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Outline

• Instantons in gauge theories: solutions of Euclidean equations of motion. Sad-

dle points of path integrals. Instantons as self-dual connections. The k = 1

solution.

• ADHM construction. The moduli space of self-dual connections. Fermions in

the instantons background.

• Supersymmetric theories. Supersymmetry in the instanton moduli space.

N = 1 supersymmetric gauge theories. The Affleck-Dine-Seiberg prepotential

• N = 2 supersymmetric gauge theories. The idea of localisation. The prepo-

tential. Multi-instanton calculus via localization.

• Seiberg-Witten curves from localisation.

1 Instantons in Gauge Theories

Correlators in Quantum Field Theories are described by path integrals over all

possible field configurations〈∏
i

O(xi, ti)

〉
=

∫
Dφ

∏
i

O(xi, ti) e
i
~S(φ) (1.1)

For a gauge theory

S = − 1

4g2

∫
d4xF a

µνF
aµν + . . . (1.2)

In the classical limit ~ → 0, the integral is dominated by the saddle point of the

action δS = 0. To compute the contribution of the saddle point to the integral is

convenient to perform the analytic continuation

tE = i t (1.3)
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and write

i S = − 1

4g2

∫
dtE d

3xF a
mnF

a
mn + . . . = −SE (1.4)

With respect to S(φ), SE(φ) has the advantage of being positive defined. The

classical limit of the path integral〈∏
i

O(xi,−itEi)

〉
=

∫
Dφ

∏
i

O(xi,−itEi) e−
1
~SE(φ) (1.5)

is then dominated by the minima of SE(φ). A solution of the Euclidean equations

of motion is called an instanton.

Besides its applications in the computation of path integrals , instantons can be

used also to compute tunnelling effects between different vacua of a quantum field

theory. At low energies, the energy levels of a particle moving on a potential V (x)

can be approximated by those of the harmonic oscillator for a particle moving on

a quadratic potential V (x) ≈ ω0

2
(x− x0)2 around a minima at x = x0. In presence

of a tunnelling between two vacua, each harmonic oscillator energy levels split into

two with energies

En = (n+ 1
2
± 1

2
∆n)ω0 ∆n ∼ e−SE (1.6)

with SE the Euclidean action for an instanton solution describing the transition

between the two minima of a particle moving in the upside-down potential VE =

−V (x). The factor in front of the exponential can be computed evaluating the

fluctuation of the action up to quadratic order around the instanton action. We

refer to Appendix 1A for details.

1.1 Gauge Instantons

In gauge theories, instantons are solutions of the Euclidean version of the Yang-Mills

action

SE =
Im τ

8π

∫
d4xTrFmnFmn − i

Re τ

8π

∫
d4xTrFmnF̃mn

=
1

2g2

∫
d4xTrFmnFmn + . . . (1.7)

with

Fmn = ∂mAn − ∂nAm + [Am, An]

F̃mn = 1
2
εmnpqFpq (1.8)
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and

τ =
θ

2π
+ i

4π

g2
(1.9)

The dual field F̃mn satisfied by construction the Bianchi identity:

DmF̃mn = ∂mF̃mn + [Am, F̃mn]

= 1
2
εmnpq (2∂m∂pAq + ∂m[Ap, Aq] + 2[Am, ∂pAq] + [Am, [Ap, Aq]])

= 0 (1.10)

The first three terms cancel between themselves using the antisymmetric property

of the epsilon tensor, while the last one cancel due to the Jacobi identity satisfied

by any Lie algebra.

The YM equation of motion can be written as

DmFmn = ∂mFmn + [Am, Fmn] = 0 (1.11)

Interestingly, this equation has precisely the same form than the Bianchi identity

(1.10) with F̃ replaced by F . This implies that the YM equations can be solved by

requiring that the field F is self or anti-self dual

F = ±F̃ (1.12)

We notice that this equation can be solved only in Euclidean space since ˜̃F = −F
in the Minkowskian space, so eigenvalues of the Poincare dual action are ±i. On

the other hand in the Euclidean space ˜̃F = F and ±-eigenvalues are allowed.

In the language of forms

F = 1
2
Fmndx

mdxn ∗ F = 1
2
F̃mndx

mdxn (1.13)

with

F = DA = dA+ A ∧ A (1.14)

The Bianchi and field equations read

DF = dF + [A,F ] = 2dAA+ 2AdA+ AA2 − A2A = 0 Bianchi Indentity

D ∗ F = d ∗ F + [A, ∗F ] = 0 FieldEquations

(1.15)
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A connection satisfying (1.12) with the plus sign is called a Yang Mills instanton

while the one with minus sing is called an anti-instanton. Instantons are classified

by the topological integer

k = − 1

16π2

∫
d4x tr (FµνF̃

µν) = − 1

8π2

∫
d4x tr (F ∧ F ) (1.16)

called, the instanton number. This number is the second Chern number k =∫
ch2(F ), with the Chern character defined as

ch(F ) =
∑
n

chn(F ) = exp

(
iF

2π

)
(1.17)

Next we show that instantons minimize the Euclidean Yang-Mills action over

the space of gauge connections with a given topological number k. To see this we

start from the trivial inequality∫
d4x tr (F ± F̃ )2 ≥ 0 (1.18)

and use trF 2 = tr F̃ 2 to show

1
2g2

∫
d4x trF 2 ≥ 1

2g2

∣∣∣∣∫ d4x trFF̃

∣∣∣∣ =
8π2|k|
g2

(1.19)

with the inequality saturates for instantons or anti-instantons. Plugging this value

in the YM action one finds that instantons are weighted by e−Sinst with

−Sinst = 2πi k τ = −8π2k

g2
+ . . . (1.20)

with k > 0. On the other hands anti-instanton effects are weighted by e−2πiτ∗ . The

instanton corrections to correlators in gauge theories take then the form

〈O〉 =

∫
DAe−S O =

∑
ck g

k +
∞∑
k=1

dk e
− 8π2k

g2 (1.21)

Summarizing amplitudes in gauge theories are computed by path integrals domi-

nated by the minima of the Euclidean classical action and quantum fluctuations

around them. Fluctuations around the trivial vacuum, i.e. where all fields are set

to zero, give rise to loop corrections suppressed in powers of the gauge coupling.

