be reex-

pressed in terms of Φ.

Theorem 3.1. Let JΦ be the GACS associated to a pure spinor Φ via (3.19). Then JΦ

is integrable if and only if there exists a W ∈ T ⊕ T ∗ such that

dΦ = W · Φ . (3.21)

Proof. Let A,B ∈ LJ . By (3.9) we have

[A,B]C Φ = (AB −BA) · dΦ . (3.22)

Assume (3.21) holds. Let us now think of Φ as a Clifford vacuum, of LΦ as annihilators,

and L̄Φ as creators. We can think of W · Φ as obtained from Φ by action of one creator;

but then the right hand side of (3.22) is the action of two annihilators on it, and so it is

zero. This means that [A,B]CΦ = 0, or in other words that [A,B]C ∈ LΦ = LJ , which

means that J is integrable. We can also follow the argument backwards to show the

opposite implication.

Example 3.5. If we use Φ = Ω, then theorem 3.1 reduces to 2.2. For Φ = e−iJ , we

reproduce the fact that integrability of JJ in (3.4) is given by dJ = 0.

Definition 3.4. M6 is a (weakly) generalized Calabi-Yau (GCY) if there exists on it

a pure spinor Φ which is closed. (A more appropriate, but less catchy, name would be

“generalized complex manifold with holomorphically trivial canonical bundle”.)

Suppose Φ is a closed pure spinor. One can show that eBΦ is still pure (it is its “B–

transform”). However, in general it is not closed. But it is closed under dH = d − H∧,
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where H = dB is the curvature of B. From (1.11) and dH = 0, we see that dH is a

differential (it squares to zero). So we can use it to define a modified Courant bracket,

the twisted Courant , [ , ]H

[{A·, (d−H∧)}, B·] ≡ [A,B]H · . (3.23)

This new bracket has all the good properties of the Courant bracket. Moreover, we can

now retrace all the steps of the correspondence between generalized complex structures

and pure spinors, to get an analogue of the theorem (3.1) in which d → dH and integra-

bility is replaced by integrability with respect to (3.23). A manifold on which there exists

a pure spinor Φ which is closed under dH is called twisted generalized Calabi–Yau.

Remarkably, one can actually prove [9] that in any dimension, a pure spinor must have

the form

Φ = Ωk ∧ eB+ij (3.24)

where Ωk is a complex k–form and B, j are two real two–forms. Hence the most general

pure spinor is a hybrid of the two examples in (3.17).

Finally, we can ask how many pure spinors there are on M6. It turns out that a pure

spinor in dimension 6 is determined by its real part [8], which belongs to either Λ± (the

space of even or odd forms; both have real dimension 32). Moreover, the space of real

forms (either odd or even) that can be real parts of a pure spinor is open in Λ±, so it also

has dimension 32. (This is similar to the result in the case of decomposable three–forms,

at the end of section 2.1.) Hence the space of pure spinors at a given point has real

dimension 32.

3.4 Metric from U(3)× U(3) structures

We have seen how the existence of a generalized almost complex structure reduces the

structure group of T ⊕ T ∗ from O(6, 6) to U(3, 3). We will now see how to reduce the

structure group further to its maximal compact subgroup, U(3)×U(3)

We will consider two GACS that commute, [J1,J2] = 0. There are two remarks to be

made about such a situation. First, since J1 and J2 commute, they can be diagonalized

simultaneously, and one can divide the complexified T ⊕ T ∗ in four sub–bundles of rank

3:

L++ = LJ1 ∩ LJ2 , L+− = LJ1 ∩ L̄J2

L−+ = L̄J1 ∩ LJ2 , L−− = L̄J1 ∩ L̄J2 .
(3.25)
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Second, the product

G = −J1J2 (3.26)

has the properties

G2 = 16+6 , IG = GtI (3.27)

where recall again that I was defined in (2.13). It is easy to see [9, Chap. 6] that these

two properties imply that G has the form

G = −J1J2 =

(
−g−1B g−1

g −Bg−1B Bg−1

)
=

(
1 0

B 1

)(
0 g−1

g 0

)(
1 0

−B 1

)

= E

(
−1 0

0 1

)
E−1 ; E =

(
1 1

g +B −g +B

)
.

with g symmetric and non–degenerate, and B antisymmetric. So we see that two com-

muting GACS determine a metric and a B–field.

