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1 Introduction to Supergravity

Why supersymmetry? Supersymmetry is a symmetry which relates fermionic and bosonic
particles. There are general phenomenological arguments in favor of the idea that su-
persymmetry is actually an underlying symmetry of Nature. The presence of this sym-
metry makes field theories better behaved in the ultraviolet (UV) by virtue of the can-
cellation of fermionic and bosonic contributions (which have different signs) to divergent
loop integrals. As a consequence of this UV divergences are less severe. This solves an
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important problem with the Standard Model of fundamental interactions (SM), namely
the hierarchy problem (see for instance [1]): There is a huge hierarchy between the scale
of the weak interaction (about 100 GeV) and that of gravity (the reduced Planck scale
MP =

√
~c/(8π GN) ≈ 2.4× 1018GeV/c2). If we assume there is no new physics occurring

between the two, we would then expect the SM to hold at energies up to MP . Quantum cor-
rections to the Higgs mass, however, contribute quadratic terms in the energy scale (energy
cut-off). These terms of order M2

P , unless an unnatural fine-tuning of the SM parameters is
made, would push the value of the Higgs mass up to MP , in contrast with the experimental
value of mH ≈ 125GeV/c2. Assuming supersymmetry, on the other hand, would require
the existence in the theory, for each particle, of a super-partner obeying the opposite statis-
tics. The contributions of these new particles have the effect of cancelling the quadratic
divergences in the quantum corrections to the Higgs mass, leaving just the logarithmic ones.

Besides stabilizing the Higgs mass, and thus its ratio to MP , against quantum correc-
tions, the presence of an underlying supersymmetry also has the beneficial effect of uni-
fying the coupling constants at some higher energy scale: The coupling constants of the
weak, electromagnetic and strong interactions, if extrapolated to high energies through their
renormalization-group evolution, meet at an energy scale of about 2×1016GeV , thus hinting
towards a Grand Unified Theory (GUT) of the fundamental interactions.

Supersymmetry also has a more theoretical appeal, since it unifies space-time with internal
symmetries (for a general introduction to supersymmetry see for instance [2]). The group
SG containing supersymmetry transformations indeed generalizes the Poincaré group GP

in that its generators comprise, aside from those of the Lorentz transformations Jab and
space-time translations Pa, also fermionic generators Q (the supersymmetry generators) and
generators Bi of an internal (compact) symmetry group Gi. The corresponding algebra
of infinitesimal generators is therefore called super-Poincaré algebra. The supersymmetry
generators Q belong to the spin-1/2 representation of the Lorentz group (the (1

2
, 0) + (0, 1

2
)

of SL(2,C)) as well as to a representation of the internal compact group. Transforming non-
trivially under both GP and Gi, the fermionic generators Q allow for a non-trivial interplay
between space-time and internal symmetries. Moreover, having a spin quantum number, the
action of Q on a states varies by 1/2 its spin, so that:

Q|boson〉 = |fermion〉 ; Q|fermion〉 = |boson〉 . (1.1)

If we require SG to be a symmetry of a local quantum field theory, consistency implies that
the super-Poincaré algebra must be defined in terms of commutators [·, ·] between bosonic
generators B ( i.e. Jab, Pa and Bi) and bosonic generators, or bosonic and fermionic genera-
tors F (in our case the Qs), and anti-commutators {·, ·} between two fermionic generators.
Symbolically:

[B, B] = B ; [B, F ] = F , {F, F} = B . (1.2)

A Lie algebra containing fermionic generators obeying anti-commutation relations is called
graded Lie algebra. In the super-Poincaré algebra the anti-commutator of two Qs yields the
momentum operator P plus internal symmetry operators Z which are central charges of the
superalgebra:

{Q, Q} ∝ P + Z . (1.3)
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This implies that, modulo internal transformations Z, the combination of two subsequent
supersymmetry transformations amounts to a space-time translation. Moreover Q commutes
with P , and thus with the mass operator m2 = P 2/c2. As a consequence of this, irreducible
representations of SG (supermultiplets), comprise one-particle states with the same mass
but different spins. This is certainly a desirable feature if we ultimately aim at unifying all
fundamental forces of Nature together and with matter. Indeed the gravitational force is
mediated by the spin-2 graviton while the other interactions by spin-1 vector bosons and
matter is made of spin-1/2 particles.

Supergravity. Here we come to gravity. The symmetry principle underlying Einstein’s
theory of gravity is its invariance under general coordinate transformations, which can be
thought of as local space-time transformations generated by Pa. In a supersymmetric the-
ory of gravity, called supergravity, such an invariance, by virtue of eq. (1.3), would be a
consequence of a more fundamental symmetry principle: invariance of the theory under
space-time dependent supersymmetry transformations (local supersymmetry). In supergrav-
ity1 the gravitational field, described by Einstein’s general theory of relativity, is coupled
to its super-partners and possibly to other supermultiplets containing states with at most
spin-1 (matter multiplets).

All theories describing, in a consistent way, the fundamental interactions and their cou-
pling to matter are based on the gauge principle: the invariance under local (i.e. space-time
dependent) transformations of some symmetry group (gauge group). This local symmetry
is achieved only if matter is coupled to bosonic gauge fields (i.e. 1-forms) associated with
(gauging) each infinitesimal generator (gauge generator) of the gauge group and transforming
under the local group transformations in a suitable way (i.e. as gauge connections). These
bosonic particles are the mediators of an interaction. Quantum-electrodynamics (QED),
describing the coupling of matter to the electromagnetic field, is a gauge theory with gauge
group U(1). Weak and electromagnetic interactions are unified in the SM and described by a
local SU(2)× U(1) gauge group. The four gauge generators are in correspondence with the
four mediating vector bosons: the W±, Z0 bosons and the photon γ0. Strong interactions are
described by an SU(3)-gauge-theory (QCD), the eight gluons being in correspondence with
the SU(3) infinitesimal generators. Similarly Einstein’s gravity can be viewed as the “gauge
theory” of the Poincaré group and the graviton as the gauge boson associated with the local
translation generators Pa. The quotes above indicate an important difference between the
SM and general relativity: In the former the gauge group in an internal symmetry, namely
acts on internal degrees of freedom, while in the latter the “gauge group” describes exter-
nal, i.e. space-time, symmetries. While there is no dynamics along the internal directions,
there is dynamics along the external ones: The dependence of the fields on the space-time
coordinates is not the result of some (unphysical) gauge transformation, but is dictated by
the field equations.

Finally supergravity can be viewed as the gauge theory of the super-Poincaré group,
where the fermionic generators Q are gauged by the superpartner of the graviton, which is

1Good references for supergravity are [3, 5, 6].
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a spin-3/2 particle Ψ called the gravitino. This field has a vector index (being a 1-form),
corresponding to a spin-1 representation of the Lorentz group (the (1

2
, 1
2
)), and a spinor

index, corresponding to the spinor components of Q and its spin is defined by the irreducible
3/2-representation in the product 1× 1/2 of the corresponding two spin-representations.

Supersymmetric theories differ in the amount of supersymmetry, namely in the number
N of the supersymmetry generators Q, and in the field content which should correspond to
multiplets of SG. N supersymmetry generators define an N - extended supersymmetry. The
larger N , the stronger the constraints on the interactions, the larger the maximum spin smax
of the fields in the supermultiplets. In general the least value of the maximum spin in the su-
permultiplets is related to N : in four space-time dimensions we have smax ≥ N /4. Theories
which are only invariant under global super-Poincaré transformations (rigid supersymmetry),
do not contain gravity and are thus defined on flat space-time. Renormalizability requires
their fields not to have spin greater than 1, and thus N ≤ 4. The N = 4 case is unique and
describes a supersymmetric extension of the Yang-Mills theory (super-YM theory). Its high
amount of supersymmetry makes it perturbatively finite.

As a theory of gravity, also supergravity is non-renormalizable. This follows from a
simple power-counting argument: the coupling constant of gravity is Newton’s constant
GN which has dimension of length2 (in units ~ = c = 1). The limit on the amount N of
supersymmetry in supergravity comes from the possibility of a consistent coupling to gravity,
which restricts the maximum spin of the fields to be 2, thus implyingN ≤ 8. Supersymmetry
however improves the UV properties of the theory, making it finite up to two loops2(pure
Einstein’s gravity is only one-loop finite [7, 8] and this property is spoiled by the presence
of matter). The maximal N = 8 supergravity, just as the rigid N = 4 super-YM theory, is
unique (supersymmetry fixes its field content to be that of the supermultiplet containing the
graviton as the maximum spin state). Though its perturbative finiteness has been tested, so
far, up to four loops [9], some believe the maximal theory to be perturbatively finite just as
its rigid N = 4 counterpart.

Supergravity as an effective theory and dualities. Supergravity theories are defined
also in D > 4 space-time dimensions. Of particular relevance are the theories in D = 10 and
D = 11, since they describe the low-energy dynamics of superstring theory and M-theory,
on flat space-time, respectively. Lower dimensional supergravities describe superstring/M-
theories compactified on some internal compact manifold. Since the fundamental objects of
superstring theories are not point-like particles, but oscillating strings, there is a natural cut-
off given by the tension of these objects, which regularizes the loop integrals, thus making
these theories perturbatively finite.

Even if infinite, at the perturbative level, supergravity models would make sense as ef-
fective “macroscopic” realizations of the more fundamental “microscopic” superstring/M-
theories.

This microscopic description is however not unique. There are five kinds of superstring

2Here we refer to ungauged four-dimensional supergravities, namely theories in which the vector fields
are not minimally coupled to other fields.

5



theories (Type IIA, Type IIB, two kinds of Heterotic string theories and Type I ) in D = 10
and there is M-theory in D = 11, whose fundamental degrees of freedom are, as yet, not
known. The discovery in the 90’s of dualities has simplified the picture considerably: There
exists an equivalence between the different superstring theories or M-theory realized on var-
ious backgrounds. This allows to think of these theories as different descriptions of the same
microscopic degrees of freedom. Such correspondences, or dualities, between different re-
alizations of superstring/M-theories, which can be either perturbative or non-perturbative,
manifest themselves, at the level of the low-energy supergravity description, as global sym-
metries of the equations of motion (on-shell symmetries). For this reason the study of global
symmetries of supergravity models and of their action on the corresponding solutions, plays
an important role in understanding the non-perturbative aspects of superstring theories.

Finally the fruitful AdS/CFT conjecture, that is the conjectured equivalence between
superstring theory realized on an anti-de Sitter space-time and the conformal field theory
on its boundary at infinity, made supergravity (on anti-de Sitter space) a valuable tool for
investigating non-perturbative properties of gauge theories. We shall not touch upon this
issue here.

Black holes in supergravity. As a theory of gravity, supergravity has black hole solu-
tions3. In general relativity it is known that in order for a static, asymptotically flat charged
black hole solution (described by the Reissner-Nordström solution) not to be singular, that
is for its spatial singularity to be hidden inside an event horizon, its mass M , electric and
magnetic charges q, p should satisfy a regularity bound (here and in the following we set
8πGN = c = ~ = 1):

M2 ≥ p2 + q2

2
, (1.4)

In general relativity there is a cosmic censor conjecture [13] according to which the above
condition is satisfied by all black hole solutions in Nature, that is our Universe is clear of
naked singularities which would make it unpredictable. There is so far no definite proof of
this conjecture.

Things change in the presence of supersymmetry [14]. As solutions to a supersymmetric
theory, supergravity black holes must belong to massive representations of the super-Poincaré
algebra. If computed on a black hole background, the central charges Z of the super-Poincaré
algebra, on the right hand side of eq. (1.3), have a non-vanishing value which depends on
the electric and magnetic charges. In fact they are topological quantities associated with the
solution. In an N -extended theory the central charges are entries of an N×N antisymmetric
matrix Zij = −Zji, i, j = 1, . . . ,N . It can be shown that, under the general assumption that
the norm in the Hilbert space of states be positive definite, supersymmetry implies that the
mass M of the solution must be greater that the modulus of all the skew-eigenvalues z` of
Zij [11, 12]:

M ≥ |z`| , ` = 1, . . . ,

[
N
2

]
. (1.5)

3For a review of black hole solutions in supergravity see [10].
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These can be thought of as the supergravity analogue of the Bogomol’nyi - Prasad - Som-
merfield bound for solitonic solutions to gauge theories. On the Reissner-Nordström solution
the above condition implies the regularity bound (1.4). In other words, at least for static so-
lutions, supersymmetry acts as a cosmic censor in that it provides a general principle which
rules out the existence of naked singularities.

If the inequalities (1.5) are not saturated for any `, the solution is non-extremal and
has a non-vanishing Hawking temperature T . By quantum mechanical effects it radiates
(Hawking-evaporation effect) until its mass equals the largest |z|max of the |z`| and the
temperature drops to zero. The resulting solution is called extremal and preserves a fraction
of the N supersymmetries ( at least 1/N ). Supersymmetric black holes are called BPS (i.e.
saturating the Bogomol’nyi - Prasad - Sommerfield bound) and are solutions to a set of
first-order differential equations (the Killing spinor equations) which imply the second-order
field equations. BPS solutions have played an important role in the study of superstring
non-perturbative dualtities since |z`| are duality-invariant quantities and are protected, to a
certain extent, from quantum corrections by supersymmetry.

Supergravity has more general solutions than the simple Reissner-Nordström one, which
feature a non-trivial interplay between the scalar fields of the theory and the vector fields.
They belong to different topological sectors of the theory and, after evaporating, they reach
a lowest mass, zero-temperature extremal state in which M equals a new characteristic
quantity W > |z`|. The remarkable feature of these extremal solutions is that, although
they do not preserve any supersymmetry and thus are non-BPS, they are still described by
a set of first-order differential equations which imply the second order field equations.

Even a collection of the essential topics related to supergravity and its connection to
superstring/M-theories would be far too vast to be covered in a limited series of lectures.
This minicourse will therefore deal with a restricted selection of issues and is organized as
follows.

• Part I: We give a brief introduction to supersymmetry and supergravity;

• Part II: We consider extended supergravity models in four space-time dimensions (i.e.
models with N ≥ 2) and describe their on-shell global symmetry group G. We then
examine the (asymptotically flat) black hole solutions to these models and their prop-
erties with respect to G.

2 Part I: Supersymmetry and Supergravity

2.1 The Super-Poincaré Algebra

Historically it was Haag, Lopuszanski and Sohnius [19] who proved that the largest possible
symmetry group of the S-matrix of a four dimensional relativistic field theory was a super-
group. It was the superconformal group in four dimensions, whose contraction yields the
super-Poincaré group SG to be discussed below. This result overcame a “no-go theorem” by
Coleman and Mandula [20] which stated that such largest symmetry group ought to be the
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direct product of the Poincaré group times an internal symmetry one. Such theorem only
considered ordinary Lie algebras whose structure is defined in terms of commutators only.
The key ingredient of the Haag-Lopuszanski-Sohnius generalization was considering graded
Lie algebras with fermionic generators obeying anti-cummutation rules. It is important to
point out that supersymmetry appeared in the literature earlier in the works by Neveu,
Schwarz and Ramond (1971), Gol’fand and Likhtman [21], Wess and Zumino [22], Volkov
and Akulov [23]. For the notations we refer to Appendix A. The super-Poincaré algebra is
spanned by the Poincaré generators P̂µ, L̂µν , by (compact) internal symmetry generators Br,
and by a set of N fermionic generators, represented by spinor operators Qi, i = 1, . . . ,N ,
satisfying the Majorana condition:

Qi =

(
Qα i

Q̄α̇ i

)
= CQ̄T

i , (2.1)

where Q̄α̇ i = εβ̇α̇ (Qα i)
†. If Gi is the compact group of internal transformations generated

by Bi, Qα i transform in the N -representation of Gi and Q̄α̇ i in the N . The group Gi will
in general be contained inside SU(N )×U(1)k, for some k. The graded-Lie algebra structure
of the super-Poincaré algebra is defined by the following commutation/anti-commutation
relations:

[L̂µν , L̂ρσ] = ηνρ L̂µσ + ηµσ L̂νρ − ηνσ L̂µρ − ηµρ L̂νσ , (2.2)

[L̂µν , P̂ρ] = P̂µ ηνρ − P̂ν ηµρ , (2.3)

[Qα i, L̂µν ] = − i
2

(σµν)α
β Qβ i , (2.4)

[Q̄α̇ i, L̂µν ] = − i
2

(σ̄µν)
α̇
β̇ Q̄

β̇ i , (2.5)

[Q̄α̇ i, P̂µ] = [Qα i, P̂µ] = 0 , (2.6)

[Qα i, Br] = (Br)i
j Qα j , (2.7)

[Q̄α̇ i, Br] = −(Br)j
i Q̄α̇ j , (2.8)

{Qα i, Q̄
β̇ j} = 2 i δji (σµ)α

β̇ P̂µ , (2.9)

{Qα i, Qβ j} = 2 εαβ Zij , (2.10)

{Q̄α̇ i, Q̄β̇ j} = −2 εα̇β̇ Z
ij , (2.11)

[Br, Bs] = frs
t (Bt) ,

[Br, L̂µν ] = [Br, P̂ν ] = 0 , (2.12)

where Zij = (Zij)
∗. The above relations were shown by Haag, Lopuszanski and Sohnius

to define the most general supersymmetry algebra of a relativistic field theory defined on
Minkowski space.

Let us generically denote by TA the graded Lie algebra generators and by [TA, TB} the
anti-commutator if TA, TB are both of fermionic type or the commutator otherwise. The
commutation/anti-commutation relations satisfy consistency conditions given by the graded-
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Jacobi identities :
[TA, [TB, TC}}+ graded cyclic = 0 , (2.13)

where “graded cyclic” are cyclic permutations with a minus sign if two fermionic generators
are interchanged.

On the Hilbert space of states (P̂µ)† = −P̂µ, (L̂µν)† = −L̂µν , B†r = −Br. From the
graded-Jacobi identities it follows that entries of the anti-symmetric matrix Zij = arij Br =
−Zji = Rij + i Iij are central charges of the algebra and thus generate the U(1)k part of Gi.

Exercise 1.:Check from the [Q̄, [Q,Q}} graded-Jacobi identity that Zij has to commute
with Q̄.

We can write the above commutation/anti-commutation relations in terms of the four-
component spinor Qi. In particular we find:

{Qi, Q
T
j } = −2 i δji (γµC) P̂µ + 2 (Rij γ

5 − i Iij)C ,

{Qi, Q̄j} = {Qi, Q
T
j }C = 2 i δji γ

µ P̂µ − 2 (Rij γ
5 − i Iij) = 2 i

(
δji γ

µ P̂µ + Zij
)
,

{Q̄i, Q̄j} = −C{Qi, Q̄j} = −2 i δji (Cγµ) P̂µ + 2C(Rij γ
5 − i Iij) = −2 i δji (Cγµ) P̂µ − 2i CZij ,

[Qi, L̂µν ] = D(Lµν)Qi =
γµν
2
Qi ; [Q̄i, L̂µν ] = −Q̄i

γµν
2
, (2.14)

having defined Zij = i Rij γ
5 + Iij.

Exercise 2.: Derive the above relations from Eq.s (2.2)-(2.11).
Consider two finite supersymmetry transformations:

g1 = e−i ε̄1Q ; g2 = e−i ε̄2Q , (2.15)

where, for the sake of simplicity, we have suppressed the internal index i and ε̄1, ε̄2 are two
parameters of the Q-generators. The combination g−1

1 · g−1
2 · g1 · g2 must belong to the group.

If we expand this operator in powers of the parameters, we find:

g−1
1 · g−1

2 · g1 · g2 = 1 + T + higher order terms . (2.16)

The lowest order term is T ∝ [ε̄1Q, ε̄2Q], which should belong to the super-Poincaré algebra:

[ε̄1Q, ε̄2Q] ∈ super-Poincaré algebra . (2.17)

However Eq. (2.10) tells us that the anti-commutator of two Q’s should belong to the
algebra. The only way to reconcile these two properties is to assume the parameters of the
fermionic generators in the graded-algebra to be Grassmannian numbers, namely 4-spinors.
Moreover we also require ε1, ε2 to be Majorana, so that:

[ε̄1Q, ε̄2Q] = [ε̄1Q, Q̄ ε2] = ε̄1{Q, Q̄}ε2 ∈ super-Poincaré algebra . (2.18)

The conditions that both Q and its parameter ε be described by Majorana spinors (ε = Cε̄T )
derives from the requirement that the infinitesimal supersymmetry transformation −i ε̄Q be
an anti-hermitian operator on the space of states.

(−i ε̄Q)† = i (ε̄Q)† = i ε̄Q , (2.19)
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where we have used the property (see Appendix A) that, if χ, λ are both Majorana spinors,
χ̄λ is real. Being Q an operator, this property implies that ε̄Q is hermitian. The reason we
require an infinitesimal transformation T = εA TA to be anti-hermitian is in order for the
corresponding variation of an observable operator (hermitian) be still hermitian:

δÔ = [Ô, T ] ⇔ δÔ† = −[Ô†, T †] = [Ô, T ] = δÔ , (2.20)

having assumed T † = −T and being Ô† = Ô.
We can define the local correspondence between the super-Poincaré algebra sg and the

corresponding group SG through the following exponential map

λµν

2
L̂µν + xµ0 P̂µ − i θ̄ Q ∈ sg → U(λ, x0, θ) = e

λµν

2
L̂µν ex

µ
0 P̂µ−i θ̄ Q ∈ SG . (2.21)

Consider now the effect of an infinitesimal supersymmetry transformation of a field operator
Φ̂(x)

Φ̂m(x) −→ Φ̂′m(x′) = ei θ̄ Q Φ̂m(x′) e−i θ̄ Q =
[
O(Λ, x0) · Φ̂

]m
(x′) ≈

≈ Φ̂m(x′)− i
[
θ̄O(Q) · Φ̂

]m
(x′) = Φ̂m(x′) + δΦ̂m(x′) , (2.22)

where
δΦ̂m(x) = −i [Φ̂m(x), θ̄ Q] = −i

[
θ̄O(Q) · Φ̂

]m
(x) , (2.23)

O(Q) being the realization of the supersymmetry generator Q on Φ̂(x) (we shall suppress
its Lorentz index for the sake of notational simplicity). We can compute the effect of two
consecutive infinitesimal supersymmetry transformations on Φ̂(x) parametrized by ε1, ε2. In
particular we can evaluate the following commutator (we are using the passive description
of transformations, see Appendix A):

(δε1δε2 − δε2δε1)Φ̂ = [Φ̂, [ε̄1Q, ε̄2Q]] = 2i ε̄1γ
µ ε̄2 ∂µ Φ̂ = δx0Φ̂ . (2.24)

Exercise 3.: Prove the above equation using the super-Jacobi identities and Eq. (2.18).
Equation (2.24) implies that the commutator of two consecutive infinitesimal supersym-

metry transformations amounts to an infinitesimal translation by a quantity :

xµ0 = 2i ε̄1γ
µ ε̄2 . (2.25)

As it is apparent from the relations (2.2)-(2.12), the super-Poincaré algebra has an auto-
morphism group GR acting non trivially on the internal indices i, j, . . . only:

Qα i → Ui
j Qα i ; Q̄i

α̇ → U−1
j
i Q̄j

α̇ ; Zij → Ui
k Uj

l Zkl ; Zij → U−1
k
i U−1

l
j Zkl ,

(2.26)
where U ∈ GR. GR is named R-symmetry group. An automorphism group is a transformation
on the basis of generators which leaves the structure constants unchanged. As we shall see,
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massless states arrange themselves in irreducible representations of GR. From (2.9) it follows
that GR ⊂ U(N ).

SinceQα i and Q̄i
α̇ transform differently under a U(N ) transformation, the full R-symmetry

group is not manifest in the 4-component Majorana representation of the spinor generators
Qi. The action of GR on a Majorana spinor can be described as follows. Let us write a
generic U(N ) transformation U in the form:

U = exp(A+ i S) , A = −AT , S = ST , (2.27)

A, S being real matrices. From (2.26) it follows that (we suppress the i, j indices)

Qα → U Qα = eA+i S Qα ; Q̄α̇ → U−1T Q̄α̇ = eA−i S Q̄α̇ . (2.28)

The 4-component Majorana spinor Qi transforms under the action of a (2N )× (2N ) matrix
U defined as follows:

Q→ UQ , U = exp(A⊗ 14 − i S ⊗ γ5) =

(
eA+i S 0

0 eA−i S

)
. (2.29)

The matrix U defines the action of the full R-symmetry group GR on Majorana spinors. We
see that only the subgroup of GR generated by A, that is the part contained in SO(N ), is
manifest.