Instantons are non trivial solutions of the Euclidean classical action and lead to cor-

rections to the correlators exponentially suppressed in the gauge coupling . These

corrections are important in theories like QCD where the gauge coupling get strong

at low energies. Understanding of the instanton dynamics is then crucial in ad-

dressing the study of phenomena in the strong coupling regime like confinement or

chiral symmetry breaking, etc.
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1.2 The k = 1 solution

To construct self-dual connections we first observe that we can construct a self-

dual two-form with values on SU(2) in terms of the 2 × 2 matrices σn = (i~τ , 1),

σ̄ = σ†n = (−i~τ , 1)1

σmn = 1
4
(σm σ̄n − σn σ̄m) = 1

2
εmnpq σ

pq (1.22)

This implies that a self-dual SU(2) connection can be written as

Am =
2(x− x0)nσnm
(x− x0)2 + ρ2

(1.23)

Indeed, the field strength associated to this connection is

Fmn =
4ρ2σnm

((x− x0)2 + ρ2)2
(1.24)

which is self-dual due to (1.22). Moreover, the instanton number is2

k = − 1

16π2

∫
d4x tr (FmnF̃

mn) = 6
ρ4volS3

π2

∫
r3 dr

(r2 + ρ2)4
= 1 (1.25)

with volS3 = 2π2 the volume of the unitary sphere. The connection (1.23) represents

then a k = 1 instanton. We notice that we can find a different solution by rotating

A with a matrix of SU(2)

A→ UAU † (1.26)

so the total number of parameters describing the solution is 8: 4 positions x0, 1 size

ρ and 3 rotations U .

For a general group SU(N), we start from the SU(2) self-dual connection an

embed it the 2 × 2 matrix inside the N × N matrix. The k = 1 solution is then

described by N2 − 1 rotations minus (N − 2)2 rotations in the space orthogonal to

the 2× 2 block that leave invariant the solution, i.e. 4N − 5 parameters . Together

with the size and 4 positions we get 4N parameters. Finally for k instantons far

from each other we expect 4kN parameters. We conclude that the dimension of the

instanton moduli space is

dimM
SU(N)
k = 4kN (1.27)

In the rest of this section we construct the general solution that goes under the

name of ADHM construction.

1Here τ1 = (0110), τ2 = (0 −ii 0 ), τ3 = (1 0
0 −1) are the Pauli matrices.

2Here we use the result
∫

r3 dr
(r2+ρ2)4 = 1

12ρ4 and trσ2
nm = 1

2 .
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Appendix 1A Instantons in Quantum Mechanics

Besides its applications in the computation of path integrals , instantons can be

used also to compute tunnelling effects between different vacua of a quantum field

theory. To illustrate this points lets us consider a particle moving in a Double Well

potential

V (x) = V0

(
1− x2

x2
0

)2

(1.28)

When V0 is large, the solution of the Schrodinger equation reveals that the spec-

trum of energies deviates from that of the harmonic oscillator by a quantity ∆n

exponentially suppressed in the height of the barrier V0, i.e.

En = (n+ 1
2
± 1

2
∆n)ω0 ∆n ∼ e−

2V0ω0
3 (1.29)

and w2
0 = 8V0

x20
. This deviation is the result of the tunnelling effect between the two

vacua. To see this, let us compute the probability that a particle moves from the

vacuum at x = −x0 to that one at x = x0 in a time T

〈x0|e−HT | − x0〉 =

∫
Dx(t)exp

(
−
∫ T

0

dtE

[
ẋ2

2
+ VE(x)

])
(1.30)

with

VE(x) = −V (x) (1.31)

Notice that the Hamiltonian H is nothing but the Euclidean Lagrangian with the

upside-down potential VE. The classical equation of motion are

−ẍ− V ′E(x) = 0 ⇐ ẋ =
√
−2VE(x) =

√
2V0

x2
0

(x2 − x2
0) (1.32)

which is solved by the kink

x = x0 tanh tE

√
2V0

x2
0

(1.33)

Plugging the solution into the action one finds

S =

∫ ∞
−∞

dtE

[
ẋ2

2
− VE

]
=

∫ ∞
−∞

dtE ẋ
2 =

2V0

3

√
8x2

0

V0

(1.34)

The tunnelling amplitude

A ∼ e−SE ∼ exp

−2V0

3

√
8x2

0

V0

 (1.35)
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gives then the correct exponential suppression factor to account for the level split-

ting ∆n. The factor in front of the exponential can be computed evaluating the

fluctuation of the action up to quadratic order around the instanton action.

Appendix 1B: Forms and Poincare duality

In the language of forms

F = 1
2
Fmndx

mdxn ∗ F = 1
2
F̃mndx

mdxn (1.36)

with

F = dA+ A ∧ A (1.37)

and

∗dxmdxn = 1
2
εmnpq dx

pdxq (1.38)

One finds

d4x 1
2
FmnFmn = F ∧ ∗F d4x 1

2
FmnF̃mn = F ∧ F (1.39)

Appendix 1C: Chern Classes

Consider the first Chern class of a U(1) connection A on R2

c1(F ) =
i

2π

∫
d2x dA =

i

2π

∫
S1
∞

A (1.40)

At infinity A becomes a trivial gauge

Am = Ū ∂mU (1.41)

Take U = e−ikθ with θ the coordinate of the S1
∞ at infinity. Plugging this into (1.40)

one finds

c1(F ) =
i

2π

∫ 2π

0

dθ (−ik) = k (1.42)

So the number k measures the winding of the connection along S1
∞ at infinity.