Definition 3.5. Two GACS J1 and J2 are said to be compatible if they commute and if

the metric they determine is positive definite. Two compatible GACS structure group

reduce the structure group of T ⊕ T ∗ to U(3)×U(3).

Let me make a few more remarks about (3.28).

• The metric M = IG appeared in the context of T–duality (see for example [10]),

where it was noted that it transforms by conjugation under Sl(2,R).

• Both J1 and J2 in a U(3) × U(3) structure commute with the projector G. From

(3.28), it follows that

J1,2 = E

(
I1 0

0 ±I2

)
E−1 , (3.28)

where I± are two ACS. Hence J1,2 are determined by g, B and I±.

• It is easy to see that the transformation Φ→ exp
(−ωt β

B ω

)
Φ corresponds under (3.19)

to the conjugation J → OJO−1, where O = exp[(B∧+1
2
ωm

n[dxm∧, ι∂n ]+ιβ]. Hence

the matrix
(

1 0
B 1

)
that appears in (3.28) is induced by the B–transform exp[B∧],

whose effect on pure spinors was discussed in the previous subsection.

Example 3.6. One can check that the two GACS in (3.4) are compatible if and only if

g = IJ is symmetric. Remember that, in this situation, I is a hermitian ACS, namely a

U(3) structure. In this case, the two ACS in (3.28) are I1 = I2 = I.
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We end this subsection with a definition:

Definition 3.6. If two compatible J1,2 are also integrable, they define a generalized

Kähler structure, as defined in [9]. This condition is equivalent to the existence of

(2, 2) σ–models. The two ACS in (3.28) are then integrable, and they play the role of

complex structures for the left–movers and right–movers. The world–sheet applications

of generalized complex geometry are very interesting, but unfortunately the world–sheet

treatment of RR fluxes is not the easiest aspect of string theory. For that reason, we will

not discuss it any further in these lectures.

3.5 Compatible pairs

We now get to the most important point of this lecture: we will learn how many of the

data of a supergravity vacuum can be summarized by a pair of pure spinors with an

appropriate compatibility condition.

Definition 3.7. Two pure spinors Φ1,2 are said to be a compatible pair if the correspond-

ing J1,2 are compatible, and if their norms are the same: ||Φ1|| = ||Φ2||. Fortunately, in

six dimensions the condition that [J1,J2] = 0 can be reformulated directly as a constraint

on Φ1,2. First of all, Φ1,2 should have opposite parity. So from now on we will denote

them by Φ±.

(Φ−, XΦ+) = 0 = (Φ̄−, XΦ+) ∀X ∈ T ⊕ T ∗ . (3.29)

I will not give the proof of the equivalence of this claim here; it can be found in [11, App. A].

Example 3.7. The two examples (3.17) of pure spinors are compatible if and only if

(J,Ω) describe an SU(3) structure.

Remember now the Clifford (“slash”) map (1.15); as we said there, we will not actually

write the slash every time. So we will mix in some equations bispinors with differential

forms, such as in (3.32) below.

By now, it should come as no surprise that a compatible pair of pure spinors reduces

the structure group of T ⊕ T ∗ to SU(3)× SU(3).

Theorem 3.2. The Clifford algebra Cl(6, 6) is isomorphic to two copies of the ordinary

Clifford algebra Cl(6).

Proof. From the Cl(6) algebra {γm, γn} = 2gmn, we get the following action of a γm
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matrix acts on the left and on the right of the γm1...mk :

γmγ
m1...mk =γm

m1...mk + kδm
[m1γm2...mk]

γm1...mkγm =(−1)k
(
γm

m1...mk − kδm[m1γm2...mk]
)
. (3.30)

In other words, the gamma matrix action on bispinors is mapped to the following action

on forms αk of degree k:

γm αk = [(dxm ∧+gmnιn)αk] , αk γ
m = (−)k[(dxm ∧ −gmnιn)Ck] . (3.31)

These equations express the ΓΛ in (3.12) in terms of gamma matrices acting from the left

or on the right. These are two copies of the Clifford algebra Cl(6).

