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e Instantons in gauge theories: solutions of Euclidean equations of motion. Sad-
dle points of path integrals. Instantons as self-dual connections. The k = 1

solution.

e ADHM construction. The moduli space of self-dual connections. Fermions in

the instantons background.

e Supersymmetric theories. Supersymmetry in the instanton moduli space.

N = 1 supersymmetric gauge theories. The Affleck-Dine-Seiberg prepotential

e N = 2 supersymmetric gauge theories. The idea of localisation. The prepo-

tential. Multi-instanton calculus via localization.

e Seiberg-Witten curves from localisation.

1 Instantons in Gauge Theories

Correlators in Quantum Field Theories are described by path integrals over all

possible field configurations

<H O(xi,tz'>> - / 06 [[ O t) i@ (1.1)

For a gauge theory

1 a apuv
S = “iF d'z F F™ + (1.2)

In the classical limit 2~ — 0, the integral is dominated by the saddle point of the
action 05 = 0. To compute the contribution of the saddle point to the integral is

convenient to perform the analytic continuation

tp =it (1.3)



and write

mn=— mn

: 1 a pa
ZS:—ng/thd%F F +...=-Sg (1.4)

With respect to S(¢), Sg(¢) has the advantage of being positive defined. The

classical limit of the path integral

is then dominated by the minima of Sg(¢). A solution of the Euclidean equations
of motion is called an instanton.

Besides its applications in the computation of path integrals , instantons can be
used also to compute tunnelling effects between different vacua of a quantum field
theory. At low energies, the energy levels of a particle moving on a potential V' (z)
can be approximated by those of the harmonic oscillator for a particle moving on
a quadratic potential V(z) ~ %2 (x — x4)? around a minima at « = zy. In presence
of a tunnelling between two vacua, each harmonic oscillator energy levels split into

two with energies
E,=Mm+3i+tiA)w, A, ~e®F (1.6)

with Sg the Euclidean action for an instanton solution describing the transition
between the two minima of a particle moving in the upside-down potential Vg =
—V(z). The factor in front of the exponential can be computed evaluating the
fluctuation of the action up to quadratic order around the instanton action. We

refer to Appendix 1A for details.

1.1 Gauge Instantons

In gauge theories, instantons are solutions of the Euclidean version of the Yang-Mills

action
I Ri -
Sy = ﬂ/ d*x Tr Fopp Fom — i °r / d*x Tr Fp Fonn
8 8
1 4
with

Frn = emnpaFpg (1.8)
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and

0 Am
The dual field F,,, satisfied by construction the Bianchi identity:
= %Emnpq (20m0p Ag + Om[Ap, Ag] + 2[Am, OpAg] + [Am, [Ap, Agl])
= 0 (1.10)

The first three terms cancel between themselves using the antisymmetric property
of the epsilon tensor, while the last one cancel due to the Jacobi identity satisfied
by any Lie algebra.

The YM equation of motion can be written as

Interestingly, this equation has precisely the same form than the Bianchi identity
(1.10) with F replaced by F. This implies that the YM equations can be solved by
requiring that the field F' is self or anti-self dual

F=+F (1.12)

We notice that this equation can be solved only in Euclidean space since F=-F
in the Minkowskian space, so eigenvalues of the Poincare dual action are +i. On
the other hand in the Euclidean space F' = F and +-eigenvalues are allowed.

In the language of forms

F=1F  dzmdxz" x F' =

)

E,.dx™dz" (1.13)

1
2

with
F=DA=dA+ANA (1.14)

The Bianchi and field equations read

DF =dF +[A, F] =2dAA+2AdA + AA* — A2A =0  Bianchi Indentity
DxF=d+«F+[AxF]=0  FieldEquations
(1.15)



A connection satisfying (1.12) with the plus sign is called a Yang Mills instanton
while the one with minus sing is called an anti-instanton. Instantons are classified
by the topological integer

1617r2 / d*ztr (F,, F™) = —8—;/ d*rtr (F A F) (1.16)
called, the instanton number. This number is the second Chern number k£ =
[ chy(F), with the Chern character defined as

E=—

h(F) = 3 cha(F) = exp (g) (1.17)

n

Next we show that instantons minimize the Euclidean Yang-Mills action over
the space of gauge connections with a given topological number k. To see this we

start from the trivial inequality
/ d*ztr (F+ F)?>0 (1.18)
and use tr F2 = tr F2 to show
872 |k|
g2
with the inequality saturates for instantons or anti-instantons. Plugging this value

s | d'rtr F? > 5l (1.19)

/d%trFﬁ’

in the YM action one finds that instantons are weighted by e~%inst with
812k
PB
with £ > 0. On the other hands anti-instanton effects are weighted by e~ . The

—Sinst = 2mikT = —

(1.20)

instanton corrections to correlators in gauge theories take then the form
o _ 8n2k
©)= [Dacs0=Y ag+) de 7 (1.21)
k=1

Summarizing amplitudes in gauge theories are computed by path integrals domi-

nated by the minima of the Euclidean classical action and quantum fluctuations
around them. Fluctuations around the trivial vacuum, i.e. where all fields are set
to zero, give rise to loop corrections suppressed in powers of the gauge coupling.
Instantons are non trivial solutions of the Euclidean classical action and lead to cor-
rections to the correlators exponentially suppressed in the gauge coupling . These
corrections are important in theories like QCD where the gauge coupling get strong
at low energies. Understanding of the instanton dynamics is then crucial in ad-
dressing the study of phenomena in the strong coupling regime like confinement or

chiral symmetry breaking, etc.