Now consider the second Chern class. First we notice that c2(F ) is a total

derivative

k = − 1

8π2

∫
trF ∧ F = − 1

8π2

∫
tr d(AdA+ 2

3
A3)

= − 1

8π2

∫
S3
∞

tr (AdA+ 2
3
A3) =

1

24π2

∫
S3
∞

trA3 (1.43)
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where we used the fact that at infinity F → 0 and therefore dA→ −A2. To evaluate

the integral at infinity we write A as a total gauge

A = Ū dU with U =
1

r
(x4 + ixiσ

i) (1.44)

with σm the pauli matrices. Consider the region where x4 ≈ R and xi are small. In

this region

trA3 → 6

R3
trσ1σ2σ3 dx1 ∧ dx2 ∧ dx3 =

12

R3
dx1 ∧ dx2 ∧ dx3 = 12 Ω3 (1.45)

with Ω3 the volume form in this region. Integrating over S3
∞ one finds

k =
1

24π2

∫
S3
∞

trA3 =
1

2π2

∫
S3
∞

Ω3 = 1 (1.46)

In general the instanton number k measures the winding number of the map U :

S3
∞ → g from the three sphere at infinity to the Lie algebra.

2 ADHM construction

2.1 The self-dual connection

Here we review the ADHM construction of instantons in R4.

This construction exploits again the observation that any field strength 0f the form

Fmn ∼ σmn (2.47)

is self-dual in virtue of (1.22). We look for a gauge connection following the ansatz

Am = Ū∂mU Ū U = 1[N×N ] (2.48)

with U[(N+2k)×N ]. If k = 0 this is simply a pure gauge. We will now show that this

connection is self-dual if:

• U is a normalized kernel of a matrix ∆ of the form

∆ = a + xn bn =

(
wu,iα̇

aiα,jα̇

)
+ xn

(
0

σnα,α̇δi,j

)
(2.49)

with i = 1, . . . k, u = 1, . . . N . In other words U satisfy

∆̄U = Ū∆ = 0 Ū U = 1[N×N ] (2.50)

with ∆ of the form (2.49). By bars we will always mean hermitian conjugates.
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• If ∆ satisfy the ADHM constraints

∆̄α̇
i λ ∆λ,jβ̇ = f−1

ij δ
α̇
β̇

(2.51)

or in components3

w̄τ cw − iη̄cmn[am, an] = 0 (2.52)

with aαα̇ = amσ
m
αα̇ and η̄cmn = −i tr (σ̄mnτ

c).

The matrices w[N×2k], a[2k×2k] are made of pure numbers describing the instanton

moduli4. Notice that the resulting connection is invariant under U(k) rotations

am → UamU
† wα̇ → Uwα̇ (2.53)

The moduli space of instantons is then defined by the U(k) quotient of the hyper-

surface defined by (2.52) and has dimension

dimRMk = 4k(N + 2k)− 3k2 − k2 = 4kN (2.54)

Notice that equation (2.50) and (2.51) imply

1 = UŪ + ∆ f ∆̄ (2.55)

To see that the gauge connection constructed in this way is self-dual let us compute

Fmn:

Fmn = ∂mAn − ∂nAm − [AmAn]

= 2∂[mŪ∂n]U − [Ū∂mU, Ū∂nU ] (2.56)

Inserting the identity (2.55) into the first term in (2.56), rewriting derivatives on

U ’s as derivatives on ∆’s and using (2.50) one finds

Fmn = 2∂[mŪ∆ f ∆̄ ∂n]U = 2Ū∂[m∆ f ∂n]∆̄U

= 2Ū

(
0

σ[m ⊗ 1[k×k]

)
f
(

0 σ†n] ⊗ 1[k×k]

)
U

= 4Ū

(
0 0

0 σmn ⊗ f[k×k]

)
U ∼ σmn (2.57)

3To see this, we notice that ∆̄ ∆ = ā a + xn (b̄n a + ā bn) + xn xm b̄n bm. The b-dependent

terms are all proportional to δβ̇α̇, while the first term leads to (2.52). Here η̄cmn is antisymmetric,

η̄cab = εcab, η̄
c
4m = δmc.

4In the mathematical literature the ADHM equations are often written as [B1, B2] + IJ = 0,

[B1, B
†
1] + [B2, B

†
2] + II† − J†J = ξ 1k×k. These equations follows from the identifications B` =

1√
2
(a2` + ia2`−1) and w = (J I†).
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Explicit solutions

The simplest solution: k = 1, N = 2 at aαα̇ = 0:

∆ =

(
ρ1[2×2]

x[2×2]

)
Ū =

1

(ρ2 + r2)
1
2

(
−x[2×2] ρ1[2×2]

)
∆̄ ∆ = (ρ2 + r2)1[2×2] ⇒ f =

1

ρ2 + r2
r2 = xmx

m

Am = Ū∂mU =
2xnσmn
x2 + ρ2

Fmn = 4Ū

(
0 0

0 σmn
(ρ2+r2)

)
U =

4 ρ2 σmn
(ρ2 + r2)2

(2.58)

2.2 Fermions in the instanton background

Let us consider now the gauge theory in the background of an instanton. To

quadratic order in all fields beside the gauge field Am, the Euclidean action of

any supersymmetric theory can be written as

SE ≈
∫
d4x

{
trAdj

(
1

2g2
F 2
mn +

iθ

16π2
FmnF̃mn

)
+2 trRDnΨ̄σ̄nΨ + trRa Dnφ̄aDnφa + . . .

}
(2.59)

with Ψ = (ΛA, ψ, ψ̃) the set of all fermions in the adjoint, fundamental and anti-

fundamental representations and

DmΦ = ∂mΦ + Am Φ (2.60)

the covariant derivative. To this order the equations of motion of the fields are

linear and can be written as

DmFmn ≈ 0

Dn(σnΨ̄) ≈ Dn(σ̄nΨ) ≈ 0

D2φa ≈ 0 (2.61)
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To find solutions we propose the ansatz

Am = Ū∂mU

ΛA
α = Ū(MA f b̄α − bα f M̄A)U

ψα = K f b̄α U

ψ̃α = Ū bα f K̃

Λ̄α̇A = ψ̄α = ¯̃ψα = φa = 0 (2.62)