Here is now the central result:

Theorem 3.3. Any compatible pair of pure spinors Φ± can be written as

Φ± = eB∧η1
+ ⊗ η

2 †
± (3.32)

for some two–form B and ordinary (Cliff(6)) spinors η1,2
+ (with, as usual, η1,2

− = (η1,2
+ )∗).

Proof. Let us first show that (3.32) are a compatible pair.

First of all, it is easy to see that the operation Φ± → eB∧Φ± (the “B–transform” we

saw earlier) sends compatible pairs into compatible pairs. For this reason, we lose nothing

if we give the proof for B = 0.

Next, notice that each of the Cl(6) spinors η1,2
+ is pure, again in the sense that it is

annihilated by half (in this case 3) of the gamma matrices. We have already used this in

(2.9); it is true for Cl(d) with d ≤ 6 (but not for d > 6). We can call the annihilators

γi1 and γi2 ; so, γiaηa
+ = 0. (The notation here is that the index ia is holomorphic with

respect to the complex structure Ia.)

Now, η1
+ ⊗ η

2 †
± are annihilated by γi1 acting on the left,

→
γi1 , and by γ ī2 (γi2) acting

on the right,
←
γi2 (

←
γ ī2). Thanks to (3.31), we can translate these 3 + 3 annihilators into 6

annihilators in Cl(d, d). This means Φ± are both pure.

Hence Φ+ and Φ− share three annihilators: the three gamma matrices
→
γi1 . Call L++

this subbundle of (T ⊕ T ∗) ⊗ C. Similarly, Φ+ and Φ− = η1
− ⊗ η

2 †
+ are both annihilated

by the three gamma matrices
←
γ ī2 . Call this bundle L+−. In this way we construct four
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bundles L±± of dimension 3 each. Now, J+ (the GACS associated to Φ+) is i on L+±

and −i on L−±. In the same way, J− (the GACS associated to Φ−) is i on L±+ and −i
on L±−. This implies that [J+,J−] = 0. The bundles L±± are simply the ones we had

defined in (3.25).

It remains to see that the two norms are equal. This follows easily from the formulas

〈αk, β6−k〉 =
1

8
(−)k+1Tr(αk ∗ β6−k) vol (3.33)

and

α γ = iλ(∗α) ; γ α = −i ∗ λ(α) . (3.34)

This finishes the proof that (3.32) is a compatible pair. The proof that it is the most

general is not much more difficult: one uses the bundles L±± to define four sets of gamma

matrices, and one uses those to define the gamma matrices. More details can be found

in [7, Sec. 3.4].

We conclude once again with a counting argument. We ask how many compatible

pairs of pure spinors there are at a given point. We know from the end of section 3.3

that the space of either Φ± is 32. The compatibility constraint (3.29) can be seen to

count as 12 real constraints (rather than 12 complex ones, as one might naively think).

Finally, the equal norm constraint is one real constraint. This gives a grand total of

32 + 32− 12− 1 = 51.

We can compare this with the data that this encodes by theorem 3.3, namely (g,B, η1,2
+ ).

This is 21 + 15 + 8 + 8 = 52, which is one more than the 51 we got before.

To see why this does not contradict theorem 3.3, let us go back to equation (3.32). It

gives a map (g,B, η1,2
+ )→ Φ±; theorem (3.3) does not say that this map is invertible, but

that it is surjective. The discrepancy between the dimensions 52 and 51 is then simply

due to the fact that this map “forgets” one dimension out 52. It is easy to see why: (3.32)

is invariant under

η1 → aη1 , η2 → a−1η2 . (3.35)

4 Compactifications with RR fluxes

In this section we will finally attack the general case with f 6= 0. The geometry we have

learned so far will help us describe a general result.