1.2 The k =1 solution

To construct self-dual connections we first observe that we can construct a self-
dual two-form with values on SU(2) in terms of the 2 x 2 matrices o,, = (i7, 1),

=0l = (—i7, 1)

(O On — OpOm) = % E€mnpg O (1.22)

=

Umn
This implies that a self-dual SU(2) connection can be written as

2(x — 20)nOnm

Ay = 1.23
(e a0 + 7 i
Indeed, the field strength associated to this connection is
4020 m

Fon = 1.24
(@207 + 7 20

which is self-dual due to (1.22). Moreover, the instanton number is?

4 3
L . =~y P VOlgs rodr

k= 602 / d*ztr (Fp F™) =6 — / o 1 (1.25)

with volgs = 272 the volume of the unitary sphere. The connection (1.23) represents
then a k = 1 instanton. We notice that we can find a different solution by rotating
A with a matrix of SU(2)

A — UAUT (1.26)

so the total number of parameters describing the solution is 8: 4 positions xg, 1 size
p and 3 rotations U.

For a general group SU(N), we start from the SU(2) self-dual connection an
embed it the 2 x 2 matrix inside the N x N matrix. The £ = 1 solution is then
described by N? — 1 rotations minus (N — 2)? rotations in the space orthogonal to
the 2 x 2 block that leave invariant the solution, i.e. 4N — 5 parameters . Together
with the size and 4 positions we get 4N parameters. Finally for k£ instantons far
from each other we expect 4k N parameters. We conclude that the dimension of the
instanton moduli space is

dimM N = apN (1.27)

In the rest of this section we construct the general solution that goes under the

name of ADHM construction.

Here 71 = (%), 2 = (0 59, 3 = (§ %) are the Pauli matrices.

3
?Here we use the result [ % = ﬁ and tro2,, =1 .



Appendix 1A Instantons in Quantum Mechanics

Besides its applications in the computation of path integrals , instantons can be
used also to compute tunnelling effects between different vacua of a quantum field
theory. To illustrate this points lets us consider a particle moving in a Double Well

potential

Viz) ="V, (1 - ”’—2)2 (1.28)

2
Lo

When Vj is large, the solution of the Schrodinger equation reveals that the spec-

trum of energies deviates from that of the harmonic oscillator by a quantity A,

exponentially suppressed in the height of the barrier Vj, i.e.

2Vpwo

E,=n+3£3A,)w A, ~e 3 (1.29)

and w2 = le;). This deviation is the result of the tunnelling effect between the two

0
vacua. To see this, let us compute the probability that a particle moves from the

vacuum at x = —x( to that one at x = xp in a time T’

(zoleT| — o) = / D (t)exp (_ /0 Uity [%2 + VE@;)D (1.30)

with
Ve(x) = =V(x) (1.31)
Notice that the Hamiltonian H is nothing but the Euclidean Lagrangian with the

upside-down potential Vg. The classical equation of motion are

—i—Vp(r)=0 <« T =+/—2Vg(z) = @(ﬁ —z7) (1.32)

which is solved by the kink

2V¢
r = xptanhtpg x_20 (1.33)
0

Plugging the solution into the action one finds

0o 2 o0 o2V, |82
= dtp |=— — = dipi?=""4]=-2 1.34
o /_oo E{z VE] /_oo T 7 (1.34)

The tunnelling amplitude

2Vy |8
A~ e™5F ~exp —?vaioo (1.35)



gives then the correct exponential suppression factor to account for the level split-
ting A,,. The factor in front of the exponential can be computed evaluating the

fluctuation of the action up to quadratic order around the instanton action.

Appendix 1B: Forms and Poincare duality

In the language of forms

F = %andxmdx” *x F = % ndxdx™ (1.36)
with
F=dA+ANA (1.37)
and
*dzdz" = 1 €™, daPda? (1.38)
One finds
d'z JF™F,,, = FA«F  d'ziF™F,,=FAF (1.39)

Appendix 1C: Chern Classes

Consider the first Chern class of a U(1) connection A on R?

o1 (F) i/d%dA: [ A (1.40)

2m T Js1

At infinity A becomes a trivial gauge
A, =U0d,U (1.41)

Take U = e~ with 6 the coordinate of the S. at infinity. Plugging this into (1.40)
one finds o
1 s
F)=— do (—ik) = k 1.42
alF) == [ do (=it (1.42)
So the number k£ measures the winding of the connection along S at infinity.