In components one writes

(Am)uv = Ūu
λ∂mUλv

(ΛA
α )uv = Ūu

λ

{
MA

λi fij (b̄α)jλ − (bα)λi fij M̄A
jλ′

}
Uλ′v

(ψα)u = Ki fij (b̄α)jλ Uλu

(ψ̃α)u = Ūu
λ (b̄α)λi fij K̃j (2.63)

with λ = 1, . . . N + 2k, u = 1, . . . N , i = 1, . . . k. The matrices MA
λi, Ki, K̃i are

made of Grassmanian numbers and5

∂̄α̇α∆β̇ = δα̇
β̇
bα ∂̄α̇α∆̄β̇ = εα̇β̇ b̄α (2.64)

with ∂̄α̇α = 1
2
σ̄α̇αn ∂n. To evaluate the Dirac equations on the fermion we should

evaluate the action of the covariant derivative on the fermions. To this aim we use

the writing of the identity 1 = UŪ + ∆ f ∆̄ in order to translate derivatives on U

into derivatives on ∆’s. First we notice that

DnU = (UŪ + ∆ f ∆̄)∂nU + U An = −∆ f ∂n∆̄U (2.65)

and similarly

Dn Ū = −Ū ∂n∆ f ∆̄ (2.66)

Using these equations one finds

Dα̇αΛA
α = Ū

{
MA ∂̄α̇α f b̄α −MA f b̄α∆ f ∂̄α̇α∆̄− ∂̄α̇α∆ f ∆̄MA f b̄α

− bα ∂̄α̇α f M̄A + ∂̄α̇α∆ f ∆̄ bα f M̄A + bα f M̄A ∆ f ∂̄α̇α∆̄
}
U

Dαα̇ψα = K (∂̄α̇αf b̄α − f b̄α ∆ f ∂̄α̇α∆̄)U

Dαα̇ψ̃α = Ū (bα ∂̄
α̇αf − ∂̄α̇α∆ f ∆̄ bα f) K̃ (2.67)

5Here we use σn,αα̇ σn,ββ̇ = 2 εαβ εα̇β̇ , σ̄αα̇n σn
ββ̇

= 2δαβ δ
α̇
β̇

.
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The first two terms in each line cancel between each other in virtue of the identities

(2.64) and

∂̄α̇αf = − f b̄α∆α̇ f = − f ∆̄α̇bα f b̄α ∆α̇ = ∆̄α̇ bα (2.68)

that follows from (2.64) and the bosonic ADHM constraint in (2.69). The cancela-

tion of the last terms in the first two lines requires the fermionic ADHM constraints

∆̄M+ M̄∆ = 0 (2.69)

In components, writing

∆λ,α̇j =

(
wu,iα̇

aiα,jα̇ + xαα̇δij

)
MA

λ,j =

(
µAu,j

MA
αi,j

)
(2.70)

the fermionc constraints (2.69) reduce to

M̄A
α = MA

α µ̄Awα̇ − w̄α̇µA + [MαA, aαα̇] = 0 (2.71)

Summarizing, the moduli space of instantons in a supersymmetric gauge theory is

characterised by the following zero modes:

Vector : (aαα̇,ij, wα̇,ui, w̄α̇,iu) Dc = w̄τ cw − iη̄cmn[am, an] = 0

dimMgauge
k,N = 4k2 + 4kN − 3k2 − k2 = 4kN

Adj. fermions : (µAui, µ̄
A
iu,M

A
α,ij) λAα̇ = µ̄Awα̇ − w̄α̇µA + [MαA, aαα̇] = 0

dimMAdj.matter
k,N = (# of Adj ferm.)×

(
2kN + 2k2 − 2k2 = 2kN

)
Fund matter : Ki dimMFund matter

k,N = (# of Fund. ferm.)× (k) (2.72)

with i = 1, . . . k, u = 1, . . . N . We notice that the components of matrices aαα̇ and

MA
α proportional to the identity,

am = x0,m 1k×k + . . . MA
α = θA0,α 1k×k + . . . (2.73)

do not enter on the ADHM constraints. They are exact zero modes of the instanton

action parametrising the position of the instanton in the superspace-time. They can

be reabsorbed in a shift of the space-time supercoordinates (xm, θ
α
α)

Finally the asymptotic behaviour or various fields at infinity can be found from

the asymptotics6

∆̄ ≈
(
w̄α̇ x̄α̇α

)
U ≈

(
1

−xαα̇ w̄
α̇

x2

)
fij ≈

δij
x2

(2.74)

6We use that σ̄α̇α(m σn)αβ̇ = δmn δ
α̇
β̇

.
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leading to

An ≈
1

x2
w x̄ σn w̄ −

2xn
x2

w w̄ Fmn ≈
1

x4
w x̄ σmn x w̄

ΛA
α ≈ 1

x4
(wα̇x̄

α̇
αµ̄

A − µA xαα̇ w̄α̇)

ψα ≈ − 1

x4
xαα̇K w̄α̇ ψ̃α ≈ −

1

x4
x̄α̇α wα̇ K̃ (2.75)

Appendix 2A: Dirac matrices

Here we collect our conventions for Dirac matrices. We define

σn = (i~τ , 1) σ̄ = σ†n = (−i~τ , 1) (2.76)

with

τ1 = (01
10) τ2 = (0 −i

i 0 ) τ3 = (1 0
0 −1) (2.77)

We introduce the tensors

σmn = 1
4
(σm σ̄n − σn σ̄m) σ̄mn = 1

4
(σ̄m σn − σ̄n σm) (2.78)

satisfying the (anti)self duality conditions

σmn = 1
2
εmnpq σ

pq σ̄mn = −1
2
εmnpq σ̄

pq (2.79)

The t’Hooft symbols are defined as

ηcmn = −i tr (σ̄mnτ
c) ηcab = εabc ηcm4 = δmc

η̄cmn = −i tr (σ̄mnτ
c) η̄cab = εabc η̄c4m = δmc (2.80)

We write

xαα̇ = xnσ
n
αα̇ ∂αα̇ =

∂

∂xαα̇
= 1

2
(σn)αα̇∂n (2.81)

The following identities will be used along the text

σ̄α̇α(m σn)αβ̇ = δmn δ
α̇
β̇

(2.82)

σ̄α̇αn σn
ββ̇

= 2δαβ δ
α̇
β̇

(2.83)

σn,αα̇ σn,ββ̇ = 2 εαβ εα̇β̇ σ̄α̇αn σ̄β̇βn = 2 εαβ εα̇β̇ (2.84)

where ε12 = −ε12 = 1 and by by T(mn) we denoted the symmetric part of a tensor.
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3 Instantons in supersymmetric gauge theories

In this section we describe the moduli space of instantons in supersymmetric gauge

theories.