Let me repeat here, just in case you decoupled during the previous section, a summary

of the previous section. Theorem 3.3 tells us that many of the data of a supergravity
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vacuum can be reformulated in terms of two differential forms Φ± obeying a certain set

of algebraic constraints. These forms define a “so–called SU(3)× SU(3) structure”. You

also need to know the most important example of solution to those constraints, namely

(3.17).

4.1 Branes and orientifolds

We also need some preliminary definitions of stringy ingredients.

Definition 4.1. A supersymmetric cycle B with respect to the SU(3)×SU(3) structure

Φ1,2 is a submanifold of M6 such that (ImΦ2)|B = volB. (This also implies that ι∗ReΦ2 = 0

and that ι∗(X · Φ1) = 0 for any X ∈ T ⊕ T ∗.) Here volB is the Born–Infeld volume form

computed using det(g + b), with g and b determined by Φ1,2. We will also say that

B is almost calibrated by ImΦ2. We will denote by δB the current supported on B,

normalized such that 〈δB, ImΦ2〉 = δ(B). Locally, if B is described by a set of equations

{fi = 0 , i = 1, . . . , d}, one can write δB = δ(f1) . . . δ(fd) df1 ∧ . . . ∧ dfd. Notice that so

far we are not assuming that any of the forms that define the SU(3)× SU(3) structure is

closed; if ImΦ2 were closed, we would drop the “almost” and we would just say that B is

calibrated by it. However, the case of interest for us will be precisely when ImΦ2 is not

closed.

Let now σ be an involution on M6 with fixed locus Oσ.

Definition 4.2. The SU(3)× SU(3) structure Φ1,2 is compatible with σ if

σ∗Φ1 = −(−)Int( p
2
)λ(Φ1) , σ∗Φ2 = (−)Int( p−1

2
)λ(Φ̄2) (p = dim(Oσ) + 3) . (4.1)

We also call σ an orientifold involution for the SU(3)× SU(3) structure Φ1,2. The rules

of string theory dictate that there should be a source δOσ on Oσ, normalized such that

〈δOσ , ImΦ2〉 = −δ(Oσ) ; (4.2)

notice the sign difference with respect to the normalization for branes.

4.2 The pure spinor equations

Theorem 3.3 says that some of the data of a vacuum, namely (g,B, η1,2), can be encoded

in a compatible pair of pure spinors Φ±:

(gΦ± , BΦ± , η
1,2
Φ±

)→ Φ± (4.3)
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We will now show that the supersymmetry equations themselves can also be encoded in

some elegant differential equations on Φ±.

In this section we will use the notation

IIA :
Φ1 = Φ+

Φ2 = Φ−
IIB :

Φ1 = Φ−

Φ2 = Φ+

. (4.4)

We can now get

Theorem 4.1. The supersymmetry equations (1.26) are equivalent to the system

dHΦ1 = 0 , dH(e−AReΦ2) = c−f ,

dH(eAImΦ2) = c+e
4A ∗ λf

(Λ = 0) , (4.5a)

where c± are constants, and c+ 6= 07, when M4 = Mink4, and to the system

dHΦ1 = −2µ e−AReΦ2 , dH(eAImΦ2) + 3µReΦ1 = e4A ∗ λf (Λ = −3µ2 < 0)

(4.5b)

when M4 = AdS4, where Φ± is an SU(3) × SU(3) structure such that BΦ± = 0; ∗ is the

six–dimensional Hodge star determined by the metric gΦ±.

The solutions of (4.5) and (1.26) are related to one another via theorem 3.3 (with

BΦ± = 0). The invariance (3.35) is fixed by ||η1||2±||η2||2 = c±e
±A in the Minkowski case;

in the AdS case, the norms need to be equal, and the (3.35) is fixed by ||η1||2 = ||η2||2 = eA.

The dilaton is determined by

e3A−φ = ||Φ1|| = ||Φ2|| . (4.6)

The proof of this theorem can be found in [7, App. A]. We are not going to give it

here, but its spirit is similar to (2.25), although there are several technical differences.

There is also a version of (4.5) in which the ∗ does not appear [11], that looks especially

nice for M4 = Mink4.