Now consider the second Chern class. First we notice that co(F') is a total

derivative
k = —L trF/\F——L trd(AdA—i—zA?’)
- 8x2 - 8x2 3
1 1
= tr (AdA + 2 A3) = tr A3 1.4
82 53 r< + 3 ) 2472 /Sgo ' ( 3>



where we used the fact that at infinity ' — 0 and therefore dA — —A2. To evaluate

the integral at infinity we write A as a total gauge
_ 1 .
A=UdU  with U= —(z4+ix;0") (1.44)
r

with o, the pauli matrices. Consider the region where x4 ~ R and z; are small. In

this region
A3 0 d d d 12 d d drs =122 4
tr — ﬁtr 010203 a1 N\ ATy N\ dT3 = R 1 Ndry Ndrg = 12803 (1.45)

with €3 the volume form in this region. Integrating over S2 one finds

1
! / trA°=_—— [ Q3=1 (1.46)
S5

" 24n2 212 Jgs.
In general the instanton number k measures the winding number of the map U :

S3 — g from the three sphere at infinity to the Lie algebra.

2 ADHM construction

2.1 The self-dual connection

Here we review the ADHM construction of instantons in R*.

This construction exploits again the observation that any field strength 0f the form
Fon ~ Omn (2.47)

is self-dual in virtue of (1.22). We look for a gauge connection following the ansatz
A, =U0,,U UU = Linxn (2.48)

with Uynioryxn). If k& = 0 this is simply a pure gauge. We will now show that this

connection is self-dual if:

e U is a normalized kernel of a matrix A of the form

w1 0
A=atz,br=| "4 ) yq (2.49)
Qia,ja 0% 5045

withe=1,...k, u=1,... N. In other words U satisfy
AU =UA =0 UU = Linxn (2.50)

with A of the form (2.49). By bars we will always mean hermitian conjugates.

10



o If A satisfy the ADHM constraints

A?)\ A,\,jﬁ' = fz}lég (2.51)
or in components®
WTW — i[Oy Q] = 0 (2.52)
with ang = a0l and 75, = —itr (T, T°).

The matrices Wiy x2x], dj2kx2k) are made of pure numbers describing the instanton

moduli*. Notice that the resulting connection is invariant under U (k) rotations
am — Uan U wa — Uwg (2.53)

The moduli space of instantons is then defined by the U(k) quotient of the hyper-
surface defined by (2.52) and has dimension

dimpMy, = 4k(N + 2k) — 3k* — k* = 4kN (2.54)
Notice that equation (2.50) and (2.51) imply
1=UU+AfA (2.55)

To see that the gauge connection constructed in this way is self-dual let us compute
Fon:

= 20,,U0,U — [U,,U,Ud,U] (2.56)

Inserting the identity (2.55) into the first term in (2.56), rewriting derivatives on

U’s as derivatives on A’s and using (2.50) one finds

Fpn = 20,UA fAO U =2U0,A f O, AU

_ 0
_ T
_ 2U(qm®1 >f(0 ol @ Ly ) U

[kxk]
—( 0 0
—1 U ~ 0y (2.57)
0 Omn® f[kxk}

3To sce this, we notice that AA = aa+ z, (Bn a+ab,)+ z, Ty, b, b,,. The b-dependent

terms are all proportional to 52 , while the first term leads to (2.52). Here 7%, is antisymmetric,

7721; = €cab; ﬁim = 5mc-
4In the mathematical literature the ADHM equations are often written as [By, Bo] + I.J = 0,
[B1, BI] + [Ba, B;] + ITT — J'J = €14,5. These equations follows from the identifications B, =

\%(&2[ +iage_q) and w = (J IT).
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Explicit solutions

The simplest solution: £k =1, N = 2 at a,q = 0:

_ p1[2><2] 2 1
S e B C ey

_ 1
— 2 2 _ 2 _ m
AA = (p +T’)]1[2><2} = f—m =T,
T 2Zn,0mn
A, = U0, U = Zindmn
ZEQ + ,02
(0 o0 120,
Fp, = AU U= L Tmn (2.58)
0 (png;"LQ) (p2 -+ T2>2

2.2 Fermions in the instanton background

Let us consider now the gauge theory in the background of an instanton. To
quadratic order in all fields beside the gauge field A,,, the Euclidean action of

any supersymmetric theory can be written as

1 16 ~
~ 4 2 mn
Sp =~ /d T { tr A g; <—292 F? + 167T2F an)

+2trg D, V5,V + trr, Dy¢oDptpo + ...} (2.59)

with ¥ = (A4, ), 12) the set of all fermions in the adjoint, fundamental and anti-

fundamental representations and
D, ®=0,2+ A4, (2.60)

the covariant derivative. To this order the equations of motion of the fields are

linear and can be written as

D,.F,.. ~ 0

D,(c,V) ~ D,(7,%) =0
D%¢, ~ 0 (2.61)