3.1 Supersymmetric gauge theories

Supersymmetric theories are theories symmetric under the action of fermonic gen-

erators exchanging bosonic and fermionic degrees of freedom. In a supersymmet-

ric theory, states organise in supermultiplets with equal number of bosonic and

fermionic degrees of freedom related to each other by the action of supersymme-

try. In the case of a gauge theory with N = 1 supersymmetry there are two basic

multiplets:

Vector multiplet V = (Aµ,Λα, Λ̄α̇, D)Adj

Chiralmultiplet C = (φ, ψα, F )rep (3.85)

It is convenient to pack them in the so called Vector V and Chiral Φ superfields

V = θσµθ̄ Aµ(x)− i θθ̄θ̄Λ(x) + iθθθ̄Λ̄(x) + 1
2
θθθ̄θ̄D(x)

Φ = φ(y) +
√

2θψ(y) + θθF (y) yµ = xµ − iθσµθ̄ (3.86)

= φ(x) +
√

2θψ(x) + θθF (x) + i θσmθ̄∂mφ−
i√
2
θθ ∂mψ(x)σmθ̄ + 1

4
θθθ̄θ̄�φ

The variation of a superfield under supersymmetry is defined by

δ = εαQα + ε̄α̇ Q̄
α̇ (3.87)

with

Qα =
∂

∂θα
− i σmαα̇θ̄α̇ ∂m Q̄α̇ =

∂

∂θ̄α̇
− i θα σmαβ̇ε

β̇α̇ ∂m (3.88)

The resulting supersymmetry transformations are

δAn = −iΛ̄σ̄nε+ iε̄σ̄nΛ

δΛ = −σmn ε Fmn + i εD

δΛ̄ = ε̄σ̄mn Fmn − iε̄ D

δD = −εσm∂mΛ̄− ∂mΛσmε̄ (3.89)
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for the vector and

δφ =
√

2 ε ψ

δψ = i
√

2σm ε̄ ∂mφ+
√

2 ε F

δF = i
√

2 ε̄ σ̄m ∂mψ (3.90)

for the chiral multiplets. The general N = 1 supersymmetric gauge theory can be

written as

L = tr

∫
d2θd2θ̄ K(Φ̄, eV Φ) + tr

(∫
d2θ
[
τ

16π
WαWα +W (Φ)

]
+ h.c.

)
(3.91)

with K(Φ̄, eV Φ) a real function, the Kahler potential, W (Φ) a holomorphic function,

the superpotential,

τ =
θ

2π
+ i

4π

g2
YM

(3.92)

is the complexified gauge coupling and

Wα = −1
4
D̄D̄ DαV = Λα(y) + (iDδβα − Fmn σmnβα) θβ + i θ2σmαα̇∂mΛ̄α̇

WαWα|θ2 = 1
2
FµνF

µν + i
4
εµνσρF

µνF σρ −D2 + 2iΛ̄σm∂mΛ (3.93)

When not say explicitly we will restrict to the simplest choice of Kahler potential

K(Φ̄, eV Φ) = trR Φ̄ eV Φ (3.94)

corresponding to the case where the scalar manifold is flat.

Theories with extended supersymmetry can be seen as special case of N = 1

supersymmetric theories where vector and chiral multiplets combined into bigger

multiplets entering in the action in a symmetric fashion

N = 2 : VN=2 = (V + C)Adj H = (C + C̄)rep

N = 4 : VN=4 = (V + 3C)Adj (3.95)

The form of the Kahler potential and the superpotential is restricted by the extra

supersymmetry. For example in the case of pure N = 2 supersymmetry, the action

can be written in terms of a single holomorphic function F(Φ) and is given by (3.91)

with

τ(Φ) =
∂2F
∂Φ2

K(Φ̄,Φ) =
1

4π
Im trAdj

∂F
∂Φ

Φ̄ W (Φ) = 0 (3.96)

In the case of N = 4 the complete action is fixed and is given again by (3.91) with

K(Φ̄a, e
V Φa) =

3∑
a=1

trAdj Φ̄a e
V Φa W (Φa) = trAdj Φ1[Φ2,Φ3] (3.97)
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3.2 Supersymmetry in the instanton moduli space

The space-time supersymmetry induces a supersymmetry on the instanton moduli

space. In particular a symmetry under

QAn = ε̄α̇A σ̄
α̇α
n Λα + . . . (3.98)

implies that the moduli matrices ∆ andM describing the zero modes of vector and

gaugino fields

δmod∆λ,α̇j =Mλ,j = ε̄α̇AMA
λ,j (3.99)

We will write

δmod∆ =M (3.100)

Acting on U one finds

δmodU = (U Ū + ∆ f ∆̄) δmodU = Uα−∆ f M̄U (3.101)

with α = Ū δmodU . We notice that the α-dependent term in the right hand side is

a gauge transformation δαU = −Uα. So if we define

Q = δmod + δα (3.102)

with α a gauge transformation with parameter α, we find the supersymmetry trans-

formation rule

QU = −∆ f M̄U (3.103)

Similarly

Q Ū = −ŪM f ∆̄ (3.104)

Acting on the gaugino one finds

QA = QŪdU + Ū d(QU) = −ŪM f ∆̄ dU − Ū d(∆ f M̄U)

= Ū(M f d∆̄ − d∆ f M̄)U = Λ (3.105)

reproducing the right space-time supersymmetry transformations.