If we take (4.5) and act on it by dH , we see that we find dH(e4A ∗ λf) = 0, which

is the third equation in (1.27); it is actually even true everywhere, and not just almost

everywhere. In other words, there are no electric sources. This is reasonable: a source

for f would be a brane that looks like a point in M4, and that would break maximal

symmetry, which is part of our definition of “vacuum”.

7As we will discuss, compact solutions require c− = 0; one can then work in conventions where c+ = 1.
Sometimes the equations are quoted in this simplified form.
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The other two equations in (1.27) still need to be imposed separately. The good news

is that, once one does that, all the equations of motion follow. That gives a vacuum. To

simplify the discussion, we will assume in what follows that we have no NS sources, so

that dH = 0. We then have:

Theorem 4.2. There is a supersymmetric vacuum with internal space M6, with warping

A and internal fluxes H, f if and only if there exists on M6 an SU(3)× SU(3) structure

Φ1,2 (such that BΦ± = 0) and supersymmetric branes Bi such that

• (4.5) holds (namely, (4.5a) if M4 = Mink4 and (4.5b) if M4 = AdS4);

• dH = 0 and df = δ,

where, for δ, one of the two following possibilities is realized:

a) δ =
∑

i δBi
, with Bi supersymmetric cycles;

b) there exists an orientifold involution σ for the SU(3) × SU(3) structure Φ1,2, and

δ = −δOσ +
∑

i δBi
, again with Bi supersymmetric cycles; as we noticed before, Oσ

is automatically supersymmetric. (This case is the only possibility if M4 = Mink4

and M6 is compact).

The proof of this is in several papers. The fact that supersymmetry and the Bianchi

identities imply the Einstein equations and the equations of motion for φ has been obtained

in [12]; the equation of motion for H was shown in [13]. Finally, the last statement in b)

follows from an older and more general argument in [14–16]; it canalso be rederived [7,

Eq. (4.13)] by an integration by parts. Here is how. We compute:∫
eA〈δ, ImΦ2〉 =

∫
〈dHf, e

AImΦ2〉 =

∫
〈f, dH(eAImΦ2)〉 =

∫
e4A 〈f, ∗λ(f)〉 ≤ 0 ,

(4.7)

where we have used the self–adjointness of dH with respect to 〈 , 〉 (which can be easily

proved), and (4.5a). Looking back at (4.2) and at the definition of brane, we see that this

means that there has to be an orientifold plane somewhere.

Notice that, when M6 is compact, since we need at least an orientifold source, δ 6= 0.

If c 6 = 0 in (4.5a), by acting on the second equation with dH we get dHf = 0, which means

δ = 0. Hence, if M6 is compact, we need to take c− = 0.8 From now on, we will take

c− = 0 , c+ = 1 . (4.8)

8This would not have been true had we not assumed dH = 0 earlier; in that case, dH might be
non–zero, and d2

H 6= 0. One can indeed get solutions with dH 6= 0 and c− 6= 0 by applying Sl(2, Z)
duality to other solutions, but these solutions are simply old solutions in an unfamiliar frame.
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Finally, before we go on to analyze some particular cases, we notice a corollary of

theorem 4.1. The first equation in (4.5a) says that the internal manifold M6 must be a

weakly generalized Calabi–Yau manifold, as defined in section 3.3.

4.3 Minkowski vacua and SU(3) structures

One might think one does not gain much by reformulating (1.26) as (4.5), since we still

have the algebraic constraints on the differential forms Φ± for them to be an SU(3)×SU(3)

structure.

However, the most general solution to those algebraic constraints is now known [17,18].

So really all we would need to do to obtain a complete classification of supersymmetric

vacua would be to solve some differential equations.

As one can imagine, that is more easily said than done. In this section, we will content

ourselves with using a particular class of SU(3)× SU(3) structure: the “SU(3) structure”

case in (3.17). In fact, slightly more generally, we are going to write

Φ+ = e3A−φeiθe−iJ , Φ− = Ω . (4.9)

All we have done here is to rescale Φ+ by a complex number. This does not change any

of the considerations in section 3, and it allows us to reproduce (4.6) automatically. The

angle θ is a new piece of data.