Alternatively we can use the 4-component Weyl representation of spinors and define:

Qi ≡
(
Qα i

0

)
=

1− γ5

2
Qi ; Qi ≡

(
0
Q̄i
α̇

)
=

1 + γ5

2
Qi . (2.30)

The chiral spinors Qi, Qi transform under a U(N )-transformation as Qα i and Q̄i
α̇, respec-

tively. Moreover one can easily verify that:

Qi = Qi + Qi , Qi = (Qi)c = C (Qi)
T
. (2.31)

2.2 Poincaré Superspace

If Φ̂(x) is a scalar field-operator, from Eq.s (A.5) and (A.10) we see that, representing an
element of the Poincaré group, on the Hilbert space of states, as

U(Λ, x0) = U(Λ)U(x0) = e
λµν

2
L̂µν ex

µ
0 P̂µ , (2.32)

we have:

Φ̂(x)
(Λ, x0)−→ Φ̂′(x′) = U(Λ, x0)† Φ̂(x′)U(Λ, x0) = Φ̂(Λ−1 x+ x0) =

[
O(Λ, x0) · Φ̂

]
(x′) . (2.33)

In particular:
Φ̂(x0) = U(x0)†U(Λ)† Φ̂(0)U(Λ)U(x0) , (2.34)
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that is the field operator in x0 is obtained from its value at the origin xµ = 0 by means
of the Poincaré transformation U(Λ)U(x0). Notice that the same correspondence (2.34) is
defined by any other element U(Λ′)U(x0) differing from U(Λ)U(x0) by the Lorentz factor.
The reason for this is that the Lorentz group leaves the origin of space-time invariant (it is
the stabilizer or little group of the origin)4. We can define an equivalence between Poincaré
transformations:

U ∼ U ′ ⇔ U ′ U−1 ∈ O(1, 3) , (2.35)

and correspondingly group Poincaré transformations in equivalence classes:

[U(x0)] = {U ∈ Poincaré group : U = U(Λ)U(x0) , for some U(Λ) ∈ O(1, 3)} . (2.36)

Each space-time point xµ is therefore in one-to-one correspondence with the equivalence
class [U(x)]:

Φ̂(0)
[U(x)]−→ Φ̂(x) . (2.37)

The equivalence classes [U(x)] are called left-cosets and their collection is dubbed left-coset
space:

{[U(x)]}x∈M4 = SO(1, 3)\ISO(1, 3) , (2.38)

whereM4 is Minkowski space-time and ISO(1, 3) the Poincaré group. Due to the one-to-one
correspondence between x ∈ M4 and [U(x)] we can then represent Minkowski space-time
by the left-coset space:

M4 = SO(1, 3)\ISO(1, 3) . (2.39)

It is customary to describe Poincaré transformations in terms of an operator L defined as:

L(Λ, x0) ≡ U(Λ, x0)† = U(x0)† U(Λ)† = L(x0)L(Λ) ,

so that
Φ̂(x0) = L(x0)L(Λ) Φ̂(0)L(Λ)† L(x0)† . (2.40)

Just as with the operators U(x), we can define a one-to-one correspondence between points
x ∈M4 and right-cosets [L(x)]:

{[L(x)]}x∈M4 ≡ {L ∈ Poincaré group : L = L(x)L(Λ) , for some L(Λ) ∈ O(1, 3)} =

= ISO(1, 3)/SO(1, 3) . (2.41)

We shall adopt the above description of M4 in terms of right-cosets.
By the same token, we can define a superspace M(4|N ) as a manifold parametrized by the

4 space-time coordinates xµ and 4N Grassmannian coordinates θi as:

M(4|N ) = SG/SO(1, 3) , (2.42)

4In fact the stabilizer of any space-time point x is a group O(1, 3)x which is isomorphic to the Lorentz
group O(1, 3) which stabilizes the origin.
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where SG is the super-Poincaré group, whose elements are described as in (2.21):

L(Λ, x, θ) = L(x, θ)L(Λ) = e−x
µ P̂µ+i θ̄ Q e−

λµν

2
L̂µν = U(Λ, x, θ)† . (2.43)

and the coset space SG/SO(1, 3) is the set of right-cosets [L(x, θ)], in one-to-one correspon-
dence with the points inM(4|N ). The scalar field in a generic point (x, θ) is then defined as
follows

Φ̂(x, θ) ≡ U(x, θ)† Φ̂(0)U(x, θ) = L(x, θ) Φ̂(0)L(x, θ)† . (2.44)

A field defined overM(4|N ) is called superfield. Since Grassmannian numbers ξ are nilpotent,
ξ2 = 0, if we Taylor-expand a superfield in θi, the expansion terminates at order 4N , beyond
which any monomial in θi would contain some of its Grassmann-components squared, which
gives zero. Each coefficient in the θ-expansion in a local field.

Let us now consider the N = 1 case for the sake of simplicity and compute the realization
on superfields of the infinitesimal generators Pµ andQi. Consider the effect of an infinitesimal

transformation L(ξ, ε) on a superfield Φ̂(x, θ):

Φ̂(x′, θ′) = L(ξ, ε)Φ̂(x, θ)L(ξ, ε)† = L(x′, θ′) Φ̂(0, 0)L(x′, θ′)† = Φ̂(x, θ) + δΦ̂(x, θ) ,

L(x′, θ′) = L(ξ, ε)L(x, θ) , δΦ̂(x, θ) = (ξµO(Pµ)− i ε̄O(Q)) · Φ̂(x, θ) . (2.45)

To evaluate this effect we should compute x′, θ′ in terms of x, θ and expand Φ̂(x′, θ′) up to
first order terms in the infinitesimal parameters. To this end let us use the Baker-Campbell-
Hausdorff (BCH) formula:

eA eB = eC ; C = A+B +
1

2
[A,B] + . . . (2.46)

to compute U(x′, θ′)

L(x′, θ′) = L(ξ, ε)L(x, θ) = e−ξ·P̂+i ε̄ Q e−x·P̂+i θ̄ Q =

= exp

(
−(x+ ξ) · P̂ − 1

2
ε̄{Q, Q̄} θ + i (θ̄ + ε̄)Q

)
= e−x

′·P̂+i θ̄′Q , (2.47)

where the ellipses in (2.46) represent higher order terms involving commutators of commu-
tators, which vanish when A and B are combinations of Pµ and Q, since their commutator
only involves Pµ which commutes with both A and B. From the second of Eq.s (2.14) we
find:

x′µ = xµ + ξµ − i θ̄γµ ε = xµ + δxµ , θ′ = θ + ε . (2.48)

In the 2-component notation:

δxµ = ξµ − i
(
θα(σµ)αβ̇ ε̄

β̇ + θ̄α̇(σ̄µ)α̇β εβ

)
. (2.49)

13



Expanding Φ̂(x′, θ′) to first order in the infinitesimal parameters ξµ, ε, as in the last of Eq.s
(2.45), we derive the expression for O(Pµ), O(Q):

Φ̂(x′, θ′) = Φ̂(x, θ) + δxµ∂µΦ̂(x, θ) + ε̄ ∂Φ̂(x, θ) =

= Φ̂(x, θ) + (ξµ − i θ̄γµ ε) ∂µΦ̂(x, θ) + ε̄
∂

∂θ̄
Φ̂(x, θ) =

= Φ̂(x, θ) + (ξµO(Pµ)− i ε̄O(Q)) · Φ̂(x, θ) , (2.50)

where we have defined the spinorial derivative ∂ as follows:

∂

∂θ̄
≡
(

∂
∂θα
∂
∂θ̄α̇

)
,

∂

∂θ
≡
(

∂

∂θα
,
∂

∂θ̄α̇

)
. (2.51)

Using the Majorana condition on θ (θ̄ = θT C), the reader can verify that:(
∂

∂θ

)T
= C

∂

∂θ̄
. (2.52)

From (2.50) we find:

O(Q) = i
∂

∂θ̄
− γµθ ∂µ ; O(Pµ) = ∂µ . (2.53)

From the Majorana condition on Q and (2.52) we derive:

O(Q̄) = O(Q̄)T C = i

(
∂

∂θ̄

)T
C − θT (γµ)T C ∂µ = −i ∂

∂θ
+ θ̄ γµ ∂µ . (2.54)

Exercise: Verify that the generator O(Q), in the two-component notation, reads:

O(Qα) = i
∂

∂θα
− (σµ θ̄)α ∂µ ,

O(Q̄α̇) = −i ∂

∂θ̄α̇
+ (θσµ)α̇ ∂µ , (2.55)

Exercise: Verify that O(Q) and O(Q̄), in (2.53) and (2.54), satisfy the second of Eq.s
(2.14).

Notice that O(Pµ), O(Q) describe the effect of a left-multiplication on L(x, θ) by means
of an infinitesimal transformation L(ξ, ε), see (2.47). The reader can indeed easily verify
that:

L(x′, θ′) = L(ξ, ε)L(x, θ) = e−ξ·P̂+i ε̄ Qe−x·P̂+i θ̄ Q = L(x+ δx, θ + ε) =

= (1 + ξµO(Pµ)− i ε̄O(Q)) · L(x, θ) . (2.56)

Under the action of a supersymmetry transformation on a superfield, the local fields over
Minkowski space-time defining the coefficients of its θ-expansion, transform into one another:
fermionic fields into bosonic ones and viceversa. These field-components define a representa-
tion of the super-Poincaré algebra. In general such representation is not irreducible. In order
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for the components of a superfield to define irreducible representations, certain differential
constraints on it have to be imposed. These are defined in terms of spinorial differential
operators in superspace (just like O(Q)), called supercovariant derivatives D = (Dα, D̄

α̇).
In order for these constraints on superfields to be supersymmetry-invariant, the supercovari-
ant derivatives must commute with the supersymmetry transformations, implemented on
superfields by the differential operators O(Q):

[ε̄1D, ε̄2O(Q)] = 0 . (2.57)

The above condition is satisfied if we define D as the generator of a right-multiplication
on L(x, θ) by a supersymmetry transformation. Left and right-multiplications, by group
elements L1 and L2 respectively, on a third element L commute by virtue of the associative
property of the group product:

(L1 · L) · L2 = L1 · (L · L2) . (2.58)

We then define Dµ and D as follows:

L(x, θ)L(ξ, ε) = e−x·P̂+i θ̄ Q e−ξ·P̂+i ε̄ Q = (1 + ξµDµ + ε̄ D) · L(x, θ) . (2.59)

Using the BCH formula (2.46) as above, we find:

D =
∂

∂θ̄
− i γµθ ∂µ ⇒

{
Dα = ∂

∂θα
− i (σµθ̄)α ∂µ

D̄α̇ = ∂
∂θ̄α̇
− i (σ̄µθ)α̇ ∂µ ⇒ D̄α̇ = − ∂

∂θ̄α̇
+ i (θσµ)α̇ ∂µ

. (2.60)

Exercise: Verify Eq. 2.57. The reader can verify the following anticommutation relations:

{Dα, D̄α̇} = 2i (σµ)αα̇ ∂µ , {Dα, Dβ} = {D̄β̇, D̄α̇} = 0 (2.61)

2.3 Representations of the Super-Poincaré Algebra

We construct the this section the single-particle (unitary) irreducible representations of SG.
We start noticing that, since Q commutes with P̂µ, all SG commutes with the mass-squared

operator ∝ P̂µP̂µ. Therefore, just as for the Poincaré representations, all states in an
irreducible representation of SG have the same mass. This is not the case for the spin
since, as the reader can easily verify, the fermionic operators Q do not commute with the
Pauli-Lubanski operator Ŵµ (see Appendix A for the definition of Ŵµ). A representation of
SG will therefore contain states with different spin. In general, if V is the carrier of such
a representation, we can split it in the direct sum of two spaces VF , VB consisting of of
fermionic and bosonic states, respectively:

V = VB ⊕ VF . (2.62)

The action of Q on a state changes its spin by 1/2, and thus its statistics. We have:

VB
Q−→ VF

Q−→ VB , (2.63)
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that is Q · VB ⊂ VF and Q ·Q · VB ⊂ Q · VF ⊂ VB. The latter space of states resulting from
the consecutive action of two infinitesimal supersymmetry transformations contains those
states originating from the action of the commutator of two supersymmetry transformations
which in turn coincides with infinitesimal translations:

P̂ · VB = {Q, Q} · VB ⊂ VB . (2.64)

In a unitary (infinite-dimensional) representation of SG, P̂ is a semisimple operator and
the action of translations is free, namely there exists no state which is invariant under all
space-time translations (the only state with such property is the vacuum which defines a
trivial representation of SG). As a consequence of this P̂ · VB = VB and therefore (2.63) is
onto and thus invertible. This implies

dim(VB) = dim(VF ) , (2.65)

that is the numbers of fermionic and bosonic states in an irreducible representation of SG
coincide.

Supersymmetry on Minkowski space (described by the super-Poincaré group) has an im-
portant implication on the energy of a state. Consider the following expectation value on a
state |a〉:

〈a|{Qα i, (Qα i)
†}|a〉 = 〈a|{Qα i, Q̄α̇

i}|a〉 = 2 (σµ)αα̇ pµ , (2.66)

where pµ = 〈a|P̂µ|a〉. If we trace over α, α̇, the only matrix σµ surviving is σ0 = 1, so that
we have

2∑
α=1

〈a|{Qα i, (Qα i)
†}|a〉 = 4E , (2.67)

E being the expectation energy of |a〉. If we assume the inner product 〈·|·〉 in the Hilbert
space of states to be positive definite, the left hand side is a non-negative number, being

2∑
α=1

〈a|{Qα i, (Qα i)
†}|a〉 =

2∑
α=1

(
||(Qα i)

†|a〉||2 + ||Qα i|a〉||2
)
. (2.68)

As a consequence of (2.67) then E ≥ 0. Since for a particle state E 6= 0, we conclude
that super-Poincaré algebra implies positivity of energy. An other implication of the above
derivation is that single particle states are never annihilated by supersymmetry generators
((Qi)

†|a〉 or Qi|a〉 6= 0, for any i). Indeed if, for some i, Qi|p, s〉 = (Qi)
†|a〉 = 0, computing

the norm of the state and summing over the spinor indices of Qi, we would find

0 =
2∑

α=1

(
||(Qα i)

†|a〉||2 + ||Qα i|a〉||2
)

= 4E , (2.69)

that is E = 0, which cannot be for a particle state. This last implication, as we shall see, only
holds for those states on which the central charge generators have a vanishing expectation
value Zij. In the presence of a non-trivial central charge Zij, suitable combinations of Q
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and Q† may annihilate the state, and thus a fraction of the original supersymmetries may
be preserved by it. A non-vanishing Zij is related to the electric-magnetic charges of the
solution.

The only state for which E can be 0 is the vacuum |0〉. Since Eq. (2.69) holds for any i,
a vacuum state with zero energy must preserve all supersymmetries

Qi|0〉 = (Qi)
†|0〉 = 0 i = 1, . . . ,N . (2.70)

The above argument seems to imply that there cannot be a spontaneous partial supersym-
metry breaking : Either all supersymmetries are broken by the vacuum (and this occurs if
and only if the vacuum energy is non-vanishing) or they are all preserved by the vacuum
(E = 0 case). This no-go theorem was proven in the eighties not to be correct [15]. Indeed
it can be proven that in the presence of a partial supersymmetry breaking the anticommu-
tator of supercharges is not well defined. The appropriate way of describing symmetries in
a local field theory is in terms of symmetry currents (Noether currents) and their algebra.
In particular we can write the (local) anticommutator between a supersymmetry generator
and a supercurrent which has the form:

{Qαi, J̄
β̇j
µ (x)} = 2 i δji (σν)α

β̇ Tνµ(x) . (2.71)

The reader can verify that integrating the µ = 0 component of the above equation one finds
the relation (2.9). Eq. (2.71) can however be generalized as follows:

{Qαi, J̄
β̇j
µ (x)} = 2 i δji (σν)α

β̇ Tνµ(x) + (σµ)α
β̇ Ci

j . (2.72)

where the matrix Ci
j consists of constant c-numbers whose effect on any field of the theory

is trivial. It describes a central extension of the current algebra (2.71). It implies a constant
shift in the energy densityH → H+ci, which depends on the direction in the supersymmetry
parameter space.5 This feature is crucial in order to evade the aforementioned no-go theorem.
The first N = 2 globally supersymmetric theory featuring a non-vanishing matrix Ci

j and
thus a partial spontaneous supersymmetry breaking was constructed in [16].

In supergravity the no-go theorem does not apply in the first place and spontaneous partial
supersymmetry breaking can occur [17]. As a last remark, we notice that in supersymmetric
models featuring spontaneous partial supersymmetry breaking, and thus a non-vanishing
matrix Ci

j, integrating both sides of (2.72) over an infinite volume in order to retrieve the
anticommutation relation between supercharges, the central extension gives an infinite con-
tribution. This implies that in the presence of spontaneous partial supersymmetry breaking
the anticommutation relations between supersymmetry generators are ill defined.

To construct single-particle irreducible representations of SG, we use the method of in-
duced representations : We consider a basis of eigenstates |p, s〉 of the 4-momentum operator
P̂µ and of its little group (helicity group SO(2) for massless particles or spin group SU(2)
for massive ones). We construct the states |p̄, s〉 in a given frame of reference S0 where the
4-momentum is simplest p̄ = (p̄µ), and then Lorentz-boost them to a frame S where the
momentum is generic pµ.

5Constant shifts in the energy density are irrelevant in the absence of gravity, that is in globally super-
symmetric theories.
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Massless states. We start from a frame S0 in which

pµ = p̄µ = (E, 0, 0,−E) = (E,−p̄) ,

The P.-L. operator reads:

〈Ŵµ〉 = p̄µ 〈Γ̂〉 ; ⇒ 〈Ŵ0〉 = E 〈Γ̂〉 , (2.73)

where Γ̂ is the helicity operator:

〈Γ̂〉 =
p̄ · 〈Ĵ〉
|p̄|

= 〈Ĵ3〉 . (2.74)

We can describe the states in S0 in terms of eigenmatrices |E, ±s〉 of Γ̂:

Γ̂|E, ±s〉 = ±s |E, ±s〉 ; Ŵ0 |E, ±s〉 = ±sE |E, ±s〉 . (2.75)

Next we compute the commutator of the angular momentum operator with the supersym-
metry generator Qi = (Qα i):

[ĴI , Qi] = −(SI Qi) = −σI
2
Qi , (2.76)

so that
[Γ̂, Qi] = −σ3

2
Qi . (2.77)

If we act on |E, λ〉 by means of Qi, we change the helicity λ of the state as follows:

Γ̂Qi|E, λ〉 = ([Γ̂, Qi] +QiΓ̂)|E, λ〉 = (λ1− σ3

2
)Qi|E, λ〉 , (2.78)

so that, modulo a normalization factor,

Q1, i|E, λ〉 = |E, λ− 1

2
〉 ; Q2, i|E, λ〉 = |E, λ+

1

2
〉 . (2.79)

The action of Q1, i “lowers” the helicity by 1/2 while that of Q2, i “raises” the helicity by the
same amount. The opposite holds for Q̄i

α̇: Q̄i
1̇

“raises” while Q̄i
2̇

“lowers” the helicity by 1/2.
Exercise 4.: Check this.
We choose Zij = 0, the motivation for this will become clear when we deal with massive

representations. From the supersymmetry algebra we have:

{Qα i, Q̄α̇
j} = 2 δji σ

µp̄µ = 2 δji E (1− σ3) ,

{Q, Q} = {Q̄, Q̄} = 0 , (2.80)

so that

{Q1 i, Q̄1̇
j} = 0 ; {Q2 i, Q̄2̇

j} = 4E δji . (2.81)
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The first of the above relations implies that Q1 i, (Q1 i)
† vanish on the states:

0 = 〈a|{Q1 i, Q̄1̇
i}|a〉 = ||Q̄1̇

i|a〉||2 + ||Q1 i|a〉||2 ⇒ Q̄1̇
i|a〉 = Q1 i|a〉 = 0 , (2.82)

for any |a〉. Let us define the generators

qi ≡
1

2
√
E
Q2 i . (2.83)

These operators satisfy the relations:

{qi, q̄j} = δji , (2.84)

and thus generate the Clifford algebra of N fermionic degrees of freedom. Any irreducible
representation of such an algebra is constructed out of a Clifford ground state |E, λ0〉 (λ0 >
0), defined by the condition:

qi |E, λ0〉 = 0 ∀i = 1, . . . ,N , (2.85)

by applying to its the “raising” operators q̄i. The manifest automorphism group of this
algebra is GR = U(N ). The states arrange in irreducible representations of GR:

|E, λ0〉

|E, λ0 −
1

2
, [i]〉 ∝ q̄i |E, λ0〉

|E, λ0 − 1, [ij]〉 ∝ q̄j q̄i |E, λ0〉
...

|E, λ0 −
k

2
, [i1i2 . . . ik]〉 ∝ q̄i1 . . . q̄ik |E, λ0〉 . (2.86)

The states with a given helicity λ = λ0 − k
2
, define the k-fold antisymmetric representation

of the R-symmetry group U(N ). Therefore for each λ, there are

(
N
k

)
such states. The

lowest helicity state corresponds to k = N and has degeneracy 1.
Invariance under CPT of any Lorentz-invariant field theory, requires any representation

of the symmetry group SG to contain both helicity states for each spin, since

CPT |E, λ〉 = |E, −λ〉 . (2.87)

The action of CPT on a spinor is χ → η χ∗, η being a phase. CPT therefore maps qi into
q̄i. If an irreducible representation contains the states:

q̄i1 . . . q̄iN |E, λ0〉 ; . . . ; q̄i|E, λ0〉 ; |E, λ0〉 , (2.88)

it should also contain their CPT conjugates

|E, −λ0〉 ; qi|E, −λ0〉 ; . . . ; qi1 . . . qiN |E, λ0〉 , (2.89)
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obtained by acting on |E, −λ0〉 by means of qi. To construct the particle states in S0 with
highest spin λ0 we start from λ0 and construct the states with helicities λ0−1/2, . . . , λ0−N /2
by applying q̄i. At the same time we start from the unique state with−λ0 and, by consecutive
applications of qi, we construct the states with helicities −λ0 + 1/2, . . . , −λ0 +N /2:[

q̄i←− λ0 − 1
2

λ0

−λ0 −λ0 + 1
2

qi−→

]
, (2.90)

where each helicity ±(λ0 − k/2) comes with a multiplicity

(
N
k

)
. For instance one can

construct the N = 1 supermultiplet with maximum spin λ0 = 1/2, called the Wess-Zumino
massless multiplet: [

0 1
2

−1
2

0

]
= 1× (

1

2
) + 2× (0) , (2.91)

where we have used the notation (s) to denote the collection of the two spin-s helicity states
±s. The supermultiplet contains one massless spin-1/2 field and two real (massless) scalars.
In contains 2 fermionic and two bosonic on-shell degrees of freedom.

An other example is the N = 2 vector multiplet, with λ0 = 1:[
0 1

2
1

−1 −1
2

0

]
= 1× (1) + 2× (

1

2
) + 2× (0) . (2.92)

It contains one spin-1 field Aµ, two spin-1/2 fields λi and two real scalar fields which arrange
in a complex one. In contains 4 fermionic and 4 bosonic on-shell degrees of freedom.

Each row in (2.90) contains 2N states since

2N =
N∑
k=0

(
N
k

)
= nF + nB , (2.93)

where nF and nB are the number of fermionic and bosonic states corresponding to odd (even)
and even ( odd) k, respectively, when λ0 is integer (half-integer). From elementary number
theory it follows that nF = nB. If the supermultiplet contains both rows of (2.90) then the
number of states is 2N+1. There are two important exceptions to this, i.e. cases in which
λ0 −N /2 = −λ0. They occur for N = 8 and λ0 = 2, N = 4, λ0 = 1 and N = 2, λ0 = 1/2.
In the first two cases the supermultiplet consists of only one of the two rows in (2.90), since
each of them are separately CPT-self-conjugate:

N = 8 [
−2 , −3

2
, −1 , −1

2
, 0 ,

1

2
, 1 ,

3

2
, 2

]
= 1× (2) + 8× (

3

2
) + 28× (1)+

+ 56× (
1

2
) + 70× (0) , (2.94)

N = 4 [
−1 , −1

2
, 0 ,

1

2
, 1

]
= 1× (1) + 4× (

1

2
) + 6× (0) . (2.95)
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The former supermultiplet contains a spin-2 state which can be identified with the graviton,
eight spin 3/2 states to be identified with the gravitino fields Ψi

µ in the 8 of SU(8), 28 vector
fields Aijµ in the 2-fold antisymmetric representation of SU(8), 56 spin-1/2 states described
by the so-called dilatino fields λijk in the 3-fold antisymmetric representation of SU(8) and,
finally 70 fields φijkl in the 4-fold antisymmetric representation of SU(8). The matching of
the 128-fermionic and 128-bosonic on-shell degrees of freedom requires φijkl to satisfy the
following reality condition:

φijkl =
1

4!
εijklpqrs (φpqsr)∗ . (2.96)

The above condition breaks the automorphism group GR from U(8) to SU(8), which is the
R-symmetry group of the maximal theory.

Similarly the second (2.95) describes the gauge-supermultiplet of the N = 4 theory. It
consists of a single gauge field Aµ, 4 spin-1/2 states in the fundamental representation of
SU(4) and 6 real fields φij in the 2-fold antisymmetric representation of SU(4). Also in this
case φij are subject to a reality condition:

φij =
1

2
εijkl (φkl)∗ , (2.97)

which reduces the R-symmetry group to SU(4). The two multiplets (2.94) and (2.95) are
called self-dual and contain 2N degrees of freedom.