12



To find solutions we propose the ansatz

A, = U0,U

AL = U(MA fby —bo f MU

Vo = KfboU

Vo = UbyfK

Ria = Vo =1ta=0.=0 (2.62)

In components one writes

(Am)y = UyOmUn

(A = Uy { M3, fij (ba)jr = (ba)ri fis M\ } Uiy

(Ya)u = Kifij (ba)jr Unu

(Vo) = U3 (ba)ri fis K; (2.63)

with A\ = 1,...N +2k, u = 1,...N, i = 1,... k. The matrices M{, K;, K; are

made of Grassmanian numbers and®
DNy = 050" AP = 8 pe (2.64)

with 9% = %Erﬁ“@n. To evaluate the Dirac equations on the fermion we should

evaluate the action of the covariant derivative on the fermions. To this aim we use
the writing of the identity 1 = UU + A f A in order to translate derivatives on U

into derivatives on A’s. First we notice that
DU =UU+AfAU+UA,=-Afd,AU (2.65)
and similarly
D, U=-Ud,AfA (2.66)
Using these equations one finds
DAY = U {MA0* fby — M? fbuA fO“A — O*A fAM? fb,
—bo O* fMA+ N fFAb fMA by fMAAFOALU
D)y = K(0%fby — fboa A fOAYU
D)y = U (b 8°*f — %A fADy f)K (2.67)

®Here we use 0y, a4 Oppp = 2€ap €45 o O’ZB = 245 52:‘ .
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The first two terms in each line cancel between each other in virtue of the identities
(2.64) and

9% f = = fOCAY f=— fAN* f b AY = A% p° (2.68)
that follows from (2.64) and the bosonic ADHM constraint in (2.69). The cancela-
tion of the last terms in the first two lines requires the fermionic ADHM constraints

AM+MA=0 (2.69)

In components, writing

A

Wy icy o,
Ayai— , MA . = U] 2.70
Y ( Gio,ja + Taadij ) » ( Mg, ) .

the fermionc constraints (2.69) reduce to
M(f = M;‘ ﬂAwd - ’lIJdMA + [MaA, aad] =0 (271)

Summarizing, the moduli space of instantons in a supersymmetric gauge theory is
characterised by the following zero modes:
Vector : (Gacijs Waui, W i) D¢ = wrw — in;,,[am, an] =0
dim MERNE = 4k? + 4kN — 3k* — k? = 4kN
Adj. fermions :  (pgy, il ML) M = twg — wap® + MY ags] = 0
dim MY = (# of Adj ferm.) x (2kN + 2k* — 2k = 2kN)
Fund matter : ~ K;  dim DN ™ = (# of Fund. ferm.) x (k) (2.72)

withi=1,...k, u=1,... N. We notice that the components of matrices a,s and

M2 proportional to the identity,
Ay = To,m ﬂkxk+ M(f:eéa ﬂk;xk"_ (273)

do not enter on the ADHM constraints. They are exact zero modes of the instanton
action parametrising the position of the instanton in the superspace-time. They can
be reabsorbed in a shift of the space-time supercoordinates (x,,, 0%)

Finally the asymptotic behaviour or various fields at infinity can be found from

the asymptotics®

Az(@d f‘m) U%(_a:ji_wd) fij%% (2.74)

6We use that 5'(@7;‘; Tpyap = Omn 52‘

14



leading to

T 2z, _ 1 _
A, =~ ﬁwxanw—?ww anzﬂwxamnxw

1 IR 1 . -
Vo R ——Taa KW @Z)a%—gx o We IKC (2.75)
Appendix 2A: Dirac matrices
Here we collect our conventions for Dirac matrices. We define
o, = (i7,1) =0 = (=i, 1) (2.76)
with
n=0G) ©==0G%) 7m=02 (2.77)
We introduce the tensors
O = i(am On — On Om) T = %((nn Op — Op Om) (2.78)
satisfying the (anti)self duality conditions
Omn = % Emnpg O Ton, = —% [—— (2.79)
The t"Hooft symbols are defined as
Mo = —itT (TmnT") Nab = €abe Nina = Ome
Mo =~ (TnT°) Tap = €abe Nim = Ome (2.80)
We write 9
— n _ 1 ad
Lag = TnO 44 &m = am—m = §<O'n) 8n (281)
The following identities will be used along the text
Tom Oy = Omn 05 (2.82)
a0y = 20505 (2.83)
Onad Oppgi = 2€ap€sp o 555 = 2¢ ¢ (2.84)
where €15 = —¢'? = 1 and by by T{;,,) we denoted the symmetric part of a tensor.
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3 Instantons in supersymmetric gauge theories

In this section we describe the moduli space of instantons in supersymmetric gauge

theories.