We notice right away the following result, from (4.4) and the first equation in (4.5a)

gives

IIA : dJ = 0 (⇒M6 is symplectic);

IIB : dΩ = 0 (⇒M6 is complex).
(4.10)

As we remarked (without proof) in theorem 4.2, in the Minkowski case we need an

orientifold if we want M6 to be compact. We will use the type of the orientifold to organize

the various possibilities. It should be noted, however, that we will make some assumptions

along the way, and thus our discussion will not be exhaustive.

4.3.1 Kähler manifolds from O7/03 planes

This is the most important case: it leads to the type of geometry which is under highest

technical control, and it hence has given so far most of the examples of supersymmetric

vacua we know.
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As one can see from (4.1), σ∗θ = π− θ for O7/O3 projections, so θ = π
2

on O7 and on

O3 planes. In this section we just assume that θ = π
2

everywhere. This leads to

dΩ = 0 , dJ̃ = 0 , H ∧ Ω = H ∧ J̃ = 0

J̃ ∧ Ω = 0 , iΩ ∧ Ω̄ =
3

4
eφJ̃3

∗ f1 = −1

2
e−4Ad(eφJ̃2) , ∗f3 = e−φH , ∗f5 = e−4Ad(e4A−φ) .

(4.11)

where J̃ = e2A−φJ . The first two lines constrain the geometry alone. We have a complex

structure with c1 = 0 from dΩ = 0, a symplectic structure from dJ̃ = 0, and the two are

compatible because J ∧Ω = 0. This is called Kähler geometry. Our original definition of

SU(3) structure requires J3 = 4
3
iΩ ∧ Ω̄, which is different from what we have on (4.11).

Because of this, we cannot quite say M6 is a Calabi–Yau: it would be if φ = const.

Interestingly, however, Yau’s theorem can still be used to show that a solution exists.

Among the equations for the flux, especially notable is the one that relates f3 and H.

A combination which is often used in IIB supergravity is

G = f3 − ie−φH . (4.12)

Another way of expressing this is to introduce9 f 0
3 = f3 + HC0. When df0

3 = 0, we

have 0 = d(f 0
3 + HC0) = df0

3 − Hf1, which is part of (1.27). Then we can also write

G = f 0
3 − τH, where

τ = C0 + ie−φ (4.13)

is another useful combination in IIB: the so–called axio–dilaton.

Now, from (4.11) we have

∗G = iG , (4.14)

that is, G is imaginary self–dual. In general, just as a consequence of the definitions of a

SU(3) structure, one can show that the action of ∗ on the space of three–forms is given

by

∗Ω = −iΩ , ∗α0
2,1 = iα0

2,1 , ∗(α1,0 ∧ J) = −iα1,0 ∧ J , (4.15)

plus the complex conjugates of these equations. (The superscript 0 means “primitive”:

namely, α0
2,1 ∧ J = 0.) Thus, G can only have components that are (2, 1) and primitive,

or (0, 3), or of the form α0,1 ∧ J . However, H ∧ J = 0 and H ∧Ω = 0 in (4.11) show that

the latter two components should be zero. That means

G = G0
2,1 , (4.16)

9I am afraid most people call fhere = f̃most people′s, and f0
here = fmost people′s.
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namely, G is (2, 1) and primitive.

We can also massage the equation for f1 a bit further. Using ∗
(
(α1,0 + α0,1) ∧ J2

2

)
=

i(α1,0 − α0,1), we get

f1 = −i(∂̄ − ∂)(e−φ) (4.17)

(which would have been obtained more quickly from the formulation in [11] we mentioned

earlier), which in turn means

∂̄τ = 0 . (4.18)

The observation that the axio–dilaton is holomorphic is at the core of a non–perturbative

completion of IIB called F–theory: this essentially promotes τ from holomorphic function

to holomorphic section of a certain line bundle. We will not discuss it here, though

A special subcase which is worth commenting about further is f1 = 0. In that case,

we get d(eφJ̃2) = 0. This implies dφ ∧ J̃2 = 0, and hence φ = const. We can simplify

then the expression to f5 = 4dA. More importantly, we now have that dJ̃ = 0 = dΩ,

and iΩ ∧ Ω̄ = 4
3
J̃3. This means that there is a Calabi–Yau metric on M6! Remember

though: this is not the metric determined by the original pure spinors Φ±; thus, it is not

really the metric in the supersymmetry equations (1.26). This is because we have rescaled

J̃ = e2A−φJ = e2AJ . This means that e2Ads2
6 is a Calabi–Yau. In this case, one says M6

is “conformally Calabi–Yau”.