The N = 2, λ0 = 1/2 multiplet is different from the previous ones since it contains a
complex SU(2)-doublet of scalars φi on which a reality condition cannot be imposed6. Each
row in (2.90) is therefore not CPT-self-conjugate and we need to consider both both of them,
one containing φi and the other its CPT-conjugate φi = (φi)∗:[

−1
2

0 1
2

−1
2

0 1
2

]
= 2× (

1

2
) + 4× (0) . (2.98)

This is the massless N = 2 hypermultiplet. It represents the matter sector of an N = 2
theory. As we shall see, there is also a massive N = 2 hypermultiplet with a non-vanishing
central charge.

As a other example let us give the massless N = 3, λ0 = 2 and λ0 = 1 multiplets:[
1
2

1 3
2

2
−2 −3

2
−1 −1

2

]
= 1× (1) + 3× (

3

2
) + 3× (1) + 1× (

1

2
) ,[

−1
2

0 1
2

1
−1 −1

2
0 1

2

]
= 1× (1) + (3 + 1)× (

1

2
) + (3 + 3)× (0) ,

Exercise 5.: Compute the massless λ0 = 2 supermultiplet (supergravity multiplet) in N = 4.

Massive case with Zij = 0. Let us now consider massive states on which the central
charges Zij vanish. The corresponding irreducible representations are called long multiplets.

6A condition φi = εij (φj)∗, in analogy with Eq.s (2.96), (2.97), is not consistent, being non-involutive.
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We start from the rest frame S0 in which p̄µ = (m, 0, 0, 0). The states define representations
of the spin group SU(2): |m, s, s3〉. The action of Qα i changes the spin by 1/2:

Qα i|m, s, s3〉 =

s− 1
2∑

s′3=−(s− 1
2

)

a
(−)

s,s′3
|m, s− 1

2
, s′3〉+

s+ 1
2∑

s′3=−(s+ 1
2

)

a
(+)

s,s′3
|m, s+

1

2
, s′3〉 ., (2.99)

If we define:

qα i ≡
1√
2m

Qα i ; q̄iα̇ ≡ (qα i)
† =

1√
2m

Q̄i
α̇ , (2.100)

then, from Eq. (2.9) we have:
{qα i, q̄jα̇} = δji δαα̇ . (2.101)

The operators qα i, q̄
i
α̇ generate a Clifford algebra of a system with 2N fermionic degrees of

freedom. As in the previous case, the states of an irreducible representation of the algebra are
obtained by acting by means of q̄iα̇ on a Clifford-ground-state |Ω〉 ≡ {|m, s0, s3〉}s3=−s0,...,s0 ,
described in this case by a spin-s0 irreducible representation of SU(2), and defined by the
condition:

qα i|Ω〉 = 0 , ∀α, i . (2.102)

The states have the form:
q̄i1α̇1

. . . q̄ikα̇k |m, s0, s3〉 , (2.103)

and, for each s3, are 22N , so that:

total number of states = (2s0 + 1)× 22N . (2.104)

Recall that:

Ĵ3 qi|m, s0, s3〉 = ([Ĵ3, qi] + qiĴ3)|m, s0, s3〉 = (s3 1− σ3

2
)qi|m, s0, s3〉 , (2.105)

so that q1 i lowers s3 by 1/2 and q2 i raises s3 by 1/2, while q̄i
1̇

raises s3 by 1/2 and q̄i
2̇

lowers
s3 by 1/2 . The highest spin is s0 + N /2, while the lowest is s0 − N /2 if s0 > N /2, zero
otherwise.

Since Qα i and Q̄α̇ i transform under the spin-SU(2) by the same matrices, it is useful to
define the following 2N -component vector Qαa for each spinor component α:

Qαa ≡ (Qα i, Q̄
α̇ i) , a = 1, . . . , 2N . (2.106)

Similarly we define
Q̄a
α̇ ≡ (Qαa)

† = (Q̄i
α̇, Q

α
i ) , a = 1, . . . , 2N . (2.107)

In the presence of Zij, Eq.s (2.10), (2.9) and (2.11) in the rest frame can be recast in a more
compact form:

{Qαa, Qβ b} = 2 εαβ Λab , (2.108)

where

Λab ≡
(
Zij −mδi

k

mδlj Z lk

)
. (2.109)
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Exercise 6.: Derive Eq. (2.108).
Similarly

{Q̄a
α̇, Q̄

b
β̇
} = −2 εα̇β̇ Λab = 2 εαβ Λab , (2.110)

where Λab ≡ (Λab)
∗.

One can verify that a vector Vαa, like Qαa, satisfies the following reality condition

Vαa = −εαβ Cab (Vβ b)
∗ (2.111)

where

C =

(
0 1
−1 0

)
, (2.112)

is the symplectic-invariant matrix. The most general unitary transformation of the form

Vαa → V ′αa = Sa
b Vα b , (2.113)

preserving this reality condition is a matrix S in USp(2N ), namely a unitary matrix leaving
Cab invariant:

USp(2N ) = U(2N ) ∩ Sp(2N , c) : S ∈ USp(2N ) ⇔ S†S = 1 , STCS = C . (2.114)

The reality condition (2.111) is also preserved by a generic SU(2) transformation on the index
α. The transformation group preserving condition (2.111) is therefore SU(2)× USp(2N ):

Vαa → V ′αa = Tα
β Sa

b Vβ b , T ∈ SU(2) , S ∈ USp(2N ) , (2.115)

Exercise 7.: Prove the above statement.
If Zij = 0, Eq. (2.108) reduces to:

{Qαa, Qβ b} = −2mεαβ Cab . (2.116)

It is useful to define a composite index A = (α, a) and to rewrite Eq. (2.116) in the following
form:

{QA, QB} = 2mηAB , (2.117)

where the (4N )× (4N ) symmetric matrix ηAB has 2N eigenvalues +1 and 2N eigenvalues
−1. The anti-commutation relations (2.117) have a manifest automorphism group which is
O(2N , 2N , c) ≡ O(4N , c) consisting of all complex matrices SA

B which leave ηAB invariant:

QA → Q′A = SA
B QB ; S η ST = η . (2.118)

The compact part of this group is O(4N ) of which, however, only the subgroup SU(2) ×
USp(2N ) is manifest, where the two factors act on the two indices α, i separately: SU(2) is
the spin-group acting only on α, β, . . . , USp(2N ) is the compact group acting on the a, b, . . .
indices only and defined in (2.114). The states in a supermultiplet will therefore group in
representations of SU(2) × USp(2N ). The 22N states in (2.103) for each value of s3 define
the spinorial representation of O(4N ), half of which are fermions and half bosons. If the
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ground state has spin-0, the group SU(2) × USp(2N ) has a non trivial action only on the
products of the creation operators q̄iα̇, which complete, as mentioned above, the spinorial
representation 22N of O(4N ). In this case the SU(2) × USp(2N ) representation content
of the supermultiplet, which is called fundamental multiplet, is obtained by branching this
spinorial representation as follows:

22N SU(2)×USp(2N )−→
(
N
2
,1

)
+

(
N − 1

2
,2N

)
+

(
N − 2

2
, [2N ]2

)
+ . . .

· · ·+
(
N − k

2
, [2N ]k

)
+ · · ·+ (0, [2N ]N ) , (2.119)

where [2N ]k denotes the k-fold antisymmetric, traceless product of the fundamental repre-
sentation of USp(2N ):

[2N ]k = (2N ) ∧ (2N ) ∧ · · · ∧ (2N ) . (2.120)

The first entry in each couple on the right hand side of (2.119) is the spin. The first
representation on the right hand side of Eq. (2.119) has spin N /2, while the last has spin-0
and corresponds to the state

q̄i1
1̇
q̄j1

2̇
. . . q̄iN

1̇
q̄jN

2̇
|m, 0, 0〉 . (2.121)

In the ground state |Ω〉 has spin s0, it is in the representation (s0, 1) of SU(2)× USp(2N ),
so that the SU(2)×USp(2N )-representation content of the corresponding supermultiplet is
obtained by multiplying the spinorial representation (2.119) by (s0, 1):

(s0, 1)× 22N . (2.122)

As an example, let us consider the fundamental (i.e. having s0 = 0) multiplet in N = 1.
Being the ground state a singlet with respect to SU(2) × USp(2N ) = SU(2) × USp(2) ≡
SU(2)× SU(2), the states of the supermultiplet arrange themselves in SU(2)× SU(2) repre-
sentations according to the branching (2.119):

4→ (
1

2
, 1) + (0, 2) = 1× (

1

2
) + 2× (0) . (2.123)

The multiplet contains one fermion and two real scalars. The other multiplets are obtained
from ground states |Ω〉 with different spins s0. For instance, if s0 = 1/2, the SU(2)× SU(2)
representation content of the multiplet is computed by multiplying the representations of
the fundamental multiplet by (1/2,1) and we find:

(1/2,1)×
[
(
1

2
, 1) + (0, 2)

]
= (1, 1) + (0, 1) + (

1

2
, 2) = 1× (1) + 2× (

1

2
) + 1× (0) .

(2.124)

The supermultiplet contains a massive vector field (3 on-shell degrees of freedom), 2 massive
spinors (4 on-shell degrees of freedom) and one massive scalar field (1 on-shell degrees of
freedom).
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Exercise 8.: Compute the states of the N = 1 representations with s0 = 1 and s0 = 3/2.
Let us compute now some N = 2 long multiplets. The manifest automorphism group is

SU(2) × USp(2N ) = SU(2) × USp(4) with respect to which the fundamental multiplet has
the following representation content:

16→ (1,1) + (
1

2
, 4) + (0, 5) = 1× (1) + 4× (

1

2
) + 5× (0) . (2.125)

Notice that the dimension of the 2-fold antisymmetric product of the fundamental 4 of
USp(4) is 5 since it is computed as the dimension of a 4×4 antisymmetric tensor T ab, which
is 6, minus its symplectic trace T abCab, which contributes one parameter.

The supermultiplet with ground state of spin-1/2 is obtained as usual:

(1/2,1)×
[
(1,1) + (

1

2
, 4) + (0, 5)

]
= (

3

2
, 1) + (

1

2
, 1 + 5) + (1, 4) + (0, 4) =

= 1× (
3

2
) + 4× (1) + (5 + 1)× (

1

2
) + 4× (0) .

(2.126)

This is the massive spin-3/2 N = 2 long-multiplet.
Exercise 9.: Compute the states of the N = 2 long-multiplet with s0 = 1. What is its

maximum spin state?

Massive representations with central charge. We consider now representations on
which the central charge matrix Zij is non-vanishing. It is known that [18], by means of
a transformation U in GR, see (2.26), this matrix can be reduced to a skew-diagonal form
(also called normal form) :

Zij → Z ′ij = Ui
kUj

l Zkl =




z1 ε 0 . . . 0

0 z1 ε . . . 0
...

...
. . .

...

0 0 . . . zN
2
ε

 N even



z1 ε 0 . . . 0
0

0

0 z1 ε . . . 0
0

0
...

...
. . .

...
...

0 0 . . . z[N2 ] ε
0

0

0 0 0 0 . . . 0 0 0


N odd ,

(2.127)

where the blocks in boldface are 2× 2, ε = (εxy), x, y = 1, 2, while zk are complex numbers
(skew-eigenvalues). If GR = U(N ), zk can be made real, while if GR = SU(N ), as it is the
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case for N = 4, 8, zk can be made real modulo an overall phase. We shall consider in what
follows zk complex. If N is even, we can write the index i as a couple of indices: i = (x, u),
where x = 1, 2 and u = 1, . . . ,N /2, so that the entries of Z ′ij in the normal form can be
written as:

Z ′ij = Z ′(x,u)(y,v) = zu εxy δuv . (2.128)

If N is odd, we only write the first N − 1 values of the index i as a couple (x, u), so that
i = {(x, u), N} and

Z ′(x,u)(y,v) = zu εxy δuv , Z
′
(x,u)N = −Z ′N(x,u) = 0 . (2.129)

If we consider the supersymmetry generators in the basis Qαa, the above unitary transfor-
mation is implemented by a USp(2N )-transformation U = (Ua

b):

Qαa → Q′αa = Ua
bQα b , (2.130)

where

U ≡
(
U 0
0 U∗

)
. (2.131)

Exercise 10.: Verify that the matrix U defined above belongs to USp(2N ).
In this new basis the matrix Λab in (2.110) has the following form:

Λab → Λ′ab = Ua
cUb

d Λcd =

(
Z ′ij 0
0 Z ′kl

)
−mCab . (2.132)

Next we perform one further change of basis of the supersymmetry generators through an
other USp(2N ) matrix S. The transformation for N odd, must be thought of as acting only
on the first N − 1 values of the index i, of the type (x, u), leaving the last component i = N
inert. Consider for the sake of simplicity the case N = 2 ` even and perform the following
transformation:

Q′αa → Q̃αa = Sa
bQ′α b = (SU)a

bQα b , (2.133)

where

S =
1

2

(
A B
−B∗ A∗

)
∈ USp(2N ) ,

A =

A1

. . .

A`

 ; B =

B1

. . .

B`

 ,

Ak ≡

(
1 1√
z̄k
zk

√
z̄k
zk

)
; Bk ≡

(
−
√

zk
z̄k

√
zk
z̄k

1 −1

)
. (2.134)

The explicit relation between the new supersymmetry generators Q̃ and Q′ reads:

Q̃α i = Q̃α (x,u) =
1

2

(
(Au)x

yQ′α (y,u) + (Bu)xy Q̄
′α̇ (y,u)

)
, (2.135)

Q̃
α̇ i

= Q̃
α̇ (x,u)

=
1

2

(
(A∗u)

x
yQ
′ α̇ (y,u) − (B∗u)

xyQ′α (y,u)

)
, (2.136)
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where u = 1, . . . , `.
The reader can verify that:

Λ′ab → Λ̃ab = Sa
c Sb

d Λ′cd =

(
0 −D
D 0

)
; D =

m12 + |z1|σ3

. . .

m12 + |z`|σ3

 .

(2.137)

In the new basis, the only non-vanishing anticommutator is the following:

{Q̃α (x,u), Q̃β̇
(y,v)} = {Q̃α (x,u), (Q̃β (y,v))

†} = 2δαβ (m12 + |zu|σ3)xy δuv =

= 2δαβ (m− (−)x|zu|) δxy δuv . (2.138)

Since, as earlier emphasized, {Q̃α (x,u), (Q̃β (y,v))
†} is a positive definite operator in the space

of states, the above equation implies:

m ≥ |zu| ; u = 1, . . . , ` , (2.139)

namely the mass should be larger than the moduli of all the skew-eigenvalues of the central
charge. As a consequence of this massless representations must have vanishing central charge.
In the case of odd N (N = 2` + 1), as mentioned above, if we write i = {(x, u),N}, Eq.s
(2.135), (2.136) still hold for i = 1, . . . , 2`, while

Q̃αN = Q′αN , (2.140)

so that:
{Q̃αN , (Q̃βN )†} = 2mδαβ . (2.141)

Let us consider first the case m > |zu|, u = 1, . . . , `. The numbers m− (−)x|zu| are positive
and we can define the generators:

q̃α (x,u) =
1√

2(m− (−)x|zu|)
Q̃α (x,u) ,

q̃αN =
1√
2m

Q̃αN (N odd.) (2.142)

From Eq.s (2.138) (and (2.141) for N odd) we find:

{q̃α i, ¯̃qβ̇
j} = δαβ δ

j
i , (2.143)

that is q̃α i, ¯̃qβ̇
j generate the Clifford algebra of a system of 2N fermionic degrees of freedom.

The states of an irreducible representation are constructed, as usual, by applying ¯̃qβ̇
j on

a ground state |Ω〉 annihilated by all the q̃α i. The procedure for constructing the states
parallels the one illustrated in the case Zij = 0, with the states groped in representations
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of the manifest automorphism group SU(2)×USp(2N ). In this case, however, invariance of
the theory under CPT requires a doubling of the states. Indeed under CPT

Zij
CPT−→ η2 Zij , (2.144)

η being a phase. Being Zij complex, it is not inert under CPT. This means that a same
representation should contain states in which the expectation value of the central charge is
Zij together with states in which it is η2 Zij. This requires a doubling of the states, starting
from the ground state:

|Ω〉 CPT−→ |Ω′〉 . (2.145)

Therefore, for a given spin s0 of the ground state, we have:(
Number of states of a massive multiplet

with Zij 6= 0

)
= 2×

(
Number of states of a massive

multiplet with Zij = 0

)
.

(2.146)
Suppose now a number q of the skew-eigenvalues zk of the central charge matrix coincides
with m:

m = |z1| = · · · = |zq| > |zq+1|, . . . , |z`| . (2.147)

From Eq. (2.138) we find:

{Q̃α (2,u), (Q̃β (2,u))
†} = 0 (u = 1, . . . , q) , (2.148)

which implies Q̃α (2,u) = 0, u = 1, . . . , q. The states of the multiplet are annihilated

by the q supercharges Q̃α (2,u) and therefore preserve a fraction q/N of the original N -
supersymmetries. They are therefore called (q/N )-BPS. As a consequence of this property
the generators of the Clifford algebra are effectively reduced from 2N to 2(N − q) and the
manifest symmetry in the rest frame is SU(2) × USp(2(N − q)). The number of states are
twice that of a Zij = 0 massive representation of (N − q)- extended supersymmetry. These
supermultiplets are called short.

As an example, let us consider the 1/2-BPS fundamental (i.e. s0 = 0) representation of
N = 2 supersymmetry. The number of states is twice that of a long N = 1 multiplet:

2× [1×
(

1

2

)
+ 2× (0)] = 2×

(
1

2

)
+ 4× (0) . (2.149)

This representation, consisting of 2 fermions and four scalar fields is the massive hypermul-
tiplet. Its field content is the same as that of the massless hypermultiplet (2.98).

By the same token, the 1/2-BPS representation of N = 2 supersymmetry with s0 = 1/2
is:

2× [1× (1) + 2×
(

1

2

)
+ 1× (0)] , (2.150)

where we have used the structure of the long s0 = 1/2 N = 1 multiplet in (2.124).
Exercise 9.: Compute the 1/2-BPS fundamental representation of N = 2 supersymmetry.
See Appendix (B) for a list of the long and short massive representations.
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BPS-states. Let us re-derive the above results in the 4-component notation for the spinor
fields. We consider massive states and define the longitudinal unit-vector ζµ = pµ/m in
a generic frame of reference. Let us consider the anticommutation relation between the
supersymmetry generators, as written in the second of Eq.s (2.14):

{Qi, Q̄j} = 2 i
(
δji (γµC) P̂µ + Zij

)
, (2.151)

where Zij = i Rij γ
5 + Iij. Consider, for the sake of simplicity, the even-N case. Using

the unitary transformation U in Eq. (2.127), we can bring the central charge matrix to its
normal (skew-diagonal) form (we suppress the prime):

Zij = Z(x,u)(y,v) = Zuεxy δuv , (2.152)

where Zu ≡ Im(zu) + iRe(zu) γ
5. Define the following projectors:

S(±)
(x,u),(y,v) ≡

1

2

(
δxyδuv ± i ζµ γµ

Zu
|zu|

εxyδuv

)
, (2.153)

Ŝ(±)
(x,u),(y,v) ≡

1

2

(
δxyδuv ± i ζµ γµ

Z̄u
|zu|

εxyδuv

)
. (2.154)

One can verify that:

S(±) · S(±) = S(±) ; S(±) · S(∓) = 0 , (2.155)

Ŝ(±) · Ŝ(±) = Ŝ(±) ; Ŝ(±) · Ŝ(∓) = 0 , (2.156)

γ0 (S(±))† γ0 = Ŝ(±) ; C−1 Ŝ(±)C = (S(±))T , (2.157)

and, moreover, that the action of S(±), Ŝ(±) on a 4-spinor ξi = ξ(x,u) preserves the Majorana
condition:

ξ Majorana spinor ⇒ ξ̄ · S(±) , Ŝ(±) · ξ Majorana spinors , (2.158)

The matrices S(±), Ŝ(±) have rank ` = N /2 each.
Exercise 10.: Prove Eq.s (2.155), (2.156), (2.157) and (2.158).
Define now the projected supersymmetry generators:

Q
(±)
i = Q

(±)
(x,u) ≡ Ŝ

(±)
(x,u),(y,v) Q(y,v) ⇒ Q(±)

(x,u) = Q̄(y,v) S(±)
(y,v),(x,u) . (2.159)

With some γ-matrix algebra one finds:

{Q(±), Q(±)} = Ŝ(±) · {Q, Q̄} · S(±) ; {Q(±), Q(∓)} = Ŝ(±) · {Q, Q̄} · S(∓) = 0 ,

{Q(±)
(x,u), Q

(±)
(y,v)} = 2 Ŝ(±)

(x,u), (y,v) ζµ γ
µ (m± |zu|) ; {Q(±), Q(∓)} = 0 . (2.160)

In the rest frame ζµ = (1, 0, 0, 0) and

{Q(±)
(x,u), (Q

(±)
(yv))

†} = 2 Ŝ(±)
(x,u), (y,v) (m± |zu|) , (2.161)
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from which we find the general property derived above: m ≥ |zu|.
Consider now an infinitesimal supersymmetry transformation of the form

Q̄ ε = Q(+) ε(+) +Q(−) ε(−) , (2.162)

where
ε

(±)
(x,u) = S(±)

(x,u),(y,v) ε(y,v) . (2.163)

Suppose now, on a state |BPS〉, m = |z1| = · · · = |zq|. By equation (2.161) we have that:

Q
(−)
(x,u) |BPS〉 = 0 , u = 1, . . . , q . (2.164)

Notice that, in spite of the index x = 1, 2, there are only ` independent Q(−) (the same for
Q(+)). For this reason, Eq. (2.164) implies that the state |BPS〉 preserves only a fraction
q/N of the original supersymmetries. The preserved supersymmetry is parametrized by

ε
(−)
(x,u), with u = 1, . . . , q, which are defined by the condition:

S(+)
(x,u),(y,v) ε(y,v) = ε(x,u) + i ζµ γ

µ Zu
|zu|

εxyε(y,u) = 0 , u = 1, . . . , q , (2.165)

ε(x,u) = 0 , u = q + 1, . . . ,N /2 , (2.166)

and are named Killing spinors.
Let us now show that condition (2.164) amounts to a set of first order differential equations

on the fields describing the state. Let Φ̂(x) denote a generic field-operator of the theory.
The state |BPS〉 is escribed by a set of (bosonic and fermionic) fields, generically denoted
by Φ(x), defined as:

Φ(x) = 〈0|Φ̂(x)|BPS〉 . (2.167)

Condition (2.164) implies that:

δε(−)Φ(x) = −i 〈0|[Φ̂(x), Q(−) ε(−)]|BPS〉 = f(Φ(x), ε(−)) = 0 , (2.168)

where ε(−) satisfy Eq.s (2.166). The fields Φ(x) describe the state as a solution of the
theory and are therefore solutions to the field equations. The function f(Φ(x), ε(−)) is the
supersymmetry transformation rule, which expresses the infinitesimal transformation of a
field in terms of the supersymmetry parameter and all the fields. It depends in general on
the the fields and their first space-time derivatives. Schematically, in a supergravity theory,
the supersymmetry transformation rules have the general form:

δεΦF ∼ ∂µΦB γ
µε ; δεΦB ∼ ΦF ε . (2.169)

In a bosonic solution the fermion fields vanish ΦF (x) = 0 and therefore the only non-trivial
condition comes from :

δε(−)ΦF (x) = 0 . (2.170)

The above conditions define a set of first order differential equations on the (bosonic) back-
ground fields ΦB(x) = 0 called Killing spinor equations.
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2.4 Local Symmetries

In this section we introduce supergravity as the “gauge theory” of the super-Poincaré group,
highlighting analogies and differences with ordinary gauge theories. We shall then illustrate
in detail the construction of pure N = 1 supergravity.

2.4.1 Gauge Theories

Three of the fundamental interactions (the strong, weak and electro-magnetic) are mediated
by spin-1 particles and are well described by gauge theories, namely relativistic field theories
which are invariant under local (i.e. space-time dependent) transformations of some suitable
internal symmetry group (color-SU(3) for the strong interactions, SU(2)×U(1) for the weak
and electro-magnetic ones). Gauge theories provide a renormalizable description of these
fields and of their coupling to matter. The BEH mechanism of spontaneous symmetry
breaking then allows the interaction fields to have an effective mass without spoiling the
renormalizability property of the theory.