3.1 Supersymmetric gauge theories

Supersymmetric theories are theories symmetric under the action of fermonic gen-
erators exchanging bosonic and fermionic degrees of freedom. In a supersymmet-
ric theory, states organise in supermultiplets with equal number of bosonic and
fermionic degrees of freedom related to each other by the action of supersymme-
try. In the case of a gauge theory with A/ = 1 supersymmetry there are two basic

multiplets:

Vector multiplet 'V = (A4, Ay, A, D) ag;
Chiralmultiplet ~ C = (¢, Ya, F)rep (3.85)

It is convenient to pack them in the so called Vector V' and Chiral ® superfields
V. = 00”0 A,(x) —i000 A(z) + i060A(z) + 20060 D(x)

D = ¢(y)+V200(y) + 00F(y) Yyt = x“. — ifo"0 (3.86)

= $(x) + V20U (x) + 00F (z) + i 000, — % 00 O, (2)0™0 + L 6066 01 ¢

The variation of a superfield under supersymmetry is defined by

§ = €*Qq + 4 Q° (3.87)
with
Ou="2 _igmpin, =2 _ig.oman (3.88)
«= 3pa 10, m —aéd 1040,;€ m .

The resulting supersymmetry transformations are

§A, = —il\G,e+ieo,A

ON = —oc"™el,,,+ieD

A = "™ F,,, —ieD

6D = —e0™0puA — 0, Ao"™e (3.89)

16



for the vector and

0¢p = V2eq
o = iV20"EDP+ V2eF
OF = iV2E5™ ) (3.90)

for the chiral multiplets. The general N” = 1 supersymmetric gauge theory can be

written as
L =tr /d29d2§ K(®,¢" @)+ tr (/ 4?0 (1= WW, + W(®)] + h.c.) (3.91)

with K (®,e" ®) areal function, the Kahler potential, W (®) a holomorphic function,

the superpotential,
0 | Arw

T=—-+1 3.92
2r g3y (3:92)
is the complexified gauge coupling and
W, = —%LDD D,V = Ao(y) + (iD6P — E,,,, ™) 05 +i60%07, 0, A"
W Wale2 = %FWF‘“’ + ieupr“”F"p — D* + 2iAc™0,, A (3.93)

When not say explicitly we will restrict to the simplest choice of Kahler potential
K(®,e" @) =trg de" @ (3.94)

corresponding to the case where the scalar manifold is flat.
Theories with extended supersymmetry can be seen as special case of N' = 1
supersymmetric theories where vector and chiral multiplets combined into bigger

multiplets entering in the action in a symmetric fashion

N=2: Vyzs = (V4 C)aqg; H = (C+ C)rep

N=4: Vzs = (V +3C)aq; (3.95)
The form of the Kahler potential and the superpotential is restricted by the extra
supersymmetry. For example in the case of pure NV = 2 supersymmetry, the action

can be written in terms of a single holomorphic function F(®) and is given by (3.91)
with

7(®) = K(®,®) = ilm tr aqj %@ W(®) =0 (3.96)

02
In the case of N = 4 the complete action is fixed and is given again by (3.91) with

K(®,,e" ®,) ZtrAdJCI) V0,  W(D,) = trag; P[Py, Py (3.97)

17



3.2 Supersymmetry in the instanton moduli space

The space-time supersymmetry induces a supersymmetry on the instanton moduli

space. In particular a symmetry under
QA, = a0 Ay + ... (3.98)

implies that the moduli matrices A and M describing the zero modes of vector and

gaugino fields

Omod Mg = My = €aa M3 (3.99)
We will write
Omodd = M (3.100)
Acting on U one finds
bmodlU = (UU + A fA) 6moaU = Ua — A f MU (3.101)
with o = U 6moqU. We notice that the a-dependent term in the right hand side is
a gauge transformation §,U = —Ua. So if we define
@ = dmod + da (3.102)

with o a gauge transformation with parameter o, we find the supersymmetry trans-
formation rule

QU =—-AfMU (3.103)

Similarly
QU=-UMFfA (3.104)

Acting on the gaugino one finds

QA = QUAU+UdQU)=-UMfAdU —Ud(A f MU)
= UMfdA —dAfM)U =A (3.105)

reproducing the right space-time supersymmetry transformations.

4 N =1 Superpotentials

4.1 SQCD with Ny = N —1 flavors

In this section we consider a N' =1 U(N) gauge theory with N chiral superfields

Q¢ and Ny superfields Q in the fundamental and antifundamental representations

18



respectively. In the background of the instanton the effective action is given by the

moduli space integral
Sog = qu AFB / At e~ Sinstr, (M) — / d*zo d?0, W (Q, Q) (4.106)
k

with
Q = o(z0) + O (o) + . .. (4.107)

the quark and antiquark superfields in the moduli space,

_ A8
W(p) = A / A9 ¢~ Sims (M) — g (4.108)

the superpotential and

dM = d*z d20, AN (4.109)

The factor A*? is included in order to make the action dimensionless. Since bosons
have length dimension one and fermions half, k(5 is nothing but the number of

bosons np minus half the number of fermions npg,
kB =npg—inp=4kN — 12k N +2kNy) =k (3N — Ny) (4.110)
We notice also that

ﬁ = 3cAdj - ZCR CAdj = N Cfund — % (4111)
R
is also the one-loop beta function coefficient of the gauge theory. Indeed one can
write
g

gty = ¢F AFP with  7g =7+ oy In A (4.112)
i

so A can be interpreted as the dynamically generated scale of the theory and 7.¢ as
the running gauge coupling at scale A.