Finally, the Bianchi identity for f5 becomes a Laplacian equation once one assumes

∗f5 = dα for some function α.

4.3.2 Complex manifolds from O5 planes

In this case, Oσ is a subspace of dimension two. As one can see from (4.1), σ∗θ = −θ for

O5 projections, so θ = 0 on O5 planes. Once again, we will actually just assume θ = 0

everywhere. This leads to

dΩ = 0 , dJ2 = 0 , φ = 2A+ const

f1 = f5 = 0 , f3 = −e−4A ∗ d(e2AJ) , iΩ ∧ Ω̄ =
4

3
e2AJ3 .

(4.19)

Since dΩ = 0, from theorem 2.2 it follows that the space is complex; but, since dJ 6= 0 in

general, it is not Kähler any more.

It is not easy to find examples of this type (recall we also have to satisfy (1.27)). Some

have been found in [7] in a certain approximation.
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4.3.3 Symplectic manifolds from O6 planes

In IIA we have

dJ = H = 0 , d(e−AReΩ) = 0 , f0 = f4 = f6 = 0 ,

d(eAImΩ) = −e4A ∗ f2 , 3A = φ+ const , θ = const , iΩ ∧ Ω̄ =
4

3
J3 .

(4.20)

The actual value of θ is irrelevant this time, in sharp contrast with the IIB cases we saw

earlier. We see that this time dJ = 0; this means that M6 is symplectic. The equation

for the flux can be reformulated in terms of a certain “Lifschitz differential” [11].

It can be shown with some work that any solution of this type actually corresponds

to the reduction of a (singular) G2 manifold. This is done by introducing an M7 which

is described as follows. In our case, (1.27) read df3 = δ3; this δ3 gives the locus where an

O6 and possibly D6’s (all of which are on subspaces of dimension 3 of M6) are located.

On M6 minus these loci, we can describe M7 as the total space of the U(1) bundle whose

curvature is f2, with the usual M–theory metric

ds2
7 = e

4
3
φ(dz + C1)

2 + e−
2
3
φds2

6 . (4.21)

where z is the coordinate on the M–theory circle. Close to the loci of the D6’s and O6,

the metric has the explicit form known from their flat space solutions: in particular, the

size of the M–theory circle goes to zero on the D6’s and explodes on the O6.

Now, if we introduce the form

φ = e−3AImΩ + (dz + C1) ∧ J , (4.22)

one can see that it defines a G2 structure on M7. If one imposes

dφ = d ∗7 φ = 0 , (4.23)

one gets that M7 has actually G2 holonomy (this is similar to the fact that (2.23) is

equivalent to SU(3) holonomy in six dimensions). Now, if one plugs (4.22) into (4.23),

one gets exactly the conditions in (4.20).

4.4 AdS vacua and SU(3) structures

In this subsection, we will give a quick bird’s eye view on AdS4 solutions with SU(3)

structure, namely when Φ± is taken as in (4.9). Just like for section (4.3), it should be

stressed that this is an Ansatz; solutions of more general type exist.
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4.4.1 IIA

In this case, one gets that θ, A and φ are constant. We can set A = 0 without loss of

generality, and define the (constant) string coupling gs = eφ and the real numbers m =

µ cos(θ), m̃ = −µ sin(θ), so that the cosmological constant now reads Λ = −3(m2 + m̃2).

The other equations we get from (4.5b) can then be summarized as follows [7, 12]:

dJ = 2m̃ReΩ , dΩ = i(W−
2 ∧ J − 4

3
m̃J2) , H = 2mReΩ ;

gsf0 = 5m , gsf2 = −W−
2 + 1

3
m̃J , gsf4 = 3

2
mJ2 , gsf6 = −1

2
m̃J3 .