4 N = 1 Superpotentials

4.1 SQCD with Nf = N − 1 flavors

In this section we consider a N = 1 U(N) gauge theory with Nf chiral superfields

Qf and Nf superfields Q̃ in the fundamental and antifundamental representations
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respectively. In the background of the instanton the effective action is given by the

moduli space integral

Seff =
∑
k

qk Λkβ

∫
dM e−Sinstk

(M) =

∫
d4x0 d

2θ0W (Q, Q̃) (4.106)

with

Q = ϕ(x0) + θ0 ψ(x0) + . . . (4.107)

the quark and antiquark superfields in the moduli space,

W (ϕ) = Λkβ

∫
dM̂ e−Sinstk

(M) =
Λkβ

ϕkβ−3
(4.108)

the superpotential and

dM = d4x0 d
2θ0 dM̂ (4.109)

The factor Λkβ is included in order to make the action dimensionless. Since bosons

have length dimension one and fermions half, kβ is nothing but the number of

bosons nB minus half the number of fermions nF ,

k β = nB − 1
2
nF = 4kN − 1

2
(2 k N + 2 k Nf ) = k (3N −Nf ) (4.110)

We notice also that

β = 3cAdj −
∑
R

cR cAdj = N cfund = 1
2

(4.111)

is also the one-loop beta function coefficient of the gauge theory. Indeed one can

write

qkeff = qk Λk β with τeff = τ +
β

2πi
ln Λ (4.112)

so Λ can be interpreted as the dynamically generated scale of the theory and τeft as

the running gauge coupling at scale Λ.

At the instanton background with zero vevs one finds Sinstk(M) = 0. In order

to soak the fermionic zero mode integrals we have to turn on a vev for ϕ in Q

and brings down Yukawa term interactions from the action. Since Yukawa terms

combine an Adjoint and a fundamental zero mode, a non-trivial result is found only

if the number of adjoint and fundamental fermionic zero modes match besides the

two extra θ’s, i.e.

nAdj − nfund = 2 k (N −Nf ) = 2 ⇒ Nf = N − 1 , k = 1 (4.113)
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The instanton measure becomes

dM̂ = δ(Dc)δ(λα̇) d4Nw d2Nµ dN−1K dN−1K̃ (4.114)

Finally let us evaluate Sinstk(M). We first notice that ,once evaluated at the

solutions of the equations of motion, the YM action is a total derivative. Schemat-

ically

Sinstk(M) =

∫
d4xQeV Q̄

∣∣
θ2θ̄2

+ . . . =

∫
d4x (|Dϕ|2 + ψΛ ϕ̄+ . . .)

=

∫
d4x

[
∂m(ϕ̄Dmϕ) + (−D2ϕ+ ψΛ)ϕ̄+ . . .

]
(4.115)

We can compute then Sinstk(M) by using the asymptotic expansion of the instanton

solution. From (2.75) one finds

ϕ̄AmAmϕ ∼
1

x4
ϕ̄ wα̇ w̄

α̇ ϕ ψα Λα ϕ̄ ∼
1

x4
K µ̄ ϕ̄ (4.116)

with similar expressions for tilted fields. Notice that both contributions are quadratic

in the instanton moduli, so the integrals become Gaussian. To simplify further the

computation we take the vev matrix ϕ, ϕ̃ in the diagonal form:

ϕsu = ϕs δ
s
u ϕ̃us = ϕ̃s δ

u
s (4.117)

with u = 1, . . . N , s = 1, . . . N − 1. For this choice, the zero modes µN , µ̄N ap-

pear only on δ(λα̇) and can be solved in favour of the others. The integral over

Ks, K̃s, µs, wsα̇, lead to the determinant

W (ϕ) ∼
N−1∏
s=1

ϕ̄s ˜̄ϕs
|ϕs|2| ˜̄ϕs|2

=
1

detm
(4.118)

with

mss′ = ϕusϕus′ (4.119)

the Meson matrix. The remaining integrals are ϕ-independent, so they give a

numerical factor. Collecting all pieces one finds

Seff = c

∫
d4xd2θ

Λ2N+1

detM(x, θ)
(4.120)

with c a constant and M the super field version of the meson matrix m.
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5 The N = 2 prepotential

In this section we will compute the instanton corrections to the prepotential of

N = 2 theories. The instanton corrections to the prepotential are given by the

moduli space integral

Seff =
∑

qk
∫
dMk e

Smod(Φ) =

∫
d4xd4 θFnon−pert(Φ) (5.121)

with

Fnon−pert(au) =
∑

qk
∫
dM̂ke

Smod(au) (5.122)

Here we denote by q = Λβ e2πiτ , with Λβ compensating for the length dimension of

instanton moduli space measure. The matrix of gauge couplings is defined as

τuv =
∂2F
∂au∂av

(5.123)

5.1 The idea of localization

Theorem of Localization:

• Let g = U(1) a group action on a manifold M of complex dimension ` specified

by the vector field ξ = ξi(x) ∂
∂xi

,

δξx
i = ξi(x) (5.124)

with isolated fixed points xs0, i.e. points where ξi(xs0) = 0 ∀i.

• Let Qξ an equivariant derivative,

Qξ ≡ d+ iξ (5.125)

with d the exterior derivative and

iξdx
i ≡ δξx

i iξ(dx
i ∧ dxj) = δξx

i dxj − dxi δξxj (5.126)

a contraction with ξ.

• Let α an equivariantly closed form, i.e. a form satisfying

Qξ α = 0 (5.127)

21



Then, the integral of alpha is given by the localisation formula∫
M

α = (−2π)`
∑
s

α0(xs0)

det
1
2Q2

ξ(x
s
0)

(5.128)

with α0 the zero-form part of α. We notice that

Q2
ξ = diξ + iξd = δξ (5.129)

and therefore Q2 j
i = ∂iξ

j can be viewed as the map Q2 : Tx0M → Tx0M induced

by the action of the vector field ξ.

Example: Gaussian integral via U(1) localization on R2. Let us consider the

integral

I =

∫
R2

e−a(x2+y2) dxdy (5.130)

We first notice that R2 admit the action of the rotation group induced by the vector

field

ξ = ε

(
x
∂

∂y
− y ∂

∂x

)
⇒ Q2 =

(
0 −ε
ε 0

)
(5.131)

This action has only the origin x = y = 0 as a fixed point. An equivariantly closed

form is given by

α = e−a(x2+y2) dxdy − ε

2a
e−a(x2+y2) (5.132)

Using the Localization formula one finds

I =

∫
R2

α = 2π
ε e−a(x20+y20)

2aε
=
π

a
(5.133)

with x0 = y0 = 0 the critical point. Notice that the right hand side does not depend

on ε as expected.