At the instanton background with zero vevs one finds Siygt, (9t) = 0. In order
to soak the fermionic zero mode integrals we have to turn on a vev for ¢ in @
and brings down Yukawa term interactions from the action. Since Yukawa terms
combine an Adjoint and a fundamental zero mode, a non-trivial result is found only
if the number of adjoint and fundamental fermionic zero modes match besides the

two extra 6’s, i.e.
nadj — Neana = 2k (N = Ny) =2 = N;=N-1 , k=1 (4.113)
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The instanton measure becomes
AN = 5(D)S(A\s) d*Nw AN pd¥ AN K (4.114)

Finally let us evaluate Sins, (91). We first notice that ,once evaluated at the
solutions of the equations of motion, the YM action is a total derivative. Schemat-

ically
Soar@) = [@0Q Qlpt . = [ (D +vAGE )
— /d4x [0™(& Do) + (—D*0 + v N)g + ... ] (4.115)

We can compute then Siyg, (91) by using the asymptotic expansion of the instanton

solution. From (2.75) one finds

1 L.
—Kne (4.116)

PAmAmp ~ — pwe W @ P Ao @~
xXr xXr

with similar expressions for tilted fields. Notice that both contributions are quadratic
in the instanton moduli, so the integrals become Gaussian. To simplify further the

computation we take the vev matrix ¢, ¢ in the diagonal form:
Po = Ps 0y Ps = Ps 05 (4.117)

with u = 1,...N, s = 1,... N — 1. For this choice, the zero modes puy, iy ap-
pear only on §(\;) and can be solved in favour of the others. The integral over

Ks, I@s, s, Wss, lead to the determinant

N-1 _ =
s Ps 1
W ~ | | —— = 4.118

() 1 [ps[?os|? detm ( )

with

Mgy = PoPus’ (4.119)
the Meson matrix. The remaining integrals are ¢-independent, so they give a
numerical factor. Collecting all pieces one finds
2N+1

detM (z,0) (4.120)

Seff = c/d4xd29

with ¢ a constant and M the super field version of the meson matrix m.
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5 The N =2 prepotential

In this section we will compute the instanton corrections to the prepotential of
N = 2 theories. The instanton corrections to the prepotential are given by the

moduli space integral

Ser = Y _q" / ANy, e5mea(®) = / d*2d* 0 Foon—pert (P) (5.121)

with
-Fnonfpert(a/u) - qu /dﬁkesmc’d(au) (5122)

Here we denote by ¢ = A% €2™7 with A? compensating for the length dimension of
instanton moduli space measure. The matrix of gauge couplings is defined as
0P F

= 12
Tuv da,0a, (5.123)

5.1 The idea of localization

Theorem of Localization:

e Let g = U(1) a group action on a manifold M of complex dimension ¢ specified
by the vector field & = £¥(z)-2

8xi Y

Sex' = E'(x) (5.124)
with isolated fixed points x§, i.e. points where £'(zf) = 0 Vi.
e Let Q¢ an equivariant derivative,
Qe =d +ig (5.125)
with d the exterior derivative and
iedr' = Sea’ ig(dz’ A da?) = dea’ da? — da' ! (5.126)
a contraction with &.

e Let o an equivariantly closed form, i.e. a form satisfying

Qea=0 (5.127)
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Then, the integral of alpha is given by the localisation formula

/ o)t Z _Co(z5) (5.128)
M det2Q€ (x5)
with «aq the zero-form part of a. We notice that

Qf = dig +igd = 0¢ (5.129)

and therefore Q%7 = 9,/ can be viewed as the map Q? : Ty, M — Ty, M induced
by the action of the vector field &.
Example: Gaussian integral via U(1) localization on R?. Let us consider the

integral
I= / e~ @) drdy (5.130)
]RQ

We first notice that R? admit the action of the rotation group induced by the vector

field
0 0 0 —e
foc (xa_y _ _81:) - Q= ( . ) (5.131)

This action has only the origin z = y = 0 as a fixed point. An equivariantly closed

form is given by

a = e~ @) drdy — 2—6 a(#*+y?) (5.132)
a
Using the Localization formula one finds
—a(z3+y3)
1:/ a=r" — T (5.133)
R2 2ae a

with x¢ = yo = 0 the critical point. Notice that the right hand side does not depend

on € as expected.

5.2 The equivariant charge

For N' = 2 gauge theories if we identify the R-symmetry index A with ¢, the
supersymmetry parameter ;4 become a scalar ez = Eega. The supersymmetry
variation relate then fields with the same quantum numbers. This identification is
known as a topological twist since the resulting supersymmetry variation satisfies
52 = 0, defining a BRS charge. By construction the moduli space action is a -
variation of something, so the resulting theory in the moduli space is topological.