(4.24)

Here, W−
2 is a primitive (1, 1)–form (the strange notation comes from [19, 20]; primitive

means that W−
2 ∧ J2 = 0).

Notice that M6 is no longer symplectic, nor is it complex. One easy type of geometry

which solves this Ansatz (as well as the Bianchi identities) is the so–called “nearly Kähler”

geometry [21]; other solutions can be found in [22,23].

4.4.2 IIB

Let us plug (4.9) into the first equation of (4.5b). The zero–form part and two–form part

of that equation read

0 = ρ cos(θ) , 0 = ρ sin(θ)J . (4.25)

It follows that [23] there are no supersymmetric AdS4 solutions of SU(3) structure in type

IIB.

A Notations

• The ten–dimensional space–time index M = 0, . . . , 9 gets decomposed into a four–

dimensional index µ = 0, . . . , 3, and a six–dimensional internal index m = 1, . . . , 6.

Coordinates are denoted xM .

• In the internal space, m is a spacetime real index, i = 1, 2, 3 a holomorphic spacetime

index; a = 1, . . . , 6 a frame real index, α = 1, 2, 3 a holomorphic frame index. (No

confusion should arise with fermionic indices, because we never write those down

explicitly.)

• We use for ∗ the same conventions used in [1]: in dimension d,

∗dea1...ak = 1
(d−k)!

εak+1...ad

a1...akeak+1...ad , where ea1...ak ≡ ea1 ∧ . . . ∧ eak .
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• Our supersymmetry transformations (1.16) are the same as in [1], except for a

redefinition of fluxes in IIA:

Fhere = −λ(Fthere) , Hhere = −Hthere . (A.1)

This change allows us to get the same form in IIA and IIB for the pure spinor

equations (4.5).

• The contraction ιm ≡ ι∂m acts by

ιm(dxm1 ∧ . . . ∧ dxmp) = p δ[m1
m dxm2 ∧ . . . ∧ dxmp] . (A.2)
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[12] D. Lüst and D. Tsimpis, “Supersymmetric AdS4 compactifications of IIA supergrav-

ity,” JHEP 02 (2005) 027, hep-th/0412250.

[13] P. Koerber and D. Tsimpis, “Supersymmetric sources, integrability and generalized-

structure compactifications,” arXiv:0706.1244 [hep-th].

[14] G. W. Gibbons, “ASPECTS OF SUPERGRAVITY THEORIES,”. Three lectures

given at GIFT Seminar on Theoretical Physics, San Feliu de Guixols, Spain, Jun

4-11, 1984.

[15] B. de Wit, D. J. Smit, and N. D. Hari Dass, “Residual Supersymmetry of Compact-

ified D = 10 Supergravity,” Nucl. Phys. B283 (1987) 165.

[16] J. M. Maldacena and C. Nuñez, “Supergravity description of field theories on

curved manifolds and a no–go theorem,” Int. J. Mod. Phys. A16 (2001) 822–855,

hep-th/0007018.

[17] R. Minasian, M. Petrini, and A. Zaffaroni, “Gravity duals to deformed SYM theories

and generalized complex geometry,” JHEP 12 (2006) 055, hep-th/0606257.

[18] N. Halmagyi and A. Tomasiello, “Generalized Kaehler potentials from supergravity,”

arXiv:0708.1032 [hep-th].

[19] A. Gray and L. Hervella, “The sixteen classes of almost hermitian manifolds and

their linear invariant,” Ann. di Mat. Pura ed Appl.(IV) 123 (1980) 35.

[20] S. Chiossi and S. Salamon, “The intrinsic torsion of SU(3) and G2 structures,”

math/0202282.

[21] K. Behrndt and M. Cvetic, “General N = 1 supersymmetric fluxes in massive type

IIA string theory,” Nucl. Phys. B708 (2005) 45–71, hep-th/0407263.

[22] A. Tomasiello, “New string vacua from twistor spaces,” Phys. Rev. D78 (2008)

046007, 0712.1396.

38
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