Let us briefly recall how the requirement of local invariance under some internal gauge
group requires the coupling of matter to suitable massless spin-1 fields. Consider a theory
describing a complex massive scalar field φ(x) (in flat Minkowski space-time) through a
Lagrangian density

L = ∂µφ
∗∂µφ−m2 |φ|2 . (2.171)

The theory is clearly invariant under global U(1)-transformations φ → eiα φ, where α is a
constant parameter, but not under local ones, since if α = α(x) the kinetic term transforms
in a non-trivial way. We can make the theory invariant under local U(1)-transformations
provided the field φ(x) is coupled to a vector potential Aµ(x). Such coupling is introduced
by replacing the ordinary derivatives by covariant ones:

∂µ → Dµ = ∂µ − i eAµ , (2.172)

so that the new Lagrangian density for the scalar field reads:

L ′ = (Dµφ)∗Dµφ−m2 |φ|2 . (2.173)

The theory is invariant under the following local U(1)-transformations:

φ(x) → φ′(x) = ei eα(x) φ(x) , Aµ(x) → A′µ(x) = Aµ(x) + ∂µα(x) , (2.174)

by virtue of the following property of the covariant derivative:

Dµφ → D′µφ
′ = ei eα(x)Dµφ . (2.175)

Since Aµ is a dynamical field, the full Lagrangian density of the theory should also contain
a kinetic term for it:

L = −1

4
Fµν F

µν + (Dµφ)∗Dµφ−m2 |φ|2 , (2.176)
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where Fµν = ∂µAν − ∂ν Aµ is the field strength associated with Aµ.
This theory describes the coupling of a charged scalar field φ, with charge e, to the

electromagnetic field Aµ(x) (scalar-QED), and this coupling is fixed by the gauge-invariance
requirement, namely the requirement of invariance under local-U(1).

The above construction is generalized to a theory with gauge group G. Let the compact
Lie group G be locally generated by a Lie algebra g with generators TA, A = 1, . . . , dim(G),
so that, in a neighborhood of the identity element a generic G-transformation can eb written
as:

g ∈ G , g = exp(αA TA) . (2.177)

The structure of g is described by the following commutation relations:

[TA, TB] = fAB
C TC , (2.178)

fAB
C being the structure constants of g satisfying the Jacobi identity f[AB

D fC]D
E = 0.

Let Φ(x) be some field transforming in a representation R of G (we suppress the internal
index associated with this representation) and let the Φ·Φ denote a G-invariant inner product
in the representation R:

∀g ∈ G : (R(g) Φ) · (R(g) Φ) = Φ · Φ . (2.179)

In the previous example φ · φ = φ∗ φ = |φ|2.
The Lagrangian density:

L =
1

2
∂µΦ · ∂µΦ , (2.180)

is invariant under global G transformations:

Φ(x) → R(g) Φ(x) , g = eα
A TA ∈ G ,

αA being constant parameters. Just as in the previous case, the above Lagrangian is not
invariant under local transformations, parametrized by αA(x).

To construct a theory which is invariant under local- G transformations we associate with
each generator TA a vector field (gauge field) AAµ (x) and define a gauge connection:

Ωg = AAµ (x) dxµ TA ∈ T ∗M4 × g , (2.181)

which is a 1-form on Minkowski space-time (i.e. an element of T ∗M4) with values in the Lie
algebra g. We then define a covariant derivative on Φ:

DµΦ ≡ (∂µ + R(Ωg)) Φ =
(
∂µ + AAµ (x) dxµ R(TA)

)
Φ , (2.182)

where R(TA) are the matrices representing the action of TA on Φ. If R is the adjoint
representation R(TC)A

B = −R(TC)BA = fAC
B. On a p-form field µ in the representation

R, we define an exterior covariant derivative which yields the following (p+ 1)−form:

Dµ ≡ (d+ R(Ωg)∧) µ =
(
d+ AA ∧ R(TA)

)
µ . (2.183)
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The reader can verify that, under a generic local G-transformation g(x) ∈ G:

D′µ(R(g) Φ) =
(
∂µ + R(Ω′g) Φ

)
(R(g) Φ) = R(g)DµΦ , (2.184)

provided Ωg transforms as follows:

Ωg
g−→ Ω′g = gΩg g

−1 + g dg−1 . (2.185)

Exercise: Prove this.
This implies a corresponding transformation property of AAµ (x). In particular, under an

infinitesimal transformation:

U = 1 + εA TA , εa � 1 , (2.186)

we find:

δΩg = δAA TA = Ω′g − Ωg = [εC TC , Ωg]− dεA TA = −AB εC fBCA TA − dεA TA = −DεA TA ⇒
⇒ δAA = −DεA . (2.187)

Next we define a curvature 2-form:

F ≡ dΩg + Ωg ∧ Ωg = FA TA =
1

2
FA
µν dx

µ ∧ dxν TA . (2.188)

The two-forms FA are the field strengths of the gauge fields AAµ and read:

FA = dAA +
1

2
fBC

AAB ∧ AC ⇒ FA
µν = ∂µA

A
ν − ∂ν AAµ + fBC

AABµ A
C
ν . (2.189)

Under a gauge transformation (2.185), F transforms covariantly in the co-adjoint represen-
tation of G:

F → gF g−1 ⇒ FA → F ′A = FB (g−1)B
A , (2.190)

where gA
B is the adjoint representation of g, and we have used the property g TA g

−1 =
(g−1)A

B TB.
On the field strengths FA the covariant derivative reads:

DFA =
1

2
DµF

A
νρ dx

µ∧dxν∧dxρ = dFA+AB∧R(TB)C
A FC = dFA+AB∧fBCA FC , (2.191)

and the reader can verify, using the Jacobi identities, the following Bianchi identities:

DFA = 0 . (2.192)

On the generic field Φ, we have:

D2Φ = DµDνΦ dxµ ∧ dxν = R(F) Φ = FA R(TA) Φ . (2.193)

Exercise: Prove this.
Using the above properties, it is straightforward to verify the G-invariance of the La-

grangian density:

kTr [R(F) ∧R(F)] +
1

2
DµΦ ·DµΦ , (2.194)

where k is a positive normalization constant depending on the representation R. Also in
this general case, the couplings among the gauge fields AA and between these and the matter
fields Φ, are completely fixed by the requirement of gauge invariance.
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2.4.2 Gauge Transformations as Diffeomorphisms

To appreciate the difference between an ordinary gauge theory described above, and general
relativity, seen as the “gauge theory” of the Poincaré group, it is useful to describe the
former in a somewhat more formal framework. We extend the definition of the one-forms
Aµ dx

µ to a larger manifold P which can be locally described as a product of space-timeM4

and the gauge group G.7 An element of this larger space can thus be locally described as
(x, g) = (xµ, g), where xµ define a point on M4 and g ∈ G. The tangent and co-tangent
spaces to P at any point (x, g) are the direct sum of the tangent and co-tangent spaces to
M4 and G. It is known that the structure of the Lie algebra g of G can be described either
in terms of the commutation relations among its generators TA ∈ TG, as in (2.178), or in
terms of dual forms σA = σAB dα

B ∈ T ∗G, defined by the property:

σA(TB) = δAB . (2.195)

These forms can be defined through the right-invariant 1-form

Ω(0) = g dg−1 = σA TA . (2.196)

It is straightforward to verify that:

dΩ(0) = dg ∧ dg−1 = dg g−1 g ∧ dg−1 = −g dg−1 ∧ g dg−1 = −Ω(0) ∧ Ω(0) , (2.197)

which, if expanded in the basis of generators TA, yields the Maurer-Cartan equations for σA:

dσA +
1

2
fBC

A σB ∧ σC = 0 . (2.198)

Equations (2.198) and (2.178) are equivalent.8 Exterior differentiation of noth sides of the
above equation yields fAB

D fCD
E σA ∧ σB ∧ σC = 0.

Next we define, on the larger manifold P , the following 1-form with value in g:9

Ω̃g(x, g) ≡ gΩg(x) g−1 + Ω(0) = AA(x) g TA g
−1 + Ω(0) =

= ÃA(x, g)TA , (2.199)

ÃA(x, g) = AB(x) g−1
B
A + σA . (2.200)

7The correct mathematical framework is that of principal bundles. We shall not enter however the
mathematical details of the subject.

8The equivalence between (2.178) and (2.198) can be easily verified by starting from the latter and
computing both its sides on the couple of vectors TB , TC . One needs to use the property that, for any
1-form ω and vectors X,Y , dω(X,Y ) = X[ω(Y )] − Y [ω(X)] − ω([X, Y ]). We then find dσA(TB , TC) =
TB [σA(TC)] − TC [σA(TB)] − σA([TB , TC ]) = TB [δAC ] − TC [δAB ] − σA([TB , TC ]) = −σA([TB , TC ]). Being
moreover 1

2 fEF
A σE ∧ σF (TB , TC) = fBC

A, we end up with the equation: σA([TB , TC ] − fBCD TD) = 0,
which is equivalent to (2.178).

9From the theory of principal bundles (see for instance [24]), the form Ω̃g(x, g) consistently defines a
connection on P provided transition functions are defined through the right action of G on the fiber, namely
on the G-component of a point (x, g) ∈ P . Gauge transformations here are implemented through local G
elements acting on the fiber to the left. We shall refrain from going into these mathematical subtleties.
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The 1-forms ÃA extend the definition of AA(x) on the whole P . On the tangent space TP
to the principal bundle at any point, we can move along inner or vertical directions tangent
to G or outer directions tangent to the base Minkowski space. These two kind of directions
define an orthogonal decomposition of TP

TP = TM4 ⊕ TG = Span(∂µ, TA) , T ∗P = T ∗M4 ⊕ T ∗G = Span(dxµ, σA) ,

dxµ(∂ν) = δµν , σA(TB) = δAB , dxµ(TA) = σB(∂µ) = 0 . (2.201)

From the above properties we can verify that:

ÃA(TB) = σA(TB) = δAB . (2.202)

This means that we can find a basis of T ∗P such that ÃA are the dual forms to TA.
This framework allows to describe gauge transformations as diffeomorphisms on the larger

manifold P which map (x, g) into (x, h(x) g) and are thus implemented by a spacetime-
dependent group element h(x). All the quantities that were previously defined on space-time
can be extended on P . For instance we define the curvature 2-form on P :

F̃(x, g) ≡ dΩ̃g + Ω̃g ∧ Ω̃g = gF(x) g−1 = F̃A(x, g)TA ,

F̃A = dÃA +
1

2
fBC

A ÃB ∧ ÃC . (2.203)

Notice that F̃A(x, g) = 1
2
F̃A
µνdx

µ ∧ dxν are 2-forms on M4, and thus they are orthogonal to
the vertical (gauge) directions TA, so that

ιTB F̃
A = 0 , (2.204)

where ιTB denotes the contraction of the form along the direction TB of the tangent space
to P . We also extend the definition of the field Φ(x) transforming in a representation R of
G, to a field Φ̃(x, g) on P , by defining Φ̃(x, g) ≡ R(g) Φ(x). Just as we did in our earlier
treatment, we define a covariant derivative on Φ̃(x, g):

D̃Φ̃ = dΦ̃ + R(Ω̃g)Φ̃ . (2.205)

The reader can then verify that:

D̃Φ̃(x, g) = R(g)DΦ(x) , (2.206)

where D was defined in (2.182).
The following Bianchi identities hold:

dF̃ + Ω̃g ∧ F̃ − F̃ ∧ Ω̃g = 0 ⇔ D̃F̃A = dF̃A + fBC
AÃB ∧ F̃C = 0 . (2.207)

Exercise: Check this.
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The reader can easily verify that the effect of a gauge transformation (x, g) → (x, g′) =
(x, h(x) g) is:

Ω̃g → Ω̃′g = h Ω̃g h
−1 + hdh−1 ,

D̃Φ̃→ D̃′Φ̃′ = D̃′(R(h) Φ̃) = R(h) D̃Φ̃ ,

F̃ → F̃ ′ = h F̃ h−1 . (2.208)

Under an infinitesimal transformation h(x) = 1 + εA(x)TA,

δÃA = Ã′A − ÃA = −DεA . (2.209)

We notice that the above transformation property can be described as a diffeomorphism on
P and thus expressed in terms of the Lie derivative of ÃA along the (inner) vector ε = εA TA:

δÃA = −`εÃA = −d
(
ιεÃ

A
)
− ιεdÃA =

= −dεA − ιε
(
F̃A − 1

2
fBC

A ÃB ∧ ÃC
)

=

= −dεA − fBCA ÃB εC − ιεF̃A = −D̃εA , (2.210)

where we have used the horizontality property (2.204) of F̃A.
If, on the manifold P , we were given a set of connection 1-forms ÃA, whose curvature

2-forms are defined by (2.203) and satisfy the horizontality property (2.204), then the vectors
TA ∈ TP dual to ÃA would generate the group G, namely satisfy the commutation relations
(2.178). This can be easily verified by evaluating (2.203) in components along the basis
dxµ, σA of T ∗P . Horizontality implies that F̃A

BC = F̃A
Bµ = 0, and let σA be the restriction of

ÃA to T ∗G. Thus restricting the equation along T ∗G we find:

0 =
1

2
F̃A
BC σ

B ∧ σC = dσA +
1

2
fBC

A σB ∧ σC , (2.211)

which are the Maurer-Cartan equations for the algebra of the group G, which imply that
the dual vectors TA to σA (i.e. to ÃA in T ∗P ) satisfy (2.178). Moreover from the definition
(2.203) and of the covariant derivatives, and from the Jacobi identities satisfied by fBC

A,
the reader can easily verify that the Bianchi identities (2.207) are satisfied, together with
the property

D̃2Φ̃ = R(F̃)Φ̃ = F̃AR(TA)Φ̃ . (2.212)

To make contact with our previous discussion we need to project all quantities defined
over the larger space P down to space-time. This is done using the notion of section of P ,
defined as a mapping from M4 to P :

s : x ∈M4 −→ s(x) = (x, g(x)) , (2.213)

which (locally) associates with each point x on the base manifold an element g(x) in the
fiber G. The pull-back of Ω̃g(x, g) by s is the following one-form on M4

s∗Ω̃g = g(x) Ωg g(x)−1 + g(x) ∂µg(x)−1 dxµ , (2.214)
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which is nothing but the transformed gauge connection Ωg(x) = AA(x)TA under the gauge
transformation g(x). Similarly

s∗F̃ = g(x)F g(x)−1 .

Therefore the choice of a section s(x) of the bundle amounts to a gauge-choice. Choosing
in particular the canonical local trivialization s0(x) = (x, e) we have s0∗Ã

A = AA and
s0∗F̃

A = FA.
In the case of gravity or supergravity, the horizontality property (2.204) for some of

the local symmetry generators (generators of general coordinate transformations or of local
supersymmetry transformations) no longer holds: the generators of local coordinate trans-
formations have a component tangent to space-time. As a consequence of this the gauge
potentials (in particular the vielbein and the gravitino field) are no longer dual to the gener-
ators of the gauge group, but to vectors whose commutators close an algebra with structure
functions depending on the space-time point. An other consequence of this is that the trans-
formation law for the gauge potentials, which can still be expressed as a Lie derivative, is no
longer a gauge transformation of the form (2.210).

2.5 Curved Space-Time

In general relativity gravity is related to the curvature of space-time. Let us briefly recall, in
order to fix the notations, the main facts about the description of the geometry of a curved
manifold.

Let M4 be a curved space-time whose metric is described by a (0, 2) tensor gµν(x), in
terms of which the squared invariant distance between two nearby points reads:

ds2 = gµν(x) dxµ dxν . (2.215)

The local geometry and curvature of M4 can be described in terms of an affine connection
∇, that is a prescription of how to parallel transport tensor along a curve. More specifically
∇ is defined as a mapping:

∇ : TM4 × TM4 −→ TM4 ,

∀X, Y ∈ TM4 ∇(X, Y ) = ∇X(Y ) . (2.216)

The quantity ∇X(Y ) defines the infinitesimal variation of the vector Y when transported
along a curve with tangent vector X. The vector Y is parallel transported along X if ∇X(Y ).
We recall the main properties of ∇:

∇X(Y + Z) = ∇X(Y ) +∇X(Z) ; ∇(X+Y )(Z) = ∇X(Z) +∇Y (Z) ,

∇(f X)(Y ) = f ∇X(Y ) ; ∇X(f Y ) = X(f)Y + f ∇X(Y ) , (2.217)

for any X, Y, Z ∈ TM4 and f(x) function overM4. Let (∂µ) ≡ ( ∂
∂xµ

) be a basis of TM4 and
let (dxµ) the dual basis of T ∗M4: dxµ(∂ν) = δµν . The connection is defined by the quantity
Γρµν :

∇µ(∂ν) ≡ ∇∂µ(∂ν) = Γρµν ∂ρ . (2.218)
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Denoting by ∇µX
ν the components of the vector ∇µX along ∂ν , we then have:

∇µX
ν ≡ (∇µX)ν = ∂µX

ν + ΓνµρX
ρ . (2.219)

If xµ(t) is a curve on M4, V µ = dxµ

dt
its tangent vector, a vector X = Xµ∂µ is parallel

transported along the curve if ∇V (X) = V µ∇µ(X) = 0. If the tangent vector V µ is parallel
transported along its own curve, ∇V (V ) = 0, the curve is a geodesic.

The action of covariant derivative is extended to 1-forms by defining

∇µ(dxν) ≡ −Γµρ
ν dxρ , (2.220)

so that, if ω = ωµ dx
µ is a 1-form, the components ∇µων ≡ (∇µω)ν of ∇µω along dxµ read:

∇µων ≡ (∇µω)ν = ∂µων − Γρµν ωρ . (2.221)

The action of ∇µ is then extended to tensor products of dxµ and ∂ν using Lifshitz rule, so
that it is defined on a generic tensor.

Under a coordinate transformation xµ → yµ
′
(x), the symbol Γ transforms as:

Γρµν → Γρ
′

µ′ν′ =
∂xµ

∂yµ′
∂xν

∂yν′
∂yρ

′

∂xρ
Γρµν +

∂2xρ

∂yµ′∂yν′
∂yρ

′

∂xρ
. (2.222)

Because of last term on the right hand side, Γρµν does not transform as a tensor.
We can constrain the connection to be of metric type, namely the parallel transport to

preserve the inner product of two vectors, defined by the metric. This requires the metric
to be covariantly constant :

∇µgνρ = ∂µgνρ − Γσµν gσρ − Γσµρ gνσ = 0 . (2.223)

Writing the above condition for the triplets of indices (µνρ), (νρµ), (ρµν):

∂µgνρ − Γσµν gσρ − Γσµρ gνσ = 0 , (2.224)

∂νgρµ − Γσνρ gσµ − Γσνµ gρσ = 0 , (2.225)

∂ρgµν − Γσρµ gσν − Γσρν gµσ = 0 . (2.226)

To solve the above equations in Γσµν we sum and subtract them, namely consider the equation
(2.224)+(2.225)-(2.226). We find:

Γσ(µν) =
1

2
gσγ (∂µgγν + ∂νgγµ − ∂γgµν) +

1

2
(Tµ

σ
ν + Tν

σ
µ) , (2.227)

where we have defined the torsion:

T µνρ ≡ Γµνρ − Γµρν = 2 Γµ[νρ] . (2.228)

The symbol Γσµν can then be computed as follows:

Γσµν = Γσ[µν] + Γσ(µν) =
1

2
gσγ (∂µgγν + ∂νgγµ − ∂γgµν) +Kσ

µρ , (2.229)
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where:

Kσ
µρ ≡

1

2
(Tµ

σ
ν + Tν

σ
µ + T σµν) , (2.230)

is called the contorsion. If we consider the effect of a general coordinate transformation on
T σµν , from the definition of this tensor in terms of the connection, it follows that the non-
homogeneous term in (2.222) drops out, being symmetric in µν, and thus that the torsion
transforms as a tensor. The same holds for the contorsion.

If the torsion vanishes, T σµν = 0, Γµν
σ becomes symmetric in its lower indices and ∇

called the Levi-Civita connection.
In supergravity we shall see that the coupling of the gravitational field to its spin-3/2

superpartner, the gravitino, produces a torsion in the connection.
We recall the expression of the Riemann curvature tensor:

Rµν
σ
ρ ≡ ∂µΓσνρ − ∂νΓσµρ − Γγµρ Γσνγ + Γγνρ Γσµγ = −Rνµ

σ
ρ = −Rµν ρ

σ , (2.231)

where last equality follows from the metric compatibility of the connection.
If the connection is Levi-Civita, the following properties hold:

Rµν
σ
ρ = Rσ

ρµν , R[µνρ]
σ = 0 . (2.232)

The Ricci tensor and scalar are defined as:

Rµν ≡ Rµρν
ρ , R = Rµν

µν . (2.233)

For a Levi-Civita connection Rµν = Rνµ.

2.6 Fermions on Curved Space-Time

Fermions are defined as fields transforming in the spinorial representation of the Lorentz
group. In a curved spacetime the metric is no longer invariant under the Lorentz group,
which is manifest only in inertial frames. Although we cannot define global inertial frames,
we can define at any point a local inertial one. This is the free-falling (or moving) frame
which is, in good approximation, inertial and thus in which the action of the Lorentz group is
manifest and fermion fields can be defined. This frame can be defined about any space-time
point p and is such that at that point the metric in this frame is the flat Lorentz one ηµν .
About that point this is no longer true if the space-time curvature is non-vanishing in p and
tidal forces manifest themselves. To define this frame we notice that the metric tensor at
any point can be written in the form:

gµν(x) = Vµ
a(x)Vν

b(x) ηab , a, b = 0, 1, 2, 3 . (2.234)

If the curvature is non-vanishing in p the matrices Vµ
a(x) cannot coincide with the Jacobian

of some local coordinate transformation xµ → ya(x) about p but it can coincide with a
Jacobian ∂µy

a(x) in that point. The coordinates ya(x) define the local inertial frame at
p. In such frame, in an infinitesimal neighborhood of p, the metric is gab ≈ ηab and, as
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anticipated above, the Lorentz group is manifest and acts though matrices Λa
b leaving ηab

invariant. The matrices Vµ
a(x) are called vierbein and their index a, labeling the basis of

the local inertial frame and acted on by the Lorentz group, is called rigid index, as opposed
to the curved ones µ, ν, . . . . They define a basis V a(x) ≡ Vµ

a dxµ of the dual space T ∗xM4

in x. Similarly their inverse Va
µ(x) (Va

µ(x)Vµ
b(x) = δba) define a basis Va = Va

µ∂µ of TxM4.
At any point x there is a Lorentz group O(1, 3) acting on TxM4 and T ∗xM4:

V a(x) → V b(x) Λb
a . (2.235)

The vierbein matrix Vµ
a captures the degrees of freedom on the metric. Indeed their inde-

pendent entries, modulo action of the local Lorentz group, are 4× 4− 6 = 10 which are the
independent entries of gµν(x).

Let us define the action of the connection on the vierbein basis:

∇µV
a = −ωµab V b , ∇µVb = ωµ

a
b Va . (2.236)

From the first of the above equations we find:

0 = ∇µVν
a + ωµ

a
b V

b = ∂µVν
a + Γρµν Vρ

a + ωµ
a
b Vν

b . (2.237)

Antisymmetrizing in µν we find:

T aµν ≡ Vρ
a T ρµν = 2Γρ[µν] Vρ

a = ∂[µVν]
a + ω[µ

a
b Vν]

b . (2.238)

We the define then the torsion 2-form:

T a ≡ 1

2
T aµν dx

µ ∧ dxν = dV a + ωab ∧ V b . (2.239)

Similarly one can compute the Riemann curvature tensor in the new basis and find:

Rµν
a
b = 2(∂[µων]

a
b + ω[µ

a
c ων]

c
b) , (2.240)

so that, defining the curvature 2-form as follows:

Ra
b ≡

1

2
Rµν

a
b dx

µ ∧ dxν , (2.241)

we have:
Ra

b = dωab + ωac ∧ ωcb . (2.242)

The quantities ωµ
a
b define the spin connection 1-form:

ωab = ωµ
a
b dx

µ , (2.243)

It can be easily verified that, from the condition of metric compatibility of the connection
∇µgνρ = 0 and the definition of the vierbein matrices, the following property holds:

ωab = −ωba , (2.244)
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where the rigid indices a, b, c, . . . are raised and lowered with the Lorenzian ηab = ηab. This
property implies that Ra

b = Rb
a, namely Ra

b is a 2-form with values in the algebra of Lorentz
generators.

The vanishing of the torsion tensor T a = 0 defines the Levi-Civita connection and allows
to determine ωab in terms of V a. To this end we write T a = 0 in components and define
ωa,bc ≡ Va

µ ωµ,bc:

∂[µVν]
a + ω[µ

a
b Vν]

b = 0 ⇔ 1

2
(ωa,bc − ωb,ac) = Va

µVb
ν ∂[µVν]c = Ωab,c , (2.245)

where we have defined Ωab,c ≡ Va
µVb

ν ∂[µVν]c and is antisymmetric in the first two indices.
Write now three versions of (2.245) obtained from one another by cyclic permutation of the
three indices:

ωa,bc − ωb,ac = 2Ωab,c , (2.246)

ωb,ca − ωc,ba = 2Ωbc,a , (2.247)

ωc,ab − ωa,cb = 2Ωca,b . (2.248)

(2.249)

Evaluating now (2.246)-(2.247)+(2.248), and using the antisymmetry of ω in its last two
indices, one finds

ωa,bc = Ωab,c − Ωbc,a + Ωca,b = Va
µVb

ν ∂[µVν]c + Vc
µVa

ν ∂[µVν]b − VbµVcν ∂[µVν]a , (2.250)

from which we derive ωµ
a
b.

Eq.s (2.239), (2.242) are the Cartan’s structure equations. Notice that, if we interpret V a

and ωab as the “gauge potentials” associated with the Poincaré generators Pa and Lab, we
see that Eq.s (2.239), (2.242) are nothing but the definition of the corresponding curvatures,
see Eq.s (2.203). To appreciate this we compute the structure constants of the Poincaré
algebra (A.3), (A.4):

{TA} = {Lab, Pa} , [TA, TB] = CAB
C TC ,

[Lab, Lcd] =
1

2
Cab,cd

ef Lef , [Lab, Pc] = Cab,c
dPd ,

Cab,cd
ef = 2

(
δefbc ηad + δefad ηbc − δ

ef
ac ηbd − δ

ef
bd ηac

)
,

Cab,c
d = δda ηbc − δdb ηac . (2.251)

The structure of the Poincaré algebra can alternatively be described by 1-forms σA, dual to
TA, and satisfying the Maurer-Cartan equations:

dσA +
1

2
CBC

A σB ∧ σC = 0 . (2.252)

Next, just as we did for a generic gauge group G, we define the 1-form Ω̃g valued in the Lie
algebra of the Poincaré group

Ω̃g = ÃA TA = ÃaPa +
1

2
ωab Lab = −V aPa +

1

2
ωab Lab , (2.253)
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and the corresponding Lie-algebra-valued curvature 2-form:

F̃ ≡ dΩ̃g + Ω̃g ∧ Ω̃g = RA TA = RaPa +
1

2
Rab Lab = −T aPa +

1

2
Rab Lab , (2.254)

having denoted by {RA} = {Ra, Rab} the components of the curvature 2-form. Note that we
have identified, for later convenience, Ãa with minus the vierbein 1-forms V a and Ra with
minus the torsion 2-forms. We find:

RA ≡ dÃA +
1

2
CBC

AÃB ∧ ÃC , (2.255)

T a = dV a + ωab ∧ V b , Rab = dωab + ωac ∧ ωcb . (2.256)

We recover Eq.s (2.239), (2.242) for the torsion and the Riemann tensor. From our previous
general analysis with a gauge group G, we see that, using the Jacobi identity for the structure
constants CBC

A, the following Bianchi identities hold:

D̃RA ≡ dRA + CBC
A ÃB ∧RC = 0 , (2.257)

D̃T a ≡ dT a + ωab ∧ T b −Ra
b ∧ V b = 0 , (2.258)

D̃Rab ≡ dRab + ωac ∧Rcb − ωbc ∧Rca = 0 . (2.259)

Notice that, for a Levi-Civita connection, the torsion vanishes, so that T a = dT a = 0. The
Bianchi identity for T a then implies Ra

b ∧ V b = 0, that is:

Ra
b ∧ V b = 0 ⇔ R[abc]

d = 0 . (2.260)

Exercise: Verify this.

Example: The Schwarzschild solution. As an example let us give the vierbein, spin-connection and
curvature for the Schwarzschild black hole solution:

ds2 = gµν(x)dxµdxν =

(
1−

2M

r

)
dt2 −

dr2(
1− 2M

r

) − r2 dθ2 − r2 sin2(θ) dϕ2 = V a V bηab , (2.261)

The vierbein reads:

V 0 =

√
1−

2M

r
dt , V 1 =

1√
1− 2M

r

dr , V 2 = r dθ , V 3 = r sin(θ)dϕ . (2.262)

The independent components of the spin connection are

ω0
1 =

M

r2
dt , ω1

2 = −
√

1−
2M

r
dθ , ω1

3 = −
√

1−
2M

r
sin(θ) dϕ , ω2

3 = − cos(θ) dϕ . (2.263)

The independent components of the curvature 2-form Rab are

R0
1 = −

2MV 0 ∧ V 1

r3
, R0

2 =
MV 0 ∧ V 2

r3
, R0

3 =
MV 0 ∧ V 3

r3

R1
2 = −

MV 1 ∧ V 2

r3
, R1

3 = −
MV 1 ∧ V 3

r3
, R2

3 =
2MV 2 ∧ V 3

r3
. (2.264)

Exercise: Verify the Bianchi identities.
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As we did in Subsect. (2.4.2), see Eq.s (2.199), we can extend the definitions of the 1-
forms V a, ωab to a larger manifold P which locally is the product of space-time M4 and of
the Poincaré group GP . The curvature 2-forms only have components along dxµ ∧ dxν . The
main difference with the previous discussion is that now V a, are not orthogonal to dxµ, as
σA in Subsect. (2.4.2) were and as ωab are now, and the curvatures have components along
them:

RA =
1

2
RA
µν dx

µ ∧ dxν =
1

2
RA
ab V

a ∧ V b . (2.265)

Let us denote by {T̃A} = {P̃a, L̃ab} the vectors dual to V a, ωab:

Ãa(P̃b) = δab = −V a(P̃b) , ωab(L̃cd) = 2 δabcd , V a(L̃ab) = ωab(P̃c) = 0 . (2.266)

The horizontality condition of the curvatures only holds for L̃cd but not for P̃b:

ιL̃cdR
A = 0 , ιP̃bR

A 6= 0 . (2.267)

The consequence of RA not being horizontal with respect to all the vectors T̃A is that,
evaluating both sides of (2.255) on T̃B, T̃C , see footnote 7, we find:

RA
BC = RA(T̃B, T̃C) =

(
dÃA +

1

2
CEF

AÃE ∧ ÃF
)

(T̃B, T̃C) ⇔ [T̃A, T̃B] = (CAB
C−RC

AB) T̃C .

(2.268)
In other words, the 1-forms ÃA are not dual to the generators TA of the Poincaré algebra, but
to vectors T̃A which close an algebra whose structure constants depend on the curvatures,
which are functions over space-time, and thus are more appropriately called are structure
functions. Since horizontality holds only for L̃cd, that is RA

ab,c = RA
ab,cd = 0, the last of Eq.s

(2.268) implies that L̃cd close the correct Lorentz algebra, so that:

L̃cd = Lcd . (2.269)

An other consequence of the horizontality condition not being complete, is that, if we com-
pute the variation of the 1-forms ÃA due to diffeomorphisms generated by their dual vectors
T̃A, these are no-longer gauge transformations. Indeed if we compute the variation of ÃA as
a Lie derivative along an infinitesimal vector εAT̃A = εa P̃a + εab Lab/2, along the lines of Eq.
(2.210), we find

δÃA = −`εÃA = −d
(
ιεÃ

A
)
− ιεdÃA =

= −dεA − ιε
(
RA − 1

2
CBC

A ÃB ∧ ÃC
)

=

= −dεA − CBCA ÃB εC − ιεRA = −D̃εA − ιεRA . (2.270)

This variation is not a gauge variation since it does not contain only the covariant deriva-
tive of the local parameter. It also contains the contraction of the curvatures. Only with
respect to a local Lorentz transformation εab Lab/2, the variation is pure gauge. For this
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reason it is not appropriate to define general relativity as a “gauge theory”. If space-time
diffeomorphisms, generated by P̃a, were gauge transformations, the space-time dependence
of the various fields would be the result of a gauge transformation, and this cannot be since
it should be dictated by dynamics.

Since on curved space-time only local Lorentz transformations can be consistently re-
garded as gauge transformations, it is useful to define a Lorentz covariant derivative. On a
field Φ(x) transforming in a representation D of the (local) Lorentz group we define:

DΦ = dΦ +
1

2
ωabD(Lab) ∧ Φ . (2.271)

Under a local Lorentz transformation Λ(x), Φ→ Φ′ = D(Λ)Φ and

D′Φ′ = D(Λ)DΦ , (2.272)

provided the spin-connection transforms as:

ωab → ω′ ab = Λa
c ω

cd Λ−1
d
b + Λa

cdΛ−1 cb . (2.273)

Exercise: Prove this. Hint: First prove, as for Eq. (2.185), that:

1

2
ω′ abD(Lab) =

1

2
ωabD(Λ)D(Lab)D(Λ−1) +D(Λ)dD(Λ−1) , (2.274)

then use the general properties

D(Λ)D(Lab)D(Λ−1) = Λ−1
a
cΛ−1

b
dD(Lcd) , D(Λ)dD(Λ−1) =

1

2
(ΛdΛ−1)abD(Lab) . (2.275)

From (2.273) we derive the following transformation property of the Riemann curvature
2-form under a local Lorentz transformation:

Rab → R′ ab = Λa
cR

cd Λ−1
d
b . (2.276)

The reader can easily verify that:

D2Φ =
1

2
RabD(Lab) ∧ Φ , . (2.277)

Exercise: prove this.
On the vierbein 1-forms V a the Lorentz-covariant derivative yields the torsion tensor:

DV a = dV a +
1

2
ωbcCbc,d

a ∧ V d = dV a + ωab ∧ V b = T a , (2.278)

where we have used the property that on a 4-vector D(Lbc)ad = Cbc,d
a. Deriving twice the

vierbein and using (2.277) we find the Bianchi identity for the torsion:

DT a = D2V a = Ra
b ∧ V b . (2.279)
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The covariant derivative D on Rab reads:

DRab = D̃Rab = dRab + ωac ∧Rcb − ωbc ∧Rca = 0 , (2.280)

where we have used the Bianchi identity for Rab.
A general property which we shall use in the following is the transformation property of

Rab under a generic infinitesimal transformation of ωab:

ωab → ωab + δωab ⇒ Rab → Rab + δRab : δRab = Dδωab , (2.281)

Exercise: Prove this.
On a spinor ψ the covariant derivative D reads

Dψ = dψ +
1

4
ωab γ

abψ , (2.282)

where we have used the property (A.21) that D(Lab) = γab/2, where γa are the (constant)
gamma-matrices defined in the local inertial frame (see Appendix A). Equation (2.277) then
implies

D2ψ =
1

4
Rab γ

abψ . (2.283)

To end this subsection, let us compute the variation of V a along εb P̃b using (2.270), in the
case of vanishing torsion T a = 0:

δεV
a = −δεÃa = D̃εa − ιεT a = Dεa − ιεT a = Dεa . (2.284)

Defining εµ = εa Va
µ we find

δεVµ
a = Dµεa = ∂µ(εν Vν

a) + ωµ
a
b ε
ν Vν

b = (∇µε
ν)Vν

a + εν (∇µVν
a) + ωµ

a
b ε
ν Vν

a =

= (∇µε
ν)Vν

a = ∂µε
νVν

a + Γνµρε
ρ Vν

a = ∂µε
νVν

a + Γρνµε
ν Vρ

a + 2 Γρ[µν]ε
ν Vρ

a =

= ∂µε
νVν

a + εν ∂νVµ
a − εν ∇νVµ

a + T aµρε
ρ =

= ∂µε
νVν

a + εν ∂νVµ
a + εν ων

a
b Vµ

b + T aµρε
ρ = ∂µε

νVν
a + εν ∂νVµ

a + εν ων
a
b Vµ

b ,

(2.285)

where we have used the first of Eq.s (2.236). In the last line we have used the condition of
vanishing torsion once again. Notice that the first two terms in the last line are a diffeo-
morphism transformation on the vierbein by a parameter εµ. The second is a local Lorentz
transformation by a parameter εab = εν ων

a
b.

2.7 Einstein Gravity in the First Order Formalism

Let us start considering pure Einstein’s gravity in the absence of matter. It is useful to write
Einstein-Hilbert action in the fist order (or Palatini) formalism, which consists in treating
V a, ωab as off-shell independent fields. As we shall see, the field equations will provide the
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torsion equation T a = 0 which allows to express ωab in terms of V a, besides yielding the
Einstein equation in the vacuum.

We write the Einstein-Hilbert action (we choose κ2 = 8π GN = 1):

S = − 1

16πGN

∫
M4

d4xeR = −1

2

∫
M4

d4xeR , (2.286)

as an integral over space-time M4 of a 4-form Lagrangian

S =

∫
M4

L(4)
EH = −1

4

∫
M4

Rab ∧ V c ∧ V d εabcd . (2.287)

To prove this we start writing, inside L(4)
EH , Rab in components with respect to the vielbein

basis:

Rab ∧ V c ∧ V d =
1

2
Ref

ab V e ∧ V f ∧ V c ∧ V d . (2.288)

Next we write the 4-fold exterior product of vierbeins as follows:

V e ∧ V f ∧ V c ∧ V d = Vµ
eVν

fVρ
cVσ

d dxµ ∧ dxν ∧ dxρ ∧ dxσ = −εµνρσ VµeVνfVρcVσd d4x =

= −d4x e εefcd , (2.289)

where we have used the property dxµ ∧ dxν ∧ dxρ ∧ dxσ = −d4x εµνρσ and the definition of
e =

√
|det(gµν)| = det(Vµ

a). The 4-form lagrangian L(4)
EH can then be recast as follows:

L(4)
EH = −1

4
Rab ∧ V c ∧ V dεabcd = d4x

e

8
Ref

abεefcdεabcd = −d4x
e

2
Rab

ab = −d4x
e

2
R . (2.290)

The convenience with rewriting the action in the above form will become apparent below.
Let us evaluate the field equations for by varying the action with respect to ωab and V a (we
recall that in the first order formalism, the two fields are regarded as independent). As we
vary ωab → ωab + δωab, only the Riemann tensor varies in the action, so that we have

δS = −1

4

∫
M4

δRab ∧ V c ∧ V d εabcd = −1

4

∫
M4

Dδωab ∧ V c ∧ V d εabcd =

= −1

4

∫
M4

d(δωab ∧ V c ∧ V d εabcd)−
1

2

∫
M4

δωab ∧ DV c ∧ V d εabcd , (2.291)

where we have used Eq. (2.281) and we have integrated by parts. Disregarding the total
derivative term and using T a = DV a, we find:

δS

δωab
= 0 ⇔ 0 = DV c ∧ V d εabcd = εabcd T

c ∧ V d ⇔ T a = 0 , (2.292)

that is we find the torsion equation T a = 0 which makes the connection a Levi-Civita one
and allows to determine ωab in terms of V a, see Eq. (2.250).
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We now vary the action with respect to V a and find:

δS

δV d
= 0 ⇔ 0 = Rab ∧ V cεabcd = 0 . (2.293)

To prove that this equation is the Einstein equation in the vacuum, let us multiply both
sides by V g:

0 = Rab ∧ V c ∧ V gεabcd =
1

2
Ref

ab V e ∧ V f ∧ V c ∧ V g εabcd = −d4x
e

2
Ref

ab εefcg εabcd =

= d4x
e

2
Ref

ab 3!δefgabd = d4x eRef
ab (δefab δ

g
d − 2 δefadδ

g
b ) = −2 d4x e

(
Rg

d −
1

2
δgdR

)
, (2.294)

which implies Einstein’s equation in the vacuum:

Rab −
1

2
ηabR = 0 . (2.295)

Symmetries of the action. The action is manifestly invariant under local Lorentz trans-
formations. Invariance of the action under local transformations generated by P̃a follows
from the fact that these transformations are described by diffeomorphisms on the potentials
V a, ωab, and thus implemented at the infinitesimal level by Lie derivatives, ad by the fact
that the Lagrangian 4-form is written just in terms of exterior products and exterior deriva-
tives of forms. By the properties of Lie derivatives with respect to the exterior product of
forms and exterior derivatives, the infinitesimal variation of the whole Lagrangian under a
corresponding variation of its elementary fields, amounts of a Lie derivative:

δεL(4)
EH = `εL(4)

EH = d(ιεL(4)
EH) + ιε dL(4)

EH . (2.296)

The latter term vanishes being L(4)
EH a top-rom on the 4-dimensional space-time, while the

former is a total derivative, which vanishes if all fields are taken to vanish at the boundary
of M4.

2.8 Supergravity

Let us now extend the above discussion to the construction of a theory which is invariant
under the local N = 1 super-Poincaré group. Historically N = 1 pure supergravity was
constructed first by Ferrara, Freedman and van Nieuwenhuizen in 1976 [25]. It was first
derived in the second order formalism, i.e. writing ωab in terms of the other fields by
imposing the vanishing torsion equation (actually the vanishing supersorsion equation, as
we shall see) from the very start. Eventually the same results were derived by Deser and
Zumino in the first order formalism [26].

Just as we did for pure gauge theories and for Einstein gravity, we start working on an
extended space P . This time however P is locally the product of N = 1 superspace M(4|1)

and the super-Poincaré group. We define on it the connection 1-forms, curvatures and local
super-Poincaré transformations thereof as effected by diffeomorphisms on P . In particular
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supersymmetry transformations will be viewed in this framework as diffomorphisms along
the base space M(4|1) acting on the fermionic coordinates, just as general coordinate trans-
formations were implemented by diffeomorphisms on the xµ coordinates. Then we reduce
everything back to M4 by setting all fermionic coordinates θ, as well ad the components of
the forms along dθ in M(4|1) to zero. The reason why the base space is superspace and not
simply space-time is that while horizontality will still hold for the Lorentz generators, the
same will not be true for the supersymmetry generators. In other words the dependence on
θ of the superfields is not the effect of a gauge transformation, and thus the restriction to
θ = dθ = 0 is not a gauge choice. Indeed if supersymmetry transformations were of gauge
type, also their square, namely space-time diffeomorphisms would be gauge transformations,
which, as pointed our earlier, cannot be the case.

This approach to supergravity, called the geometric or rheonomic approach, was developed
by the authors of [5] and is thoroughly explained in these references. It is a powerful technique
in order to construct supergravity theories from simple geometric principles. In what follows
however, we shall use this geometric picture only to recover the interpretation of the vierbein
V a, the gravitino field Ψ and ωab as the “gauge fields” of the super-Poincaré algebra. The
construction of the supergravity action will be done using a purely space-time perspective,
namely writing down a combination of the Einstein-Hilbert action and the action for the
gravitino field. The supersymmetry transformation laws of the elementary fields leaving
the action invariant will be guessed and a posteriori interpreted as the result of a super-
diffeomorphisms over P .

The generators TA of the N = 1 super-Poincaré group comprise, aside from the Poincaré
generators Pa, Lab, the supersymmetry generators Q. The super-Lie-algebra valued 1-form
Ω̃g on P now has the following form (let us restore κ):

Ω̃g = ÃA TA = −V aPa +
1

2
ωab Lab −

i√
2
κ Ψ̄Q , (2.297)

where Ψ is a spinor-valued 1-form on P , whose components Ψµ along T ∗M4 have one space-
time index and one spinor index. They describe a spin-3/2 field called the gravitino which
completes, together with the graviton field V a, an N = 1 massless supermultiplet. We shall
deal below with the dynamical description of spin-3/2 fields. Let us just anticipate that the

dimension of Ψµ is length−
3
2 and thus that of Ψ is length−

1
2 .

Just as the Q-generators, also Ψ satisfies the Majorana condition:

Ψ = CΨ̄T . (2.298)

We denote by Q̃ the vector in TP which is dual to Ψ. Due to the normalization factor in
the definition of Ω̃g we choose the duality relations to be

V a(P̃b) = −δab , ωab(Lcd) = 2 δabcd , κΨα( ¯̃Qβ) = −i
√

2δβα , κ Ψ̄α(Q̃β) = i
√

2δαβ ,

V a(L̃ab) = ωab(P̃c) = Ψ(Lab) = Ψ(P̃c) = V a(Q̃) = ωab(Q̃) = 0 . (2.299)

Out of (2.297) we construct, as usual, the Lie-algebra-valued curvature 2-form:

F̃ ≡ dΩ̃g + Ω̃g ∧ Ω̃g = RA TA = −T̃ aPa +
1

2
Rab Lab −

i√
2
κ ρ̄Q , (2.300)
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having denoted by {RA} = {−T̃ a, Rab, ρ} the components of the curvature 2-forms. Us-
ing the commutation/anti-commutation rules for the super-Poincaré algebra given at the
beginning of Sect. 2.1, we can compute the exterior product Ω̃g ∧ Ω̃g:

Ω̃g ∧ Ω̃g =
1

2
ωac ∧ ωcb Lab −

1

2
ωac ∧ V cPa +

κ

2

ωab

2
∧
(
− i√

2
Ψ̄

)
[Lab, Q]+

+
κ2

2

(
− i√

2

)(
− i√

2

)
Ψ̄{Q, Q̄}Ψ =

=
1

2
ωac ∧ ωcb Lab −

1

2
ωac ∧ V cPa −

i√
2
κωab Q̄ ∧ γab

4
Ψ− i

2
κ2 Ψ̄γaΨPa , (2.301)

where we have used the property that Cγab is symmetric, so that Ψ̄γabQ = −Q̄γabΨ. From
(2.300) we then find the definition of curvatures:

T̃ a = DV a +
i

2
κ2 Ψ̄γaΨ , (2.302)

Rab = dωab + ωac ∧ ωcb , (2.303)

ρ = DΨ = dΨ +
1

4
ωab ∧ γabΨ . (2.304)

The curvature associated with V a was denoted by T̃ a and is called super-torsion. It differs
from the torsion T a by the gravitino bilinear i

2
Ψ̄γaΨ.

We can also derive the super-Bianchi identities from:

dF̃ + Ω̃g ∧ F̃ − F̃ ∧ Ω̃g = 0 ⇔ dRA + CBC
A ÃB ∧RC = 0 .

DT̃ a = Ra
b ∧ V b − i κ2 Ψ̄ ∧ γaDΨ , (2.305)

DRa
b = dRab + ωac ∧Rcb − ωbc ∧Rca = 0 , (2.306)

Dρ = D2Ψ = Rabγab
4
∧Ψ . (2.307)

Let us set now κ back to one.

2.8.1 The Gravitino Field

The field Ψa = Va
µΨµ transforms, with respect to the local Lorentz group, in the product

(1
2
, 1
2
)× [(1

2
,0) + (0, 1

2
)], that is, with respect to the spin-group, in the product of the spin-

1 times the spin 1/2 representation. The irreducible spin-3/2 component is selected by
imposing the constraint:

γa Ψa = γµ Ψµ = 0 , (2.308)

which sets the (1
2
,0) + (0, 1

2
) component in the product (i.e. the spin-1/2 one) to zero.

The dimension of Ψµ is that of spinor field, that is, in natural units:

[Ψµ] = (length)−
3
2 . (2.309)
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In flat space-time, the field equation for a massless spin-3/2 field Ψµ is the RaritaSchwinger
(RS) equation:

εµνρσγν∂ρΨσ = 0 . (2.310)

A property if this equation is its invariance under the gauge transformation:

Ψµ → Ψµ + ∂µλ , (2.311)

which implies that the longitudinal modes represented by the spin-1/2 field λ, are unphisical,
and thus that the only physical components are the two helicity ±3/2 states.

In curved space-time, on a field as the gravitino which has both spinor and space-time
indices, in principle we should replace ordinary derivatives by the covariant one ∇ which
includes the affine connection Γ and the spin connection ω, needed for the covariance with
respect to diffeomorphisms and to the local Lorentz group, respectively:

∂µΨ −→ ∇µΨν = DµΨν − Γρµν Ψρ = ∂µΨν +
1

4
ωabγabΨν − Γρµν Ψρ . (2.312)

However, we use the following generalization of equation (2.310) to curved space-time:

εµνρσγνDρΨσ = 0 ⇔ γ[µDνΨρ] = 0 , (2.313)

where [νρσ] indicates the complete antisymmetrization in the three indices. We did not
include the affine connection Γ in the covariant derivative because it would make it inconsis-
tent with supersymmetry [6]. Moreover equation (2.313) is diffeomorphism-invariant since
the Christoffel symbol, due to the antisymmetrization in the indices, would contribute a
term depending on the torsion tensor, which is separately covariant under diffeomorphisms:

0 = γ[µDνΨρ] = γ[µ∇νΨρ] +
1

2
γ[µT

σ
νρ]Ψσ , (2.314)

Next we show that (2.313) implies that each space-time component of the field Ψ satisfies
the Dirac equation:

γνDνΨµ = 0 . (2.315)

A way for deriving equation (2.315) is then to contract the last of eq.s (2.313) by γµν . After
some gamma-matrix algebra, and using the properties (A.33), we find:

γνDνΨµ = γνDµΨν . (2.316)

Exercise: Prove this.
Using then (2.316), we find:

γνDνΨµ = γνDµΨν = γν∂µΨν +
1

4
ωµ

abγνγabΨν =

= ∂µ(γνΨν)− (∂µγ
ν) Ψ +

1

4
ωµ

ab[γc, γab]Vc
ν Ψν =

= −(∂µVa
ν) γa Ψ + ωµ

c
a Vc

νγaΨν = −ωµca Vcνγa Ψν + ωµ
c
a Vc

νγaΨν = 0 , (2.317)
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by virtue of (2.308) and the second of (2.236).
Let us derive from the RS equation an other property, namely that:

gµνDµΨν = 0 . (2.318)

To this end we write the left hand side as follows:

gµν DµΨν =
1

2
(γµγν + γνγµ)DµΨν =

1

2
(γµγνDµΨν + γνγµDµΨν) =

1

2
γµγνDµΨν =

=
1

2
γµγνDνΨµ = 0 , (2.319)

where we have used Eq.s (2.315) and (2.316). By the same token, the RS equation also
implies γµνDµΨν = 0.

The RS equation can be derived from the Lagrangian density:

LRS = εµνρσ Ψ̄µγ5γνDρΨσ , (2.320)

which can also be written in the following equivalent form:10

LRS = −i e Ψ̄µγ
µνρDνΨρ . (2.321)

Exercise: Check this.
Just as we did for the Einstein-Hilbert action, it is useful to write the action in terms

of a Lagrangian 4-form written just in terms of exterior derivatives and exterior products
of the elementary fields {V a, ωab, Ψ} (we include here ωab as an elementary field since we
shall work in the first order formalism in which this field is fixed in terms of the others only
through one of the field equations). We can write the following RS 4-form Lagrangian:

L(4)
RS = Ψ̄ ∧ γ5γaDΨ ∧ V a . (2.322)

The reader can prove that:
L(4)
RS = d4xLRS . (2.323)

A consistent definition of the gravitino field on a curved space-time would require the de-
coupling of its longitudinal ±1/2 helicity modes in a local-Lorentz invariant way, that is the
action should be invariant under the following local-Lorentz-covariant version of (2.311)

Ψµ → Ψµ +Dµλ . (2.324)

The RS action L(4)
RS alone does not exhibit such invariance but, as we shall see below, a

theory describing Ψ coupled to gravity does. This is supergravity and (2.324) will describe
a local supersymmetry transformation of Ψ.

10There is no factor κ.
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2.8.2 The Supergravity Action

Let us couple Ψ to gravity by writing the following Lagrangian 4-form:

L(4) = L(4)
EH + L(4)

RS = − 1

4κ2
Rab ∧ V c ∧ V d − Ψ̄ ∧ γ5γaDΨ ∧ V a =

= d4x e

[
− R

2κ2
+

1

e
εµνρσ Ψ̄µγ5γνDρΨσ

]
. (2.325)

We set again κ = 1 and we shall restore it in the sequel when needed.
In the first-order (Palatini) formalism, we vary the action with respect to ωab, treated as

independent:

δL(4) = δωab ∧
[
−1

2
DV c ∧ V dεabcd +

1

4
Ψ̄ ∧ γ5γcγabΨ ∧ V c

]
. (2.326)

Now use the property that Ψα ∧Ψβ, α, β = 1, 2, 3, 4 being the spinor labels, is symmetric in
the two indices, since switching the position of the two fields implies one minus sign from
the fact that the fields are Grassman valued, and an other minus sign being them 1-forms.
For this reason a bilinear Ψ̄γa1...akΨ = ΨTCγa1...akΨ is non-vanishing only if Cγa1...ak is
symmetric, and thus:

Ψ̄γabcΨ = Ψ̄γ5γ
aΨ = Ψ̄Ψ = 0 . (2.327)

Next, in the second term on the right hand side of (2.326), we write γ5γcγab = γ5γcab +
2ηc[aγ5γb]. The second matrix does not contribute to the gravitino bilinear, so that we can
write (2.326) as follows:

δL(4) = δωab ∧
[
−1

2
DV c ∧ V dεabcd +

1

4
Ψ̄ ∧ γ5γcabΨ ∧ V c

]
=

= δωab ∧
[
−1

2
DV c ∧ V dεabcd −

i

4
εabcdΨ̄ ∧ γcΨ ∧ V d

]
. (2.328)

The equation of motion from the variation of ωab reads:

δS

δωab
⇒, T̃ a = DV a +

i

2
Ψ̄ ∧ γaΨ = T a +

i

2
Ψ̄ ∧ γaΨ = 0 . (2.329)

In contrast to the pure gravity case, the equation implies the vanishing of the super-torsion
instead of the torsion tensor. As a consequence of this, the connection ωab is torsionful, the
torsion being:

T a = DV a = − i
2

Ψ̄ ∧ γaΨ ⇒ T aµν = 2Vρ
a Γρ[µν] = −i Ψ̄[µγ

aΨν] . (2.330)
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We now compute the other field equations by varying the action with respect to V a and Ψ:11

δVL(4) = δV a ∧
[
−1

2
Rbc ∧ V dεabcd + Ψ̄ ∧ γ5γaDΨ

]
= 0 ,

−δΨL(4) = δΨ̄ ∧ γ5γaDΨ ∧ V a + Ψ̄ ∧ γ5γaDδΨ ∧ V a =

= δΨ̄ ∧ γ5γaDΨ ∧ V a +DΨ̄ ∧ γ5γaδΨ ∧ V a + Ψ̄ ∧ γ5γaδΨ ∧ DV a =

= 2 δΨ̄ ∧ γ5γaDΨ ∧ V a + Ψ̄ ∧ γ5γaδΨ ∧ DV a =

= 2δΨ̄

[
γ5γaDΨ ∧ V a − 1

2
γ5γaΨ ∧ DV a

]
= 0 , (2.331)

where in going from the first to the second line of δΨL(4) we have performed an integration
by parts, using:

d(Ψ̄∧γ5γaδΨ∧V a) = DΨ̄∧γ5γaδΨ∧V a− Ψ̄∧γ5γaDδΨ∧V a+Ψ̄∧γ5γaδΨ∧DV a . (2.332)

We then find the two equations:

Rab ∧ V cεabcd = −2Ψ̄ ∧ γ5γdDΨ , (2.333)

γaDΨ ∧ V a =
1

2
γaΨ ∧ DV a . (2.334)

Let us now use the property (A.32):

γaΨ Ψ̄γaΨ = 0 , (2.335)

to rewrite on the left hand side of (2.334):

γaΨ ∧ DV a = γaΨ ∧
(
T̃ a − i

2
Ψ̄ ∧ γaΨ

)
= γaΨ ∧ T̃ a (2.336)

Exercise: Prove the identity (A.32) using the basic Fierz identity for the product of two Ψ
(A.31).

The field equations can then be recast in the following equivalent form:

T̃ a = 0 , (2.337)

Rab ∧ V cεabcd = −2Ψ̄ ∧ γ5γdDΨ , (2.338)

γaDΨ ∧ V a =
1

2
γaΨ ∧ T̃ a = 0 . (2.339)

Einstein’s equation in the torsionless connection. We can write everything in terms
of a torsionless connection ω̂ab by writing:

ωab = ω̂ab + ∆ωab ,

D̂V a ≡ dV a + ω̂ab ∧ V b = 0 . (2.340)

11In varying with respect to Ψ we recall that, due to the Majorana condition, Ψ̄ and Ψ are not independent.
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The component ∆ω can be evaluated as follows. From Eq.s (2.340) and (2.330) we find:

∆ω[c
a
b] = − i

2
Ψ̄cγ

aΨb . (2.341)

We then write the following three equations:

∆ωc,ab −∆ωb,ac = −i Ψ̄cγaΨb ,

∆ωa,bc −∆ωc,ba = −i Ψ̄aγbΨc ,

∆ωb,ca −∆ωa,cb = −i Ψ̄bγcΨa .

summing the first two and subtracting the third, we find:

∆ωc,ab = − i
2

(
Ψ̄cγaΨb + Ψ̄aγbΨc − Ψ̄bγcΨa

)
. (2.342)

Next we rewrite the field equations in terms of the torsionless connection ω̂, denoting by
hatted symbolsquantities expressed in terms of it. The Riemann tensor then reads:

Rcd
ab = R̂cd

ab + 2D̂[c∆ωd]
ab + 2 ∆ω[c

ae ∆ωd] e
b ,

Rc
a = R̂c

a + 2D̂[c∆ωb]
ab + 2 ∆ω[c

ae ∆ωb] e
b ,

R = R̂+ 2D̂[a∆ωb]
ab + 2 ∆ω[a

ae ∆ωb] e
b . (2.343)

Recall now that (we suppress the symbol ∧ for the sake of notational simplicity):

Rab ∧ V c ∧ V gεabcd = −2 d4x e

(
Rd

g − 1

2
δgdR

)
,

Ψ̄γ5γdDΨV g = −d4x εµρσδ Ψ̄µγ5γνDρΨσVd
ν Vδ

g . (2.344)

This allows to rewrite Einstein’s equation in space-time components:

Rµν − 1

2
gµνR = −1

e
ερσδνΨ̄ργ5γ

µDσΨδ . (2.345)

Using (2.343) we can write this equation in terms of quantities defined with the torsionless
connection:

R̂µν − 1

2
gµν R̂ = T µν ,

T µν ≡ −1

e
ερσδνΨ̄ργ5γ

µDσΨδ − 2
[
D̂[c∆ωb]

ab + ∆ω[c
ae ∆ωb] e

b−

−1

2

(
D̂[b∆ωd]

bd + ∆ω[b
be ∆ωd] e

d
)
δac

]
Va

ν V µc . (2.346)
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Integrability of the RS equation. Let us now work again with the torsionful connection
and work out the integrability condition for the RS equation (2.339)under the condition
T̃ a = 0 = DT̃ a implied by (2.337):

0 = D (γaDΨVa) = γaD2ΨVa + γaDΨDVa = γaRbc
γbc

4
ΨVa −

i

2
γaDΨ Ψ̄γaΨ , (2.347)

having used Eq.s (2.283) and (2.330). Next we use the general property:

γaγbc = iεabcdγ5γd + 2ηa[bγc] , (2.348)

to rewrite the integrability condition in the form:

0 =
i

4
εabcdRbcγ

5γdΨVa +
1

2
Ra

bγ
bΨVa −

i

2
γaDΨ Ψ̄γaΨ . (2.349)

Using equations T̃ a = 0 = DT̃ a, the super-Bianchi identity (2.305) yields:

Ra
b ∧ V b = i Ψ̄γaDΨ , (2.350)

which allows to rewrite the second term on the right hand side of (2.349) and as follows:

0 =
i

4
εabcdRbcγ

5γdΨVa −
i

2
γbΨ Ψ̄γbDΨ− i

2
γaDΨ Ψ̄γaΨ . (2.351)

The first term on the right hand side can now be rewritten using Einstein’s equation (2.338)
so to obtain:

0 =
i

2
γ5γdΨ Ψ̄γ5γ

dDΨ +
i

2
γbΨ Ψ̄γbDΨ +

i

2
γaDΨ Ψ̄γaΨ =

=
i

2
γ5γdΨ Ψ̄γ5γ

dDΨ +
i

2
γbΨ Ψ̄γbDΨ +

i

2
D(γaΨ Ψ̄γaΨ)− i γaΨ Ψ̄γaDΨ =

=
i

2

(
γ5γdΨ Ψ̄γ5γ

dDΨ− γbΨ Ψ̄γbDΨ
)
, (2.352)

where we have used (A.32) in the total covariant derivative. That equality (2.352) is identi-
cally satisfied can be easily verified using the Fierz identity (A.31).

Exercise: Prove this.(Hint: Use the properties (A.33) γdγ
abγd = 0, γdγ

aγd = −2γa.)
We shall use in the following the identity (2.352) in the equivalent form:

γdΨ Ψ̄γ5γ
dDΨ = γ5 γbΨ Ψ̄γbDΨ . (2.353)

Supersymmetry. The action (2.325) is not invariant under the local transformation of
the form (2.324):

Ψµ → Ψµ +Dµε . (2.354)

In order for the action to be off-shell invariant in the first order formalism, we would have
to devise a corresponding transformation property of the other fields which are off-shell
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independent, namely of V a and ωab. In order to make things simpler, we can go partly
on-shell and only require T̃ a = DT̃ a = 0. In this way ωab is no longer independent and we
only need to define a transformation property of V a. After defining this local invariance of
the action we shall prove that it realizes the supersymmetry transformations on the fields.
This latter property, namely the closure of the supersymmetry algebra on the fields, only
holds on-shell, that is upon using the field equations. For the sake of simplicity, we shall
only verify it on the vierbein V a for which the field equations are not needed.

Consider then the variation of the action S deriving from a variation of the three fields
V a, ωab, Ψ:

δS = δωab
δS

δωab
+ δV a δS

δV a
+ δΨ

δS

δΨ
. (2.355)

We then impose the condition T̃ a = 0 which allows to express ωab = ωab(V,Ψ). This implies
δS
δωab

= 0 so that

δS = δV a δS

δV a
+ δΨ

δS

δΨ
. (2.356)

We wish to define a transformation property for V a for which, modulo a total derivative,
under a transformation δΨ = Dε,

δL(4) = δVL(4) + δΨL(4) = 0 . (2.357)

Let us compute δΨL(4):

δΨL(4) = −2 Ψ̄γ5γaD2ε V a = −1

2
Ψ̄γ5γaγbcεR

bc V a = − i
2
εabcdΨ̄γ

dεRbc V a + Ψ̄γ5γaεR
ab Vb .

(2.358)

Now use DT̃ a = 0 which implies Rab Vb = i Ψ̄γaDΨ, according to Eq. (2.305):

δΨL(4) = − i
2
εabcdΨ̄γ

dεRbc V a + i Ψ̄γ5γaε Ψ̄γaDΨ . (2.359)

If we apply the identity (2.353) to the last term (after rewriting Ψ̄γ5γaε = ε̄γ5γaΨ), we find:

δΨL(4) =
i

2
Rab V cεabcdΨ̄γ

dε+ i ε̄γaΨ Ψ̄γ5γ
aDΨ =

= −1

2
Rab V cεabcd(i ε̄γ

dΨ)− Ψ̄γ5γ
aDΨ (iε̄γaΨ) . (2.360)

Notice that δΨL(4) is precisely canceled by a variation δVL(4) of the Lagrangian corresponding
to the following transformation of the vierbein:

δV a = −i ε̄γaΨ . (2.361)

Restoring the κ-factors:
δV a = −i κ ε̄γaΨ . (2.362)
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The action is therefore invariant under the following local transformations:

δΨ =
1

κ
Dε , δV a = −i κ ε̄γaΨ . (2.363)

Let us set κ back to one.
These transformation properties are the result of diffeomorphisms in P generated by the

vector v = −i ε̄Q̃/
√

2 = −i Q̃ε/
√

2:

δεΨ = −`vΨ = −d(ιvΨ)− ιv dΨ = −d(ιvΨ)− ιv (ρ− ωab
γab

4
Ψ) = Dε , (2.364)

provided ιvρ = 0.12 In the above derivation we have used the properties (2.299) and, in
particular:

ιvΨα = Ψα(v) = Ψα(−i Q̃
β

εβ/
√

2) = − 1√
2

Ψα(iQ̃
β

)εβ = −εα . (2.365)

As for V a we find:

δεV
a = −d(ιvV

a)− ιv dV a = −ιv dV a = −ιv (T̃ a − ωab V b − i

2
Ψ̄γaΨ) =

= i (ιvΨ̄)γaΨ = −i ε̄γaΨ , (2.366)

where we have used once again the property (2.299) in writing:

ιvΨ̄
α = Ψ̄α(v) = Ψ̄α(− i√

2
ε̄βQβ) =

1√
2
ε̄β Ψ̄α(i Qβ) = −ε̄α . (2.367)

Let us evaluate now the effect of two consecutive transformations (2.363) on V a. We evaluate
it in the passive description (see Appendix A):

δε1δε2V
a = −δε1(i ε̄2γaΨ) = −i ε̄2γaδε1Ψ = −i ε̄2γaDε1 ⇒
⇒ [δε1 , δε2 ]V

a = −i (ε̄2γ
aDε1 − ε̄1γaDε2) = −i (ε̄2γ

aDε1 +Dε̄2γaε1) = −D(i ε̄2γ
aε1) .

(2.368)

This result is precisely −δwV a, where w = i ε̄2γ
aε1 P̃a = wa P̃a is the parameter of the

space-time translation resulting from the two subsequent supersymmetries according to the
supersymmetry algebra:

[v1, v2] = [− i√
2
ε̄1 Q̃, −

i√
2
Q̃ ε2] = −1

2
ε̄1{Q, Q̃}ε2 = −i ε̄1γaε2 P̃a = xa0 P̃a = w , (2.369)

and,

δwV
a = −d(ιwV

a)− ιw(T̃ a − ωab V b − i

2
Ψ̄γaΨ) = D(i ε̄2γ

aε1) = −[δε1 , δε2 ]V
a , (2.370)

12This property can be understood using the rheonomic analysis [5].
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where we have used T̃ a = 0. The minus sign is due to the passive description of the
consecutive variations (see (A.17)).

We have therefore proven that the local invariance realizes, at least on the vierbein field,
the supersymmetry algebra. The closure of supersymmetry on the gravitino field requires
the use of the field equations and we do not prove it. This represents a general feature: while
the lagrangian is off-shell invariant under local super-Poincaré transformations, these close
on the fields only on-shell, namely upon use of the field equations.

Let us end this part by expressing the local variation of the vierbein resulting from the
commutator of two supersymmetries in terms of diffeomorphisms, along the lines of the
derivation (2.285). We define εµ = wa Va

µ, where wa = i ε̄2γ
aε1 and find:

δwV
a = Dµ(wa) = ∂µε

νVν
a + εν ∂νVµ

a + εν ων
a
b Vµ

b + T aµρε
ρ , (2.371)

where we have taken into account the fact that the connection defining D is the torsionful
one. Thus, in contract to the case (2.285) of a local transformation generated by P̂a in
the absence of the gravitino field, we now find, aside from the effect of a local space-time
diffeomorphism parametrized by εµ (i.e. the term ∂µε

νVν
a + εν ∂νVµ

a) and of a local Lorentz
transformation (εν ων

a
b Vµ

b), an extra term T aµρε
ρ = i (ερΨ̄ρ)γ

aΨµ, depending on the torsion,
can be viewed as a supersymmetry transformation with parameter ερΨ̄ρ.

3 Part II: Extended Supergravities and Black Holes

3.1 Matter Coupled and Extended Supergravities

We have described in detail the pure N = 1 supergravity. The above construction is gener-
alized [27] by coupling the supergravity multiplet to a number n of chiral or Wess-Zumino
multiplets, each consisting of a chiral fermion and two scalar fields and a number nv of vector
multiplets, each consisting of a vector field and a chiral fermion:

[1× (2), 1× (
3

2
)] nv × [1× (1), 1× (

1

2
)] n× [1× (

1

2
), 2× (0)] . (3.1)

The vector multiplets define the gauge sector, with the vector fields possibly gauging a suit-
able local internal symmetry group, while the chiral multiplets define the matter sector. The
former consist of one vector field and one Majorana fermion, the latter of one chiral fermion
and two scalar fields: one scalar and the other pseudo-scalar. This couple of scalar fields a, b
in each chiral multiplet enter the Lagrangian and the supersymmetry transformation laws
only in a certain complex combination z = a+ i b.

We can also consider extended supergravity theories (N > 1) describing the supergravity
multiplet, consisting of the graviton and of N gravitino fields Ψi, i = . . . ,N , coupled to a
number of vector and matter multiplets. As previously emphasized, the consistent definition
of a number N of massless gravitino fields on a curved space-time requires, for each of them,
the decoupling of the spin-1/2 longitudinal modes, which in turn follows from the invariance
of the theory under a transformation of the form (2.324):

Ψi
µ → Ψi

µ +Dµεi , (3.2)
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that is under N -independent supersymmetries. Thus a consistent theory containing N
massless gravitinos is an N -extended supergravity.

In the N = 2 theory13 for example we can have, besides the supergravity multiplet, nv.m.
vector multiplets and nH hyper-multiplets:

[1× (2), 2× (
3

2
), 1× (1)] nv.m.× [1× (1), 2× (

1

2
), 2× (0)] nH × [2× (

1

2
), 4× (0)] . (3.3)

As for the chiral multiplets, the two scalar fields in each vector multiplet appear in complex
combinations zk = ak + i bk, while the four scalar fields in each hyper-multiplet combine in
quaternionic numbers. The two chiral spinors in the hypermultiplet merge in a single Dirac
one.

The most general N = 3 theory describes the supergravity multiplet coupled to nv vector
multiplets :

[1× (2), 3× (
3

2
), 3× (1), 1× (

1

2
)] nv × [1× (1), (3 + 1)× (

1

2
), (3 + 3)× (0)] , (3.4)

where the 3 + 3 scalar fields arrange themselves in three complex scalars.
In the N = 4 supergravity the graviton multiplet is coupled to nv vector multiplets:

[1× (2), 4× (
3

2
), 6× (1), 4× (

1

2
), 2× (0)] nv × [1× (1), 4× (

1

2
), 6× (0)] , (3.5)

where only the two scalar fields in the graviton multiplet arrange themselves in a single
complex one.

The N = 5 supergravity (as well as the N > 5 theories) only describes the graviton
multiplet:

[1× (2), 5× (
3

2
), 10× (1), (10 + 1)× (

1

2
), (5 + 5)× (0)], , (3.6)

where the scalar fields arrange themselves in 5 complex ones.
Similarly also the field content of the N = 6 theory consists of the only graviton multiplet:

[1× (2), 6× (
3

2
), (15 + 1)× (1), (20 + 6)× (

1

2
), (15 + 15)× (0)] , (3.7)

where the scalar fields arrange themselves in 15 complex ones.
The N = 7 theory coincides with the maximal N = 8 one describing a single supergravity

multiplet of the form:

[1× (2), 8× (
3

2
), 28× (1), 56× (

1

2
), 70× (0)] , (3.8)

Scalars have an important role in the construction of any phenomenologically viable model,
since they define, though non-vanishing v.e.v., vacua in which the internal symmetry is spon-
taneously broken and a Higgs mechanism occur. This includes supersymmetry which ought

13The first N = 2 supergravity describing the only graviton multiplet, was constructed in [28].
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to be ultimately broken since we know it is not realized in Nature: superpartners (selectron,
squarks, photino, gluinos etc...) of the known fermions and bosons (electron, quarks, photon,
gluons etc...) with the same masses as their counterparts are not observed. Spontaneous su-
persymmetry breaking occurs when the vacuum, characterized by certain v.e.v. of the scalar
fields, preserves at most part 14 of the off-shell supersymmetry of the theory. Aside from the
ordinary Higgs mechanism, a super-Higgs mechanism is at work through which all or part
of the gravitinos Ψi, i = . . . ,N , namely those corresponding to the broken supersymme-
tries, acquire mass. A mass for a gravitino is clearly inconsistent with supersymmetry since
gravitinos are the superpartners of the massless graviton field. The longitudinal modes of
these massive gravitinos are provided by spin-1/2 fields called Goldstinos, superpartners of
the scalar fields whose v.e.v break supersymmetry, which are then “eaten” by the spin- 3/2
gauge fields of supersymmetry just as spin-0 Glodstone bosons are “eaten” by the ordinary
gauge fields through the Higgs mechanism. We shall not discuss here the interesting issue of
spontaneous (local) supersymmetry breaking in phenomenological model building, for which
the literature is vast and we refer the reader to some excellent reviews (see, for instance,
[4, 3] or the more recent [6]).

Supersymmetry constrains the form of the Lagrangian, i.e. the structure of its kinetic
terms, mass terms, couplings and scalar potential. The larger the amount N of supersymme-
try, the more stringent these constraints. The theory is characterized by a bosonic sector and
a fermionic one. Once the former is given, the latter is completely fixed by supersymmetry.
Here are some general common features of the bosonic sector of a supergravity Lagrangian.
It consists of:

The graviton field Vµ
a , nv vector fields AΛ

µ (Λ = 1, . . . , nv) , ns scalar fields φs (s = 1, . . . , ns) .
(3.9)

Let us consider the simpler case of an ungauged supergravity, namely of a supergravity model
in which the vector fields are not minimally coupled to any other field. This is the class of
models we shall be dealing with in the following, when discussing black hole solutions. The
general form of the supergravity action describing the only bosonic sector is:

SB =

∫
d4xLB =

∫
d4x e

[
−R

2
+

1

2
Gst(φ) ∂µφ

s∂µφt+

+
1

4
FΛ
µνIΛΣ(φ)FΣµν +

1

8e
εµνρσF

ΛµνRΛΣ(φ)FΣ ρσ − V (φ)

]
, (3.10)

where FΛ
µν = ∂µA

λ
ν − ∂νA

λ
µ. Let us comment on the general characteristics of the above

action:

• The scalar fields φs are described by a non-linear σ-model, that is they are coordinates
of a non-compact, Riemannian ns-dimensional differentiable manifold (target space),
named scalar manifold and to be denoted by Mscal. The positive definite metric on

14For N = 1, supersymmetry breaking is clearly complete, while for extended theories, N > 1, a fraction
of N may be preserved.

60



the manifold is Gst(φ).The corresponding kinetic part of the Lagrangian density reads:

Lscal =
e

2
Gst(φ) ∂µφ

s∂µφt . (3.11)

The σ-model action is clearly invariant under the action of global (i.e. space-time
independent) isometries of the scalar manifold. Indeed, if G is the isometry group of
Mscal, a generic element of it will map the scalar fields φ = (φs) in new ones, to be
denoted by g ? φ or φ′ = (φ′s), which are in general non-linear functions of the original
ones φ′s = φ′s(φt) such that:

∀g ∈ G : φ
g−→ g ? φ = φ′(φ) : Gs′t′(φ

′(φ))
∂φ′s

′

∂φs
φ′t
′

∂φt
= Gst(φ) . (3.12)

As we shall discuss below, the group G can be promoted to a global symmetry group of
the field equations and Bianchi identities (i.e. on-shell global symmetry group) provided
its (non-linear) action on the scalar fields (3.12) is combined with an electric-magnetic
duality transformation on the vector field strengths and their magnetic duals.

• The two terms containing the vector field strengths will be called vector kinetic terms.
A general feature of supergravity theories is that the scalar fields are non-minimally
coupled to the vector fields as they enter these terms through symmetric matrices
IΛΣ(φ), RΛΣ(φ) which contract the vector field strengths (not to be confused with the
real and imaginary parts Rij, Iij of the central charge matrix Zij, for which we have
used the same symbols R, I). The former IΛΣ(φ) is negative definite and generalizes
the −1/g2 factor in the Yang-Mills kinetic term. The latter RΛΣ(φ) generalizes the
θ-term.

• The presence of a scalar potential. In an ungauged supergravity a scalar potential is
allowed only for N = 1 (called the F-term potential). In extended supergravities a
non-trivial scalar potential can be introduced without explicitly breaking supersym-
metry only through the gauging procedure, which consists in promoting a suitable
global symmetry group (a subgroup of the isometry group G) to local symmetry to
be gauged by the vector fields of the theory. This is effected, as usual, by replacing
ordinary derivatives and vector field strengths by covariant ones. Supersymmetry of
the action further requires the introduction of additional terms in the supersymmetry
transformation rules of the gravitino and fermion fields, together with gravitino and
fermion mass terms in the Lagrangian and a scalar potential. These new ingredients
(extra terms in the supersymetry transformation rules, mass matrices and the scalar
potential) all have a well defined expression in terms of the scalar fields and the newly
introduced gauge group. This procedure is the only way for introducing in an extended
supergravity either minimal couplings of the vector fields to the other fields, or a scalar
potential. Since a scalar potential is an essential ingredient for having spontaneous su-
persymmetry breaking, the latter phenomenon in extended supergravities ultimately
depends on the choice of the internal gauge symmetry.

The fermion part of the action is totally determined by supersymmetry once the bosonic one
is given.
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Minimal supergravity. In the N = 1 case, the scalar manifold Mscal describes the scalar
fields in the chiral multiplets. Strictly speaking this is a complex manifold of Hodge-Kähler
type (see for instance [29, 6]), which is a particular kind of Kähler manifold 15 in which
the Kähler transformations act on the fermion fields as U(1)-transformations, which are
the N = 1 U(1) R-symmetry transformations. Consistency of such transformations on the
fermion and gravitino fields (similar to that yielding the Dirac quantization of the electric
charge) imposes a constraint on the geometry of the Kähler manifold. The structure of
the bosonic Lagrangian is completely fixed by the following independent data: the Kähler
potential K(z, z̄) associated with the manifold , a holomorphic superpotential W (z),16 and
of the matrices IΛΣ, RΛΣ defining the vector kinetic part and which are constrained by
supersymmetry to be holomorphic functions of the complex scalar fields: IΛΣ(z), RΛΣ(z).
The σ-model action reads:

Lscal = eGαβ̄(z, z̄) ∂µz
α∂µz̄β̄ . (3.13)

If the theory is gauged, that is a subgroup of the isometry group G of the scalar manifold
is promoted to local internal symmetry, additional terms, as mentioned above, appear in
the supersymmetry transformation laws and in the Lagrangian, which also affect the scalar
potential (through additional D-terms). For the sake of completeness we write the most
general N = 1 potential:

V (z, z̄) = eG

(
Gαβ̄ ∂

∂zα
G

∂

∂z̄β̄
G − 3

)
+

1

4
I−1 ΛΣPΛPΣ , (3.14)

where G (z, z̄) ≡ K(z, z̄) + log(|W (z)|2) and PΛ(z, z̄) are real quantities depending on the
choice of the gauged isometries.17

Extended supergravities. In N > 1 supergravities, multiplets start becoming large
enough as to accommodate both the scalar fields and the vector fields. As we increase N
from N = 1, the first instance of scalar and vector fields connected by supersymmetry is in
the N = 2 vector multiplet. This feature has profound implications on the mathematical
structure of the models. In particular it poses strong constraints on the (non-minimal) scalar-
vector couplings in the Lagrangian, that is on the matrices IΛΣ(φ), RΛΣ(φ). Given the scalar
manifold, supersymmetry fixes IΛΣ(φ), RΛΣ(φ).18 Moreover global isometry transformations

15Let us recall here the definition of a Kähler manifold [30]. A Kähler manifold is a hermitian complex
manifold with metric ds2 = 2Gαβ̄ dz

α ⊗ dz̄β̄ in which the Kähler 2-form K = iGαβ̄ dz
α ∧ dz̄β̄ is closed:

dK = 0. In such manifolds the metric can be locally expressed in terms of a Kähler potential K(z, z̄) as
follows: Gαβ̄ = ∂

∂zα
∂
∂z̄β̄
K(z, z̄). The Kähler potential is defined modulo a Kähler transformation connecting

its expressions in two overlapping parches: K(z, z̄) → K(z, z̄) + f(z) + f̄(z̄). A Hodge-Kähler manifold is a
Kähler manifold with an additional structure defined over it: a holomorphic line bundle L. Associated with
this line bundle there is a U(1)-bundle in which the fermion fields and the gravitino field have values. The
formal defining condition of a Hodge-Kähler manifold is that the first Chern class of the bundle equals the
cohomology class of the Kähler 2-form: c1(L) = [K]. This condition is nothing but the consistency condition
mentioned below (see [6] for a discussion on this point).

16 The superpotential W (z) in an N = 1 model is a section of this line bundle.
17They are the moment maps associated with these isometries, in terms of which the holomorphic Killing

vectors kαΛ(z) are expressed as follows: kαΛ(z) = iGαβ̄ ∂
∂z̄β̄
PΛ.

18This is true up to a choice of the symplectic frame, see below.
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(3.12) on the scalar fields induce, by supersymmetry, global transformations on the vector
fields. These act as electric-magnetic transformations on the vector field strengths and their
magnetic duals and define the on-shell global symmetries of the theory, as mentioned above.
Before discussing the issue of the global symmetry of these models, to be dealt with in the
next Section, let us first discuss the general features of the scalar manifolds.

3.1.1 Scalar Manifolds of Extended Supergravities

While the N = 2 models allow for a class of homogeneous scalar manifolds, in all N > 2
models supersymmetry constrains the scalar manifold to be homogeneous symmetric (see
Table 3.1.1).

A homogeneous manifold M is a manifold in which any couple of points are connected
by an isometry. As a consequence of this, any point p can be reached from a given reference
one O, called the origin, through an element (in general not unique) of the isometry group
G. The isometry group G is said to have a transitive action on M . We define this action to
be a left action and denote it by a star symbol:

∀p ∈M ∃gp ∈ G : p = gp ? O . (3.15)

By left action we mean that for any g1 g2 ∈ G and p ∈M , we have g1 ? (g2 ? p) = (g1 g2) ? p
(see the second of [24]). The action of G on M may not be free. This means that the element
gp in (3.15) is not unique or, equivalently, that for any p ∈M there may be a subgroup Hp

of G which leaves p invariant: Hp ? p = p. This group is called the isotropy (or stabilizer)
group of p. It can be shown that the isotropy groups of any two points of a homogeneous
space are isomorphic. Let us denote by H the isotropy group of the origin O: H ? O = O.
Given a point p in M and an element gp of G mapping O to p as in (3.15), any other element
differing from gp by the right multiplication by an element of H will still map O to p:

∀g′ ∈ G ; g′ = gp h (h ∈ H) : g′ ? O = (gp h) ? O = gp ? (h ? O) = gp ? O = p . (3.16)

If we denote by g H = {g h ∈ G | h ∈ H} the left coset of H in G, there is a one-to-one
correspondence between the points of the homogeneous manifold M and left cosets g H:

p ∈M ↔, gpH ⊂ G . (3.17)

Denoting by G/H the set of all left cosets of H in G, there is therefore a bijection (or
diffeomorphism) between M and G/H so that the two can be identified:

M ∼ G/H , (3.18)

where ∼ means that the two manifolds are diffeomorphic. G/H is called a coset manifold
and thus homogeneous spaces can be described as coset manifolds. Actually, being M a
metric manifold and G its isometry group, M and G/H are isometric: We can compute all
geometric quantities of M (connection, curvature, geodesics etc...) on G/H. Note that the
coset space G/H is not a group since in general H is not a normal subgroup of G. A generic

63



N G
H ns

8
E7(7)

SU(8) 70

6 SO∗(12)
U(6) 30

5 SU(5,1)
U(5) 10

4 SL(2,R)
SO(2) ×

SO(6,n)
SO(6)×SO(n) 6n+2

3 SU(3,n)
S[U(3)×U(n)] 6n

SU(1,n+1)
U(n+1) 2(n+1)

SL(2,R)
SO(2) ×

SO(2,n+2)
SO(2)×SO(n+2) 2(n+2)+2

Sp(6)
U(3) 12

2 SU(3,3)
S[U(3)×U(3)] 18

SO∗(12)
U(6) 30

E7(−25)

U(1)×E6
54

Table 1: Homogeneous symmetric scalar manifolds in extended supergravities and their real
dimensions ns.
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element g of G is defined by dim(G) continuous parameters. Through right multiplication
by an element of H we may fix dim(H) of these parameters, so that the minimum number
of parameters a representative of each left-coset depends on is dim(G) − dim(H). This is
the dimension of M :

dim(M ) = dim(G)− dim(H) . (3.19)

Let φs denote the dim(G) − dim(H) parameters obtained upon fixing the right-action of
H. The corresponding representative of each coset is denoted by L(φs) ∈ G. We therefore
describe each point of M in terms of a coset representative L(φs):

p ∈M ↔ L(φs) ∈ gpH ⊂ G . (3.20)

They provide a parametrization of M and depend on how this fixing is performed, namely
which representative L(φs) of each coset gpH is taken to represent the corresponding point
p of M . Let g ∈ G be an isometry of M , p a point of coordinates φ = (φs) and p′ = g ? p
the transformed of p though g, of coordinates φ′ = g ? φ = (φ′s(φt)). Since both g L(φ) and
L(g ? φ) represent the same point p′, they must belong to the same left-coset, so that:

g L(φ) = L(g ? φ)h(φ, g) , (3.21)

where the element h(φ, g) of H is called compensator and in general depends on g and the
point p (φ).19

Example 1. An example of homogeneous manifold is the n-dimensional sphere Sn defined
the subspace of points of Rn+1, of coordinates (x1, . . . xn+1), satisfying the condition: x2

1 +
· · · + x2

n+1 = 1. The metric on Sn is the one induced by the Euclidean one on Rn+1:
ds2 = dx2

1 + · · ·+ dx2
n+1. The group O(n+ 1) acts linearly on the coordinate vector x = (xi)

and transitively on Sn. It moreover leaves the metric on Sn invariant. Its action however is
not free since, if we take the point x = (1, 0, . . . , 0), that is clearly invariant under the action
of the subgroup O(n) acting only on the n coordinates {x2, . . . , xn+1}. This subgroup O(n)
is the isotropy group and we can then write Sn ∼ O(n+ 1)/O(n).

Example 2. An other example is the n-dimensional anti-de Sitter space AdSn defined as
the subspace of points of R2,n−1 whose coordinates (y01 , y0, y1, . . . yn−1) satisfy the condition:

y2
aη̄

ab y2
b = y2

01
+ y2

0 −
n−1∑
i=1

y2
i = R2 . (3.22)

The metric on AdSn is induced by the pseudo-Euclidean one on R2,n−1 with metric tensor
η̄ab = diag(+1,+1,−1, . . . ,−1). The isometry group which acts transitively on this space is
O(2, n− 1) and the isotropy group O(1, n− 1), so that we can write:

AdSn =
O(2, n− 1)

O(1, n− 1)
. (3.23)

19Here we have described homogeneous spaces as left-cosets. They might as well be described as right-
cosets, just as we did for Minkowski, or superspace earlier.
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In a local patch the AdSn metric can be written in the form:

ds2 = ρ2 dxµηµν dx
ν +R2 dρ

2

ρ2
, (3.24)

where ρ > 0 and ηµν = diag(+1,−1, . . . ,−1), xµ = (x0, x1, . . . , xn−2), R is called the radius
of the anti-de Sitter space. The above metric can be obtained by restricting the pseudo-
Euclidean one on R2,n−1 through the following embedding of AdSn in R2,n−1:

y− ≡ y01 − yn−1 = ρ , y+ ≡ y01 + yn−1 =
R2 − ρ2 (xµηµν x

ν)

ρ
, yµ = ρ xµ . (3.25)

Exercise: Prove this.
Exercise: Prove that the Ricci tensor reads:

Rµν = Λ gµν =
n− 1

R2
gµν , (3.26)

where Λ = n−1
R2 is the cosmological constant which, in the mostly minus convention for the

metric, is positive. Prove also that this metric is solution to the Einstein-Hilbert action:

SΛ = −
∫
dnx

e

2
(R− (n− 2)Λ) . (3.27)

Example 3. An other example is the lower half plane M ≡ {z ∈ C | Im(z) < 0}. We may
define on it the metric:

ds2 = 2 gzz̄dz dz̄ =
1

2Im(z)2
dz dz̄ . (3.28)

The group SL(2,R) acting on z as follows:

g =

(
a b
c d

)
∈ SL(2,R) , (ab− cd = 1) : z

g−→ z′ =
az + b

cz + d
, (3.29)

is an isometry group and acts transitively on M .
Exercise: Prove that SL(2,R) is an isometry group, namely that 1

2Im(z)2
dz dz̄ = 1

2Im(z′)2
dz′ dz̄′.

Prove also that it has a transitive action on M
The reader can also verify that the point z = −i is left invariant by the action of the

SO(2) group:

SO(2) = {
(

cos(θ) sin(θ)
− sin(θ) cos(θ)

)
} , (3.30)

which is the isotropy group of M . The lower-half plane can thus be identified with the
following coset:

M =
SL(2,R)

SO(2)
. (3.31)
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In general G need not be a semisimple Lie group. Homogeneous manifolds occurring in
supergravity theories are non-compact, simply-connected, negative-curvature spaces. Let g
and H denote the Lie algebras of the groups G and H, respectively. We can split the former
as follows:

g = H⊕ K . (3.32)

Being H a Lie algebra we have:
[H, H] j H . (3.33)

We can always define K in such a way that:

[H, K] j K . (3.34)

We see that the above adjoint action of H on K defines a representation of H. Indeed, if we
denote by (Hu) a basis of H and by (Ks) a basis of K, we have:

[Hu, Ks] = Cus
tKt = −(Hu)s

tKt , (3.35)

where the matrices (Hu)s
t = Csu

t define a representation K of the generators (Hu).
Exercise: Prove this using the Jacobi identity.
From this it follows that, if h is an element of H, we have:

h−1Ks h = hs
tKt , (3.36)

where the matrix (hs
t) represents the element h in the representation K .

The space K can be viewed as the tangent space to G/H at the origin.
In general, however, we have:

[K, K] j K⊕ H . (3.37)

It can be proven that, if we can define a K so that:

[K, K] j H , (3.38)

the homogeneous space is symmetric. A symmetric space is defined in general as a space
whose curvature is covariantly constant (i.e. it is invariant under parallel translations). Sym-
metric, simply-connected spaces are also homogeneous. For non-compact, simply-connected
symmetric spaces with negative curvature (i.e. those which are relevant to supergravity)
there exists a transitive semisimple, non-compact isometry group G and H is its maximal
compact subgroup. In any given matrix representation of G, one can choose a basis in which
H is represented by anti-hermitian matrices (H ∈ H ⇒ H† = −H) and K by hermitian ones
(K ∈ K ⇒ K† = K). This basis is called the Cartan basis. Properties (3.34) and (3.38)
clearly follow because the commutator of an anti-hermitian with an hermitian generator is
hermitian while that of two hermitian generators is anti-hermitian. In the corresponding
basis (TA) = (Hu, Ks) of generators of g, equation (3.38) reads:

[Ks, Kt] = Cs t
uHu . (3.39)
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We can define in this basis the coset representative L(φ) as follows. Let {Ks} denote a basis
of K consisting of hermitian matrices, we define:

L(φs) = exp(φsKs) . (3.40)

This parametrization, defined by the coordinates φs, will be called Cartan parametrization.
Its relevant feature is that the coordinates φs transform under H (isotropy group of the
origin φs = 0) in a linear way, namely in the representation K defined by the adjoint action
of H on K:

L(φ) −→ hL(φ) = hL(φ)h−1 h = L(h ? φ)h , (3.41)

being

L(h ? φ) = hL(φ)h−1 = h eφ
sKs h−1 = eφ

s hKs h−1

= eφ
′tKs ⇒ φ′t = (h ? φ)t = φs (h−1)s

t ,

where we have used Eq. (3.36).
As mentioned earlier, N = 2 supergravity admits non-homogeneous, homogeneous and

homogeneous-symmetric scalar manifolds, while the scalar manifolds ofN > 2 supergravities
are only of homogeneous symmetric type. All homogeneous scalar manifolds (symmetric or
not) are of normal type, namely they admit a transitive solvable Lie group of isometries GS

whose action on M is free20. This means that we can choose a representative Ls(φp) in each
left coset gpH, by suitably fixing the right-action of H, so that

{Ls(φp)}p∈M = GS .

In other words the manifold M is isometric to a solvable Lie group

M ∼ GS ,

once we fix on the tangent space to GS at the origin the metric of M on the tangent space
at the corresponding point. This description defines a parametrization φ = (φs) called the
solvable parametrization of M .

Both the solvable and (for symmetric cosets) the Cartan parametrizations are global
parametrizations of the scalar manifold. For symmetric manifolds the solvable Lie group
GS is defined by the Iwasawa decomposition of the non-compact semisimple group G with
respect to H according to which there is a unique decomposition of a generic element g of
G as the product of an element s of GS and an element h of H: g = s h. This defines
a unique coset representative Ls for each point of M . The solvable parametrization is
useful when the four dimensional supergravity is described as resulting from the Kaluza-
Klein reduction of a higher dimensional supergravity on some internal compact manifold.

20A solvable Lie group GS can be described (locally) as a the Lie group generated by solvable Lie algebra
Solv: GS = exp(Solv). A Lie algebra Solv is solvable iff, for some k > 0, DkSolv = 0, where the derivative
D of a Lie algebra g is defined as follows: Dg ≡ [g, g], Dng ≡ [Dn−1g,Dn−1g]. In a suitable basis of a
given representation, elements of a solvable Lie group or a solvable Lie algebra are all described by upper
(or lower) triangular matrices.
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The solvable coordinates directly describe dimensionally reduced fields and moreover this
parametrization makes the shift symmetries of the metric manifest. The drawback of such
description is that Solv does not define the carrier of a representation of H as K does, namely
Eq. (3.34) does not hold for Solv: [H, Solv] * Solv.

In what follows we shall restrict ourselves to symmetric cosets of which we can give a
description either in terms of Cartan coordinates or of solvable coordinates.

Let us see how vielbeine and connection can be defined on a symmetric coset. Let L(φ)
be a coset representative corresponding to a generic parametrization. We can construct the
left-invariant one form Ω = L−1dL which is a 1-form on G/H with value in g. Let us expand
it in the Cartan basis (TA) = (Hu, Ks)

Ω(φ) = σA(φ)TA = L(φ)−1dL(φ) = V s(φ)Ks + ωu(φ)Hu = P (φ) + ω(φ) , (3.42)

where Ω(φ) = Ωs(φ) dφs, V t(φ) = Vs
t(φ) dφs, P (φ) = V s(φ)Ks, ω(φ) = ωu(φ)Hu and we use

the underlined indices s, t, . . . as rigid indices to label the basis (Ks) of the tangent space to
the group manifold defining a representation K of H, and should not be confused with the
curved indices s, t, . . . labeling the coordinates (φt), i.e. the scalar fields. Only in the Cartan
parametrization the scalar fields carry rigid indices. Let us see how this quantities transform
under the action of G. For any g ∈ G, using Eq. (3.21), we can write L(g ? φ) = g L(φ)h−1,
so that:

Ω(g ? φ) = hL(φ)−1 g−1d(g L(φ)h−1) = hL(φ)−1 g−1gd(L(φ)h−1) = hL(φ)−1(dL(φ))h−1+

+ h dh−1 . (3.43)

From (3.42) we find:

P (g ? φ) + ω(g ? φ) = V s(g ? φ)Ks + ωu(g ? φ)Hu = h (V s(φ)Ks)h
−1 + h (ωu(φ)Hu)h

−1+

+ h dh−1 = hP (φ)h−1 + hω(φ)h−1 + h dh−1 . (3.44)

Since h dh−1 is the left-invariant 1-form on H, it has value in this algebra. Projecting the
above equation over K and H, we find:

P (g ? φ) = hP (φ)h−1 ⇔ V s(g ? φ) = V s(φ)h−1
t
s = hstV

s(φ) , (3.45)

ω(g ? φ) = hω(φ)h−1 + hdh−1 . (3.46)

Note the analogy with the description of space-time that we gave in Sect. 2.6. In particular
compare Eq.s (2.235) and (2.273) with (3.45) and (3.46): V s have the role here of the vielbein,
H of the (local) Lorentz group and ωu of the spin connection. In Sect. 2.2 in particular
Minkowski space was described as the coset (in that case with respect to the left-action of
H) in which the isometry group G is the Poincaré one and H the Lorentz group. V s are
then identified with the vielbein 1-forms and ω the H-connection. We shall see below how
the G-invariant metric on M is constructed in terms of V s.
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Just as we did in curved space-time with respect to the local Lorentz group, we define
the H-covariant derivative D(H) of the vielbein and the curvature as follows:

D(H)P ≡ dP +QP − P Q = D(H)V sKs ⇒ D(H)V s = dV s + ωu (Hu)
s
t ∧ V t =

= dV s + ωuCut
s ∧ V t , (3.47)

R = dω + ω ∧ ω = RuHu ⇒ Ru = dωu +
1

2
Cvw

u ωv ∧ ωw , (3.48)

where we have used (Hu)
s
t = −(Hu)t

s = Cut
s. The reader can verify that:

D(H) 2V s = Ru ∧ Cuts V t . (3.49)

Exercise: Verify the above equation. Prove moreover that D(H) is the covariant derivative
with respect to the H-transformations (3.45) and (3.46), namely that (D(H)P )(g ? φ) =
hD(H)P (φ)h−1.

Let us compute the exterior derivative of Ω:

dΩ = dL−1 ∧ dL = dL−1 LL−1 ∧ dL = −L−1dL ∧ L−1dL = −Ω ∧ Ω ⇔ dΩ + Ω ∧ Ω = 0 .
(3.50)

In components this is nothing but the Maurer-Cartan equations for G:

dσA +
1

2
CBC

A σB ∧ σC = 0 . (3.51)

Splitting σA into V s, ωu the above equations read:

dV s + ωuCut
s ∧ V t = 0 ⇔ D(H)P = 0 = D(H)V s , (3.52)

dωu +
1

2
Cvw

u ωv ∧ ωw +
1

2
Cst

u V s ∧ V t = 0 ⇔ R = −P ∧ P ⇔ Ru = −1

2
Cst

u V s ∧ V t .

(3.53)

Notice that the components of the curvature 2-form in the vielbein basis are constant and
fixed in terms of the structure constants of g. This is a general feature not just of symmetric
spaces, but in general of homogeneous spaces. The following Bianchi identity follows directly
from the Jacobi identity for H generators:

D(H)Ru = dRu + ωv ∧Rw Cvw
u = 0 ,

Just as we defined on the tangent space of a curved space-time a (local) Lorentz invariant
metric ηab, here we define on the tangent space to M an H-invariant (positive definite)
metric κst. With reference to matrix representation of G we define κst as the restriction of
the Cartan-Killing metric of g to K:

κst ≡ kTr(KsKt) , (3.54)

where k is a representation-dependent normalization constant. The metric on M is defined
as follows:

Gst(φ) = Vs
s(φ)Vt

t(φ)κst ⇔ ds2(φ) = Gst(φ)dφs dφt = kTr(P (φ)2) . (3.55)
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The G-invariance of this metric immediately follows from (3.45):

∀g ∈ G : ds2(g?φ) = kTr(P (g?φ)2) = kTr(hP (φ)2 h−1) = kTr(P (φ)2) = ds2(φ) . (3.56)

The σ-model Lagrangian density can be written in the following form

Lscal = e
k

2
Tr(Ps(φ)Pt(φ)) ∂µφ

s ∂µφt , (3.57)

where P = Ps dφ
s.