The action of the BRS charge can be written in general as

QP=T QU =0Q*P=0 (5.134)
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The list of multiplets (®, V), transformation properties, and the eigenvalues A\ for
gauge and matter moduli are displayed in table 5.2. The second and third columns
display the multiplets and the spin statistics of their lowest component. The fourth

and fifth columns display the transformation properties under the symmetry groups.

(®,¥) (—)f | Rg | SU(2)? Ao
Gauge | (aas; Mag) + kk (2,2) Xij + €1,Xij + €2
(Aci D) - | kk | (1,3) Xig e X
(X, M) + kk | (1,1) X5
(wa; fa) + kN | (1,2) Xi —au+%e
(Wa; fla) + kN | (1,2) Gy — Xi + 3€
Adjoint | (M2;h%) - kk (2,1) | xij+er—mxij+€e—m
(Xaas Aaa) + kk (1,2) Xij =M, Xij T€—m
(tta; ha) — kN, | (1,1) Xi—%%—%e—m
(fia; ha) — kN, | (1,1) au—xi—l—%e—m
Fund (K; h) - kN; | (1,1) Xi — My
Anti-F (K; h) — N:;k | (1,1) my — Xi

Table 1: Instanton moduli space for N = 2 gauge theories.

We introduce the auxiliary fields Y, A, h, he . h® to account for the extra degrees
of freedom in A4, K, K, M? and p® respectively. Here a = 3,4. The sign indicates
the spin statistics of the given field. In particular, multiplets with negative signs are
associated to constraints subtracting degrees of freedom. We notice that for Ny =
2N or N = 4 we have the same number of bosonic and fermionic supermultiplets
as expected for a conformal theory.

To evaluate the integral over the instanton moduli space with the help of the
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localisation formula we should first find a BRS equivariant charge Q)¢ = 0 +i¢. For

N = 2 gauge theories the instanton moduli space is invariant under the symmetry
G =U(k) x U(N) x SO(4) x U(Ny) x U(Ny) (5.135)

We parametrize the Cartan of this group by the parameters
(Xis Qu, €0, mp,my)  i=1,...k,u=1,...N, (=12, f=1,...N; (5.136)

and the masses (mys,my) and M for the case of (anti)fundamental and adjoint
matter respectively. The action of the equivariant BRS charge on the moduli space

can then be written generically as
Qe =V QP =0D=Xs® (5.137)

with ® a complex field that can be either a boson in the case of a multiplet containing
a physical field or a fermion for multiplets involving auxiliary fields. The list of
multiplets (®, V) and their eigenvalues Ag are displayed in table 5.2. We use the

shorthand notation € = ¢; + €5.

5.3 The instanton partition function and the prepotential

We will regularize the volume factor by introducing some ¢; o-deformations of the
four-dimensional geometry and recover the flat space result from the limit €; o — 0.

More precisely we will find

Fron—pert @y, q) = — lim0 €162 In Z(€g, ay, q) (5.138)
€Ep—
with
Z=> "%  Z= / AN, moa(@usee) (5.139)

The factor €€ in (5.138) takes care of the volume factor [ d*zd*0 ~ ——

6162
The k-instanton partition function Z; is given by the moduli space integral

dxi
Z = d‘)ﬁ —Smod )\ = 1 —/ L gauge matter
* / ke /Vol U(k H k! H i %k Pk

(5.140)

dxi
VolU ~ /H i HXU (5.141)
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Using the eigenvalues in Tab. 5.2, one finds

l—éij

Z]%auge — (_1)/€ H( Xij (XJ ) H A , A _
i Xij +€1)(Xij + €2) i (Xi — @u+ 5)(=Xi + au + )

Adjoint (xij + €1 —m)(Xij + €2 —m) ; ]
z = i— Oy + 5 —m)(—=Xita,+5—m
k 1;[ (Xij_m)(Xij+€_m> H(X 2 )( X 2 )

A = JJ0u—my)
Z‘?f

zznti—fund — H(_X%+mf) (5142)
i, f

7,

with € = €¢; + 5. The integral over y; has to be thought of as a multiple contour

integral around M-independent poles with
Ime; >> Imey >> Ima, >0 (5.143)

Poles are in one-to-one correspondence of N-sets of two-dimensional Young Tableaux
Y = {Y,} with total number of k boxes. Given Y, the eigenvalues x; can be written
as