5.2 The equivariant charge

For N = 2 gauge theories if we identify the R-symmetry index A with α̇, the

supersymmetry parameter ξα̇A become a scalar εα̇A = ξεα̇A. The supersymmetry

variation relate then fields with the same quantum numbers. This identification is

known as a topological twist since the resulting supersymmetry variation satisfies

δ2 = 0, defining a BRS charge. By construction the moduli space action is a δ-

variation of something, so the resulting theory in the moduli space is topological.

The action of the BRS charge can be written in general as

QΦ = Ψ QΨ = Q2Φ = 0 (5.134)
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The list of multiplets (Φ,Ψ), transformation properties, and the eigenvalues λΦ for

gauge and matter moduli are displayed in table 5.2. The second and third columns

display the multiplets and the spin statistics of their lowest component. The fourth

and fifth columns display the transformation properties under the symmetry groups.

(Φ,Ψ) (−)Fφ RG SU(2)2 λΦ

Gauge (aαα̇;Mαα̇) + kk̄ (2,2) χij + ε1,χij + ε2

(λc;Dc) − kk̄ (1,3) χij + ε , χ
1
2
ij

(χ̄, λ) + kk̄ (1,1) χ
1
2
ij

(wα̇;µα̇) + k N (1,2) χi − au + 1
2
ε

(w̄α̇; µ̄α̇) + k̄ N (1,2) au − χi + 1
2
ε

Adjoint (Ma
α;haα) − kk̄ (2,1) χij + ε1 −m,χij + ε2 −m

(χα̇a;λα̇a) + kk̄ (1,2) χij −m , χij + ε−m
(µa;ha) − k N̄c (1,1) χi − au + 1

2
ε−m

(µ̄a; h̄a) − k̄ Nc (1,1) au − χi + 1
2
ε−m

Fund (K;h) − k Nf (1,1) χi −mf

Anti-F (K̃; h̃) − Nf̃ k (1,1) m̃f − χi

Table 1: Instanton moduli space for N = 2 gauge theories.

We introduce the auxiliary fields χ̄, h, h̃, haα, ha to account for the extra degrees

of freedom in λα̇β̇, K, K̃, Ma
α and µ̄a respectively. Here a = 3, 4. The sign indicates

the spin statistics of the given field. In particular, multiplets with negative signs are

associated to constraints subtracting degrees of freedom. We notice that for Nf =

2N or N = 4 we have the same number of bosonic and fermionic supermultiplets

as expected for a conformal theory.

To evaluate the integral over the instanton moduli space with the help of the
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localisation formula we should first find a BRS equivariant charge Qξ = δ + iξ. For

N = 2 gauge theories the instanton moduli space is invariant under the symmetry

G = U(k)× U(N)× SO(4)× U(Nf )× U(Nf̃ ) (5.135)

We parametrize the Cartan of this group by the parameters

(χi, au, ε`,mf , m̃f ) i = 1, . . . k , u = 1, . . . N , , ` = 1, 2 , f = 1, . . . Nf (5.136)

and the masses (mf , m̃f ) and M for the case of (anti)fundamental and adjoint

matter respectively. The action of the equivariant BRS charge on the moduli space

can then be written generically as

QξΦ = Ψ Q2
ξΦ = δξΦ = λΦ Φ (5.137)

with Φ a complex field that can be either a boson in the case of a multiplet containing

a physical field or a fermion for multiplets involving auxiliary fields. The list of

multiplets (Φ,Ψ) and their eigenvalues ΛΦ are displayed in table 5.2. We use the

shorthand notation ε = ε1 + ε2.

5.3 The instanton partition function and the prepotential

We will regularize the volume factor by introducing some ε1,2-deformations of the

four-dimensional geometry and recover the flat space result from the limit ε1,2 → 0.

More precisely we will find

Fnon−pert(au, q) = − lim
ε`→0

ε1ε2 lnZ(ε`, au, q) (5.138)

with

Z =
∑

qk Zk Zk =

∫
dMke

Smod(au,ε`) (5.139)

The factor ε1ε2 in (5.138) takes care of the volume factor
∫
d4xd4θ ∼ 1

ε1ε2
.

The k-instanton partition function Zk is given by the moduli space integral

Zk =

∫
dMk e

−Smod =

∫
dχ

vol U(k)

∏
Φ

λ
−(−1)F

Φ =

∫
1

k!

k∏
i=1

dχi
2πi

zgauge
k zmatter

k

(5.140)

with
dχ

volU(k)
=

1

k!

∫ k∏
i=1

dχi
2πi

∏
i 6=j

χij (5.141)
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Using the eigenvalues in Tab. 5.2, one finds

zgauge
k = (−1)k

∏
i,j

χ
1−δij
ij (χij + ε)

(χij + ε1)(χij + ε2)

∏
i,u

1

(χi − au + ε
2
)(−χi + au + ε

2
)

zAdjoint
k =

∏
i,j

(χij + ε1 −m)(χij + ε2 −m)

(χij −m)(χij + ε−m)

∏
i,u

(χi − au + ε
2
−m)(−χi + au + ε

2
−m)

zfund
k =

∏
i,f

(χi −mf )

zanti−fund
k =

∏
i,f

(−χi + m̃f ) (5.142)

with ε = ε1 + ε2. The integral over χi has to be thought of as a multiple contour

integral around M -independent poles with

Im ε1 >> Im ε2 >> Imau > 0 (5.143)

Poles are in one-to-one correspondence of N-sets of two-dimensional Young Tableaux

Y = {Yu} with total number of k boxes. Given Y , the eigenvalues χi can be written

as

χYi = χYuIu,Ju = au + (Iu − 1
2
)ε1 + (Ju − 1

2
)ε2 (5.144)

with Iu, Ju running over the rows and columns of the uth tableaux Yu. The partition

function can then be written as

Zk =
∑

Y ;k=|Y |

ZY (5.145)

with

ZY = Resχ=χY z
gauge
k zmatter

k =
∏
Φ

λ
(−1)F+1

Φ,Y (5.146)

5.4 Examples

5.4.1 U(1) plus adjoint matter: k=1,2

From (5.140) and (5.142) one finds

Z =
(m+ ε1)(m+ ε2)

ε1ε2
,

Z =
(m+ ε1)(m+ ε2)(m+ ε2 − ε1)(m+ 2ε1)

2ε21ε2(ε2 − ε1)
,

(5.147)
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which lead to the non-perturbative prepotential

Fn.p. = − lim
ε1,ε2→0

ε1ε2

[
q Z + q2

(
Z + Z − 1

2
Z2
)]

= −q m2 − 3

2
q2m2 + · · · .

(5.148)

5.4.2 Example: Pure SU(2) gauge theory: k=1,2

For pure SU(2) gauge theory we take Ta1 = T−1
a2

= Ta. For the first few tableaux

one finds

T( , •) = T1 + T2 + T−2a + T1T2T2a

T( , •) = T1 + T 2
1 + T2 +

T2

T1

+ T−2a + T1T2T2a + T 2
1 T2T2a +

T−2a

T1

T( , ) = 2T1 + 2T2 + T1T2a + T2T2a + T1T−2a + T2T−2a (5.149)

with similar expressions for T(•, ),T(•, ) obtained from the first two lines re-

placing a → −a , for T( , •) obtained from the second line exchanging ε1 ↔ ε2

and T
(
•,
)

obtained from the second line after replacing a → −a and ε1 ↔ ε2

simultaneously. For the partition functions one finds

Z( ,•) = − 1

2a ε1ε2(2a+ ε1 + ε2)

Z( ,•) =
1

4aε21ε2(ε2 − ε1)(2a+ ε1 + ε2)(2a+ 2ε1 + ε2)(2a+ ε1)

Z( , ) =
1

ε21ε
2
2(4a2 − ε21)(4a2 − ε22)

(5.150)

leading to the prepotential

Fnp = − lim
ε`→0

ε1ε2

[
q Z( ) + q2(Z( ) + Z

( )
− 1

2
Z2

( ))

]
=

q

2a2
+

5

64

q2

a6
+ . . . (5.151)

6 Seiberg-Witten curves

For simplicity we take pure N = 2 SYM with gauge group SU(N). We write

Z(q) =
∑
k

qkZk =
∑
k

qk

k!

∫ k∏
i=1

dχi
2πi

eln zgaugek =
∑
k

∫ k∏
i=1

dχi
2πi

e
1

ε1ε2
Hk(χi) (6.152)
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with

zgauge
k =

∏
i,j

χ
1−δij
ij (χij + ε)

(χij + ε1)(χij + ε2)

∏
i

1

P (χi + ε
2
)P (χi − ε

2
)

(6.153)

and

P (x) =
N∏
u=1

P (x− au + ε
2
) (6.154)

In the limit ε` → 0 one finds

Hk(χi) = ε1ε2

[∑
ij

ln

(
χij(χij + ε)

(χij + ε1)(χij + ε2)

)
−
∑
i

lnP (χi + ε
2
)P (χi − ε

2
) + k ln q

]

≈

[
−ε21ε22

∑
ij

1

χ2
ij

− 2ε1ε2
∑
i

lnP (χi) + kε1ε2 ln q

]
(6.155)

Introducing the density function

ρ(x) = ε1ε2
∑
i

δ(x− χi) (6.156)

one can rewrite (6.155) as

Hk(ρ) = −
∫
dxdz

ρ(x)ρ(z)

(x− z)2
− 2

∫
dzρ(z) lnP (z) + ln q

∫
dzρ(z) (6.157)

The Saddle point equation becomes

dHk(ρ)

dρ(x)
= −2

∫
R

dz
ρ(z)

(x− z)2
− 2 lnP (x) + ln q = 0 x ∈

N⋃
u=1

Σu (6.158)

Defining

y(x) = exp

[
−
∫
R

dz
ρ(z)

(x− z + i0−)2
− lnP (x+ i0−)

]
(6.159)

The saddle point equation can be written as

|y(x)|2 = q x ∈
N⋃
u=1

Σu (6.160)

with boundary condition limx→∞ y(x) = x−N . A solution can be written as

y(x) = 1
2

(
PN(x)−

√
PN(x)2 − 4 q

)
(6.161)
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that satisfy the saddle point equation in the intervals

Σu = [α−u , α
+
u ] P 2

N − 4q =
N∏
u=1

(x− α−u )(x− α+
u ) (6.162)

Here PN(x) is a polynomial of order N that we will be write as

PN(x) =
N∏
u=1

(x− eu) (6.163)

We notice that y(x) is solution of the quadratic equation

y(x)2 − PN(x)y(x) + q = 0 (6.164)

that is called Seiberg-Witten equaltion. We notice that using the definition (6.159),

one can identify au with the period integrals

au =
1

2πi

∫
Σu

xλ(x) (6.165)

with

λ(x) = −dx ∂x ln y(x) =
P ′N(x)√

PN(x)2 − 4q
dx =

P ′N(x)

PN(x)
+

2qP ′N(x)

P (x)3
+ . . . (6.166)

leading to

au = eu + 2qResx=eu

xP ′N(x)

PN(x)3
+ . . . (6.167)

These relations can be inverted to find eu in terms of au. To leading order

eu = au − 2qResx=au

xP ′(x)

P (x)3
+ . . . (6.168)

Similarly one can compute chiral correlators

〈tr ΦJ〉 =
∑
u

∫
Σu

xJ λ(x) =
N∑
u=1

(
eJu − 2qResx=eu

xJP ′N(x)

PN(x)3
+ . . .

)
(6.169)

In particular the prepotential F can be found from the relation

〈tr Φ2〉 = 2q
∂F
∂q

(6.170)
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Example: pure SU(2) gauge theory

We take

PN(x) = x2 − e2 (6.171)

leading to

a = Resx=exP
′
N

(
1

PN
+

2 q

P 3
N

+
6q2

P 7
N

+ . . .

)
= e− q

4e3
− 15 q2

64 e7
+ . . . (6.172)

Inverting this relation one finds

e = a+
q

4a3
+

3 q2

64 a7
+ . . . (6.173)

One the other hand for the chiral correlator one finds

〈tr Φ2〉 = 2e2 = 2a2 +
q

a2
+

5 q2

16 a6
+ . . . = 2a2 + 2F1 q + 4F2 q

2 + . . . (6.174)

leading to

Finst =
q

2a2
+

5q2

64a6
(6.175)

in agreement with (5.151).

29