A worked out example. Consider the lower-half plane of Example 3. We can take the
following basis of generators of g = sl(2,R):

sl(2,R) = {σ1, i σ2, σ3} = {
(

0 1
1 0

)
,

(
0 1
−1 0

) (
1 0
0 −1

)
} . (3.58)

In the Cartan basis the space K is spanned by the following matrices:

K = {Ks} = {σ1, σ3} , (3.59)

while Solv is the subalgebra of upper triangular generators:

Solv = {σ3, σ+} , σ+ ≡
(

0 1
0 0

)
. (3.60)

Exercise: Prove that Solv is a solvable Lie algebra, using the definition given in footnote 18.
In the Cartan parametrization we denote the coordinates by φs = (ξ, α) and define the coset
representative as:

L(ξ, α) = exp(
ξ sin(α)σ1 + ξ sin(α)σ3

2
) =

(
cosh

(
ξ
2

)
+ sin(α) sinh

(
ξ
2

)
cos(α) sinh

(
ξ
2

)
cos(α) sinh

(
ξ
2

)
cosh

(
ξ
2

)
− sin(α) sinh

(
ξ
2

) ) .
(3.61)

The reader can verify that the adjoint action of a generic element h ∈ H = SO(2), of the
form (3.30) on K defines the following matrix representation K of h:

h−1Ksh = hs
tKs ; hs

t = {
(

cos(2θ) sin(2θ)
− sin(2θ) cos(2θ)

)
} . (3.62)

We can alternatively define the solvable parametrization φs = (ϕ, χ), in which the coset
representative has the following form:

Ls(ϕ, χ) ≡ eχσ
+

e
ϕ
2
σ3

=

(
1 χ
0 1

)(
eϕ/2 0
0 e−ϕ/2

)
∈ eSolv . (3.63)

The relation between the two parametrizations is defined by the condition:

Ls(ϕ, χ)h(θ) = L(ξ, α) , (3.64)
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which is solved by the following relations:

e−ϕ = cosh(ξ)− sin(α) sinh(ξ) ; χ =
cos(α) sinh(ξ)

cosh(ξ)− sin(α) sinh(ξ)
,

sin(θ) = −
cos(α) sinh

(
ξ
2

)√
cosh(ξ)− sin(α) sinh(ξ)

; cos(θ) =
cosh

(
ξ
2

)
− sin(α) sinh

(
ξ
2

)√
cosh(ξ)− sin(α) sinh(ξ)

. (3.65)

Let us now compute P and ω in the solvable parametrization:

L−1
s dLs = P + ω , ω =

dχe−ϕ

2
iσ2 ; P =

dϕ

2
σ3 +

dχe−ϕ

2
σ1 . (3.66)

Choosing the normalization factor k = 1, the metric in the solvable parametrization reads:

ds2 =
dϕ2

2
+

1

2
dχ2e−2ϕ , (3.67)

which coincides with (3.28) if we identify:

z = χ− i eϕ . (3.68)

Exercise: Verify that in the Cartan parametrization: ds2 = dξ2

2
+ 1

2
dα2 sinh2(ξ).

With some algebra the reader can also verify that the identification (3.68) is also consistent
with the SL(2,R) action (3.29) on z:(

a b
c d

)
Ls(ϕ, χ) = Ls(ϕ′, χ′)h ⇒ z′ = χ′ − i eϕ′ =

a z + b

c z + d
. (3.69)

Exercise: Verify for this space the Eq.s (3.52) and (3.53).

3.2 On-Shell Duality Invariance

We shall focus from now on extended ungauged supergravities with homogeneous-symmetric
scalar manifold. As mentioned earlier, supersymmetry does not allow for a scalar potential at
the ungauged level. Let us derive the bosonic field equations from the action (3.10) and then
discuss their global symmetries, restricting ourselves to the bosonic terms only (the presence
of additional terms containing fermion bilinears in the field equations for the bosonic fields
is of course understood).

It is useful to introduce the dual field strengths GΛµν defined as:

GΛµν ≡ −εµνρσ
∂L4

∂FΛ
ρσ

= RΛΣ F
Σ
µν − IΛΣ

∗FΣ
µν , (3.70)

where

∗FΣ
µν ≡

e

2
εµνρσ F

Λ ρσ . (3.71)
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In ordinary Maxwell Theory IΛΣ = −1, RΛΣ = 0 and Gµν = ∗Fµν .
The equations of motion for the scalar and vector fields read:

Dµ(∂µφs) =
1

4
Gst

[
FΛ
µν ∂t IΛΣ F

Σµν + FΛ
µν∂tRΛΣ

∗FΣµν
]
, (3.72)

∇µ

(∗FΛµν
)

= 0 ; ∇µ

(∗GΛµν
)

= 0 , (3.73)

where ∂s ≡ ∂
∂φs

, ∇µ is the covariant derivative containing the Levi-Civita connection on

space-time, while Dµ also contains the Levi-Civita connection Γ̃ on Mscal:

Dµ(∂νφ
s) ≡ ∇µ(∂νφ

s) + Γ̃st1t2∂µφ
t1 ∂νφ

t2 . (3.74)

Using (3.70) and the property that ∗∗FΛ = −FΛ, we can express ∗FΛ and ∗GΛ as linear
functions of FΛ and GΛ:

∗FΛ = I−1 ΛΣ (RΣΓ F
Γ −GΣ) ; ∗GΛ = (RI−1R + I)ΛΣ F

Σ − (RI−1)Λ
Σ GΣ , (3.75)

where, for the sake of simplicity, we have omitted the space-time indices. It is useful to
arrange FΛ and GΛ in a single 2nV -dimensional vector F ≡ (FM) of two-forms:

Fµν ≡
(
FΛ
µν

GΛµν

)
, (3.76)

in terms of which eq.s (3.75) are easily rewritten in the following compact form:

∗F = −CM(φs)F , (3.77)

where

C = (CMN) ≡
(

0 1
−1 0

)
, (3.78)

1, 0 being the nV × nV identity and zero-matrices, respectively, and

M(φ) = (M(φ)MN) ≡
(

(RI−1R + I)ΛΣ −(RI−1)Λ
Γ

−(I−1R)∆
Σ I−1 ∆Γ

)
, (3.79)

is a symmetric, negative-definite matrix, function of the scalar fields.
The Maxwell equations can then be recast in the following equivalent forms:

∇µ(∗Fµν) = 0 ⇔ ∇µ(CM(φ)Fµν) = 0 ⇔ dF = 0 , (3.80)

where we have used the matrix notation and suppressed the indices M,N, . . . .
Since the matrix M(φ) will play an important role in the discussion of the global sym-

metries of the field equations and Bianchi identities (on-shell global symmetries), it is useful
to express the part of the field equations depending on the vector field strengths in terms of
it and of its derivatives. Let us start with the scalar field equations (3.72) and compute the
following expression:

FTµν∂sM(φ)Fµν ≡ FMµν∂sM(φ)MN FN µν , (3.81)
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Using the definition of M and suppressing the space-time indices together with the Λ,Σ
ones, we find:

FT∂sM(φ)F = (F T , GT )

(
∂s(RI

−1R + I) −∂s(RI−1)
−∂s(I−1R) ∂sI

−1

)(
F
G

)
=

= F T ∂sI F + F T∂sRI
−1RF + F TR∂sI

−1RF + F TRI−1∂sRF−
− 2F T∂sRI

−1G− 2F TR∂sI
−1G+GT∂sI

−1G =

= F T ∂sI F + F T∂sRI
−1RF + F TR∂sI

−1RF + F TRI−1∂sRF−
− 2F T∂sRI

−1 (RF − I∗F )− 2F TR∂sI
−1(RF − I∗F )+

+ (F TR− ∗F T I)∂sI
−1(RF − I∗F ) = F T ∂sI F − ∗F T ∂sI

∗F + 2F T ∂sR
∗F =

= 2 (F T ∂sI F + F T ∂sR
∗F ) . (3.82)

We can then rewrite the scalar field equations in the following form:

Dµ(∂µφs) =
1

8
Gst FTµν∂sM(φ)Fµν , (3.83)

Let us now compute the Einstein equations:

Rµν −
1

2
gµνR = T (S)

µν + T (V )
µν , (3.84)

where the energy-momentum tensors for the scalar and vector fields can be cast in the
following general form

T (S)
µν = Grs(φ) ∂µφ

r∂νφ
s − 1

2
gµν Grs(φ) ∂ρφ

r∂ρφs , (3.85)

T (V )
µν = F T

µρ I Fν
ρ − 1

4
gµν (F T

ρσIF
ρσ) . (3.86)

In order to make the global symmetries of the field equations, to be discussed below, manifest,
we rewrite T

(V )
µν in terms of the matrix M(φ). We start noticing that, using Eq. (3.77) we

can write (we suppress the indices M,N, . . . and Λ,Σ):

FTµρM(φ)Fνρ = FTµρC ∗Fνρ = F T
µρ
∗Gνρ −GT

µρ
∗F νρ =

= F T
µρ I F

νρ + F T
µρR

∗F νρ − (F T
µρR− ∗F T

µρ I) ∗F νρ = F T
µρ I F

νρ + ∗F T
µρ I

∗F νρ =

= F T
µρ I F

νρ +
1

4
εµρµ1µ2ε

νρν1ν2 F T µ1µ2 I Fν1ν2 = F T
µρ I F

νρ − 3!

4
δνν1ν2µµ1µ2

F T µ1µ2 I Fν1ν2 =

= F T
µρ I F

νρ − 1

2
(δνµδ

ν1ν2
µ1µ2

+ 2 δνµ1δ
ν1ν2
µ2µ

)F T µ1µ2 I Fν1ν2 = 2F T
µρ I F

νρ − 1

2
δνµ F

T
ρσIF

ρσ . (3.87)

We can then write:

T (V )
µν =

1

2
FTµρM(φ)Fνρ . (3.88)

Since in (3.84) R = Gst(φ) ∂ρφ
s∂ρφt, the equation can be finally recast in the following form:

Rµν = Grs(φ) ∂µφ
r∂νφ

s +
1

2
FTµρM(φ)Fνρ , (3.89)
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While the Maxwell equations ∇µ(∗FM µν) = 0 are invariant with respect to a generic linear
transformation on F, the definition of GΛ or, equivalently, eq. (3.77) is not. On the other
hand the isometry group G is a global symmetry of the scalar kinetic term, but it will in
general alter the action for the vector fields as a consequence of the scalar field-dependence
of the matrices I and R.

One of the most intriguing features of extended supergravities is the fact that the global
invariance of the scalar kinetic term, described by G, can be extended to a global symmetry
of the full set of equations of motion and Bianchi identities [31] (though not in general
of the whole action). This is possible because in extended supergravities there are scalar
fields which are connected by supersymmetry to vector fields and, as a consequence of this,
that transformations on the former imply to transformations on the latter (more precisely
transformations on the vector field strengths FΛ and their duals GΛ). From the mathematical
point of view this follows from the definition on the scalar manifold (at least on the manifold
spanned by the scalar fields sitting in the same supermultiplet as the vector ones) of a
geometric structure (called symplectic structure) which associates with each point φ on the
manifold a symmetric, symplectic (2nV ) × (2nV ) matrix M(φ)MN and with each isometry
transformation g ∈ G on the same manifold a corresponding constant symplectic (2nV ) ×
(2nV ) matrix S[g] = (S[g]MN) such that:

M(g ? φ) = S[g]−TM(φ)S[g]−1 . (3.90)

Recall that a symplectic matrix M in Sp(2nV ,R) is defined by the property: MTCM =
MCMT = C, where the symplectic invariant matrix C is defined in (3.78). Thus the
symmetric matrix M(φ)MN satisfies the properties

M(φ)MPCPLM(φ)LN = CMN ⇔ M(φ)−1 = −CM(φ)C , (3.91)

(CMN) having the same matrix form as the matrix (CMN) in (3.78), while the correspondence
between g ∈ G and S[g] defines a symplectic representation of the group G, i.e. an embedding
S of G inside Sp(2nV ,R)

G
S
↪→ Sp(2nV ,R) ⇔ g ∈ G→ S[g] ∈ Sp(2nV ,R) ; S[g1 g2] = S[g1]S[g2] ,

S[g]MNCNPS[g]LP = CML ⇔ S[g]MNCMLS[g]LP = CNP , (3.92)

where in the second line we have written the general property defining a symplectic matrix:
S[g]CS[g]T = S[g]TCS[g] = C. We learn then that the definition of the matrix M(φ)MN is
built-in the mathematical structure of the scalar manifold (and below we shall illustrate this
explicitly for the homogeneous manifolds). The matrices I(φ) and R(φ) entering the action
are then defined in terms ofM(φ) by Eq. (3.79). The only freedom which is left consists in
the choice of the basis of the symplectic representation (symplectic frame) which amounts
to a change in the definition of M(φ) by a constant symplectic transformation E:

M(φ)→M′(φ) = ETM(φ)E . (3.93)

This affects the form of the action, in particular the coupling of the scalar fields to the vectors.
However, at the ungauged level, it only amounts to a (non-perturbative) redefinition of the
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vector field strengths and their duals which has no physical implication. In the presence
of a gauging, namely if vectors are minimally coupled to the other fields, the symplectic
frame becomes physically relevant and may lead to different vacuum-structures of the scalar
potential.

We emphasize here that the existence of this symplectic structure on the scalar manifold
is a general feature of all extended supergravites, including those N = 2 models in which the
scalar manifold is not even homogeneous (i.e. the isometry group, if it exists, does not act
transitively on the manifold itself). In the N = 2 case, only the scalar fields belonging to the
vector multiplets are non-minimally coupled to the vector fields, namely enter the matrices
I(φ), R(φ), and they span a special Kähler manifold. On this manifold a flat symplectic
bundle is defined 21, which fixes the scalar dependence of the matrices I(φ), R(φ) and the
matrix M(φ) defined in (3.79), satisfies the properties (3.91), (3.90).

For homogeneous manifolds, the isometry group G has a symplectic, 2nV -dimensional
representation S and we can express M(φ) in terms of the coset representative:

M(φ)MN = CMPL(φ)P LL(φ)RLCRN ⇔ M(φ) = CS[L(φ)] S[L(φ)]T C , (3.94)

where summation over the index L is understood and LP L are the entries of the symplectic
matrix S[L(φ)] associated with L(φ) as an element of G. Since S is a homomorphism, Eq.
(3.21) can also be written in terms of symplectic matrices as follows:

S[g] S[L(φ)] = S[L(g ? φ)] S[h(g, φ)] . (3.95)

We see that from (3.94) and (3.95), properties (3.91) and (3.90) easily follow. Let us derive
(3.90):

M(g ? φ) = CS[L(g ? φ)] S[L(g ? φ)]T C =

= CS[g] S[L(φ)]S[h]−1 S[h]−TS[L(φ)]TS[g]T C =

= S[g]−T CS[L(φ)] S[L(φ)]T CS[g]−1 = S[g]−TM(φ) S[g]−1 , (3.96)

where we have used the property that S[g] is symplectic, CS[g] = S[g]−T C, and that S[h] ≡
S[h(g, φ)] is orthogonal, being in a real representation of U(nV ): S[h]T = S[h]−1. The latter
property in particular implies thatM(φ), as defined in (3.94), is H-invariant, namely it does
not depend on the choice of the coset representative, but only on the point φ of the manifold,
as it should be.

We can now easily verify that the simultaneous action of G on the scalar fields and on
the field strength vector FMµν :

g ∈ G :

{
φr → g ? φr

FMµν → F′Mµν = S[g]MNFNµν
, (3.97)

21A special Kähler manifold is in general characterized by the product of a U(1)-bundle, associated with
its Kähler structure (with respect to which the manifold is Hodge Kähler), and a flat symplectic bundle. See
for instance [32] for an in depth account of this issue.
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is a symmetry of the field equations. The Maxwell equations are clearly invariant under
(3.3.4). We must however show that the above transformation leaves (3.77) invariant, namely
that is holds in the transformed fields as well. Using (3.3.4), eq. (3.77) can indeed be written
in the new quantities as follows:

S[g]−1∗F′ = −CS[g]TM(g ? φ)S[g] S[g]−1F′ = −S[g]−1CM(g ? φ)F′ , (3.98)

which is equivalent to ∗F′ = −CM(g ? φ)F′.
The invariance of the scalar and Einstein equations is manifest if we write them in the

forms (3.83) and (3.89), respectively, and follows from the invariance of the quantity:

FTµνM(φ)Fρσ , (3.99)

which can be easily proven as follows:

FTµνM(φ)Fρσ = F′TµνS[g]−T S[g]TM(g ? φ)S[g] S[g]−1F′ρσ = F′TµνM(g ? φ)F′ρσ . (3.100)

This directly implies the invariance of T (V ) and the covariance of the scalar field equation.
The duality invariance of the space-time metric and the scalar action imply the same property
for the Einstein tensor and T

(S)
µν .

The action of G on the field strengths and their magnetic duals, defined by the symplectic
embedding S, is a generalized electric-magnetic duality transformation, which promotes the
isometry group of the scalar manifold to a global symmetry group of the full set of field
equations and Bianchi identities. It generalizes the known duality invariance of ordinary
Maxwell theory: (

Fµν
∗Fµν

)
−→

(
F ′µν
∗F ′µν

)
=

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)(
Fµν
∗Fµν

)
. (3.101)

For this reason G is also referred to as the duality group of the classical theory. In the
presence of electric and magnetic sources, just as in ordinary Maxwell theory, the symplectic
action of G is extended to the charges themselves.

Note however that G will contain transformations g whose duality action S[g] is non-
perturbative, namely under which FΛ → F ′Λ = AΛ

Σ F
Σ+BΛΣGΣ and GΛ → G′Λ = CΛΣ F

Σ+
DΛ

Σ GΣ, with CΛΣ, B
ΛΣ 6= 0 . These are not a symmetry of the action but only of the field

equations and Bianchi identities (on-shell symmetry).
The relevance of the (quantum) duality group resides in the existence of important ev-

idence that it (or a suitable extension of it) might encode all the known string/M-theory
dualities [33].

Let us end this section by collecting the bosonic equations derived above in their manifestly
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G-invariant form:

Scalar:

Dµ(∂µφs) =
1

8
Gst FTµν∂sM(φ)Fµν , (3.102)

Einstein:

Rµν = Grs(φ) ∂µφ
r∂νφ

s +
1

2
FTµρM(φ)Fνρ , (3.103)

Maxwell:

dF = 0 , ∗F = −CM(φs)F , (3.104)

where we have omitted the terms containing the fermion fields. We shall comment on them
in the next Subsection.

On a charged dyonic solution, we define the electric and magnetic charges as the integrals:

eΛ ≡
1

4π

∫
S2

GΛ =
1

8π

∫
S2

GΛµν dx
µ ∧ dxν , mΛ ≡ 1

4π

∫
S2

FΛ =
1

8π

∫
S2

FΛ
µν dx

µ ∧ dxν ,

(3.105)
where S2 is a spatial two-sphere. In our conventions, the electric and magnetic charges (e,m)
are related to those (e′,m′) in the (rationalized) Heaviside-Lorentz units by a factor 4π:22

eΛ =
1

4π
e′Λ , mΛ =

1

4π
m′Λ . (3.107)

They define a symplectic vector ΓM :

Γ = (ΓM) =

(
mΛ

eΛ

)
=

1

4π

∫
S2

F . (3.108)

These are the quantized charges, namely they satisfy the Dirac-Schwinger-Zwanziger quan-
tization condition for dyonic particles [36]:

(4π)2 ΓT2 CΓ1 = m′Λ2 e′1Λ −m′Λ1 e′2Λ = 2π ~ c n ; n ∈ Z . (3.109)

22 In the rationalized-Heaviside-Lorentz (RHL) system of units, the charge unit is defined so that ε0 = 1.
In the non-rationalized-Heaviside-Lorentz (HL) system of units, ε0 = 1/4π. We make a choice of units such
that 8πGε0 = 1. Further choosing 8πG = 1 then implies the adoption of the rationalized-HL convention
ε0 = 1. This fixes the choice of electric/magnetic charge units. The further rescaling by a factor 4π to define
e, m is just for later convenience in the calculations, though e′, m′ should always be intended to be the true
charges of the solution. Denoting by QRHL and QHL the charges in the rationalized and non-rationalized-
Heaviside-Lorentz system of units, respectively, in all our formulas the quantities expressed in our charges Q
(generically denoting by Q either e or m) or central charges Z are expressed in terms of the corresponding
quantities in the two systems through the replacement:

Q =
1

4π
QRHL =

1√
4π

QHL ,

Z =
1

4π
ZRHL =

1√
4π

ZHL . (3.106)
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At the quantum level the dyonic charges therefore belong to a symplectic lattice and this
breaks the duality group G to a suitable discrete subgroup G(Z) which leaves this symplectic
lattice invariant.

Due to the non-minimal coupling of the scalar fields to the vector fields, the electric and
magnetic fields that one would actually measure at spatial infinity on a solution (and thus
the electric and magnetic charges), are not given simply by the field strengths FΛ and GΛ

(and thus by the quantized charges e, m). They also depend on the scalar fields at infinity
and are expressed in terms of composite fields depending on the scalar fields as well as on
FΛ, to be defined in the next Subsection.

3.2.1 The Fermion Fields

In the previous Subsection we have dealt with the description of the bosonic sector of an
extended supergravity and its on-shell global symmetry. Let us discuss the general features
of the fermionic sector, its symmetries and the couplings of the fermions fields to the bosons.
We have seen that the vector fields and the scalar fields transform under the action of the
group G, isometry group of the scalar manifold. More precisely this group has a global
symplectic (duality) action on the vector of electric field strengths and their magnetic duals,
while it acts on the scalar fields as an isometry group, according to Eq. (3.3.4). Just as the
fermion fields (including the graviton), transform covariantly with respect to the isotropy
group of space-time (local Lorentz transformations), they have a well defined transformation
property only with respect to the isotropy group H of the scalar manifold. In all extended
supergravities this group has the following form [34]:

H = GR ×Hmatter , (3.110)

where GR is the automorphism of the supersymmetry algebra (the R-symmetry group), while
Hmatter is a compact Lie group acting on the matter multiplets. Let us use the chiral (or
Weyl) basis for the fermion fields, discussed in 2.1, in which the full (S)U(N ) GR group
is manifest. The super-Poincaré-algebra- valued 1-form (2.297) now contains a term of the
form

Ω̃g = · · · − i√
2

(Ψ̄i Qi + Ψ̄i Q
i) , (3.111)

Consistently with our conventions, we then define Ψµ i to be a Weyl-spinor 1-form with
positive chirality:

γ5 Ψi = Ψi =

(
0

Ψ̄α̇
i

)
⇒ Ψi ≡ (Ψi)c = C(Ψi)

T
=

(
Ψi
α

0

)
, (α, α̇ = 1, 2) . (3.112)

The same convention will be used for the supersymmetry parameter: εi, ε
i. Aside from the

gravitino, the other fermion fields consist in dilatinos χijk which are spin-1/2 fields belonging
to the gravitational supermultiplet for N ≥ 3, and spin-1/2 fields λi A (where A = 1, . . . , n
labels the vector fields in the vector multiplets) belonging to the vector multiplets (i.e.
super multiplets in which the highest spin field has spin 1), which are called gauginos. In the
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N = 2 we also have spin-1/2 fields ζa in the hypermultiplets (hyperinos). The most general
scalar manifold of an N = 2 model is described by the product of a special Kähler manifold
MSK spanned by the complex scalars zα (α = 1, . . . , n) in the vector multiplets, times a
quaternionic Kähler manifold MQK spanned by the scalar fields qu in the hypermultiplets
(see [35, 32] for a mathematical definition of the two kinds of manifolds):

Mscal = MSK ×MQK . (3.113)

The symplectic structure is defined only over the first factor, since only the scalars zα

enter the matrices IΛΣ, RΛΣ. As we shall see, the coupling of the bosons to the fermionic
fields is also fixed by the geometry of the scalar manifold, in particular, in the models
with a homogeneous scalar manifold, by the coset representative L(φ) representing the coset
representative. To understand the general structure let us recall that, by (3.21), the matrix
L(φ) is acted to the left by G and to the right by the compensator in H

G→ L(φ) ← H . (3.114)

The matrix L(φ) therefore “mediates” between objects, like the bosonic fields, transforming
directly under G and other objects, like the fermionic fields, transforming only under H.
This means that we can construct G-invariant quantities coupling (in suitable ways) the
bosonic fields (including their derivatives) to the fermions through L(φ), that is, symbolically,
considering the contraction

(∂Bosons) · L(φ) · (Fermions) = f(φ, ∂Bosons) · (Fermions) . (3.115)

In the Lagrangian and in the equations of motion bosons and fermions are indeed coupled
through this scalar-dependent matrix. The fermions in other words couple to composite ob-
jects (denoted above by the symbol f(φ, ∂Bosons)) obtained by “dressing” the derivatives
of bosonic fields by scalar fields through the matrix L(φ) and which thus transform, as the
scalar fields and vector fields transform under G, only though the corresponding compensat-
ing transformations h(φ, g) in H, see (3.21). We then transform all fermion fields by means
of h(φ, g), namely define the action of G over all the fields as follows:

g ∈ G :


φr → g ? φr

FMµν → F′Mµν = S[g]MNFNµν
fermions→ fermions′ = h(φ, g) ? fermions

. (3.116)

All the Lagrangian is then constructed in a manifestly H-invariant way using the fermion
fields and the composite fields f(φ, ∂Bosons). Moreover, H-covariance of the supersymmetry