XD = X1, = au+ (e = $ea + (Ju— e (5.144)

with I, J, running over the rows and columns of the u'" tableaux Y,,. The partition

function can then be written as

Zy= > Zy (5.145)
Yik=|Y]|
with
Zy = Res,_ v 280 mater = TIAGY (5.146)
P

5.4 Examples
5.4.1 U(1) plus adjoint matter: k=1,2

From (5.140) and (5.142) one finds

7 = (m+61)(m+€2)
e €1€9 ’
- (m+€)(m+ e)(m + €2 — €1)(m + 2¢;) (5.147)
Dj B Y

2e265 (€3 — €1)
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which lead to the non-perturbative prepotential
1 3
Fn.p. = —61122206162 [q ZD + q (ZD:‘ —+ ZH — §Z12:‘>i| = —qm2 — 5(]2 m2 + ..
(5.148)
5.4.2 Example: Pure SU(2) gauge theory: k=1,2

For pure SU(2) gauge theory we take T,, = T, ! = T,. For the first few tableaux

a

one finds

T(O,8) = Th+To+T 9, + 11115,

T, T 5,
T(e) = TiA T+ T+ + Toou+ Tl Too + T T 10 + T2
1 1
T(D, D) == 2T1 + 2T2 + T1T2a + T2T2a + TlT,Qa -+ TQT,QG (5149)

with similar expressions for T(e,J),T(e,[1T1) obtained from the first two lines re-
placing a — —a , for T(H, e) obtained from the second line exchanging €; <> €
and T(Q,H) obtained from the second line after replacing a — —a and €; <> €

simultaneously. For the partition functions one finds

1

Z(e) = —
() 2a €169(2a + €1 + €3)
, B 1
e = 4@6%62(62 — 61)(2& + €1 + 62)(201 + 261 + 62)(261 + 61)
p B 1
09 7 G- )i -3
(5.150)
leading to the prepotential
. 2 2
Fop = — eljin @162 ¢ 2y + 4 (Ze + Z(H) — 320
g  5¢
= — 4+ =+ ... 5.151
2a? + 64 ab i ( )

6 Seiberg-Witten curves

For simplicity we take pure N' =2 SYM with gauge group SU(N). We write

k
“Ya S [T e -3 [T15 et s
k i=1
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with

conge Xi; iy e
K :ELM+QM+QHPM P(xi — %)
and v
P(z) =[Pz —au+5)
u=1

In the limit ¢, — 0 one finds

Xij(Xij + €)
Hk(Xz) = €169 [Z ln( Xl] +j€1 JXU +€2 ) ZIHP Xl (

1
[—e%e% Z X_2 — 26169 Z In P(x;) + kerea In q]

ij v

Q

Introducing the density function
T) = €169 Zé(w - Xi)

one can rewrite (6.155) as

Hi(p) = —/dmdz% — 2/dzp(z) In P(z) +1nq/dzp(z)

The Saddle point equation becomes

dp(x) (z — 2)?

Defining

y(x) = exp {—/]Rdz( plz) — —lnP(x—l—iO_)]

x—z+107)

The saddle point equation can be written as

N
y(@)? =g rel s,
u=1

N
d%k@:_z/dz PE) o P@) tg=0  ac U
R

(6.153)

(6.154)

—5)+klng

(6.155)

(6.156)

(6.157)

(6.158)

(6.159)

(6.160)

with boundary condition lim,_, y(z) = 2=". A solution can be written as

y(@) = 4 (Py(e) — Py (e — 4q)
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that satisfy the saddle point equation in the intervals

Su = [ay, 0] Py —4q =[x - a,)(@—af) (6.162)

u=1

Here Py(x) is a polynomial of order N that we will be write as

=
&

I
—=

(x —ey) (6.163)

We notice that y(z) is solution of the quadratic equation
y(x)® = Py(z)y(x) + =0 (6.164)

that is called Seiberg- Witten equaltion. We notice that using the definition (6.159),

one can identify a, with the period integrals

1
= — 1
=5 g z () (6.165)
with
Py (x) Py (x)  2qPy(z)
ANz) = —dz 0, Iny(z) = N dr = + ... 6.166
(z) y(@) Pyn(x)? —4q Py (z) P(z) ( )
leading to
B x P} (x)
a, = e, + 2qRes,—, (2]’ + ... (6.167)

These relations can be inverted to find e, in terms of a,. To leading order

zP'(z)
P(a)?

ew = Gy — 2qResy—q, + ... (6.168)

Similarly one can compute chiral correlators

N

(tr d7) = Z/x Az Z (e —2qResx:eu%+...> (6.169)

In particular the prepotential F can be found from the relation

(tr ®?) = 2¢— (6.170)
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Example: pure SU(2) gauge theory

We take
Pn(z) = 2% — ¢?
leading to
1 2q 6¢° q 15¢°
=Res,_c2 Py | —+—+—=—+...] =6 — — —
a €Sy—el N(PN+P]%/+P]Z[+ ) €= o3 64e7+
Inverting this relation one finds
B q . 3¢
e—a—|—4a3 +64a7+"
One the other hand for the chiral correlator one finds
2 2 2 q 5¢° 2 2
(tr@ > = 2e” =2a +§+ 16 b +...=2a +2]:1q+4]:2q + ...
leading to
q . 5¢°
Ens = 5 9 Py
v 902 Tt Gl

in agreement with (5.151).
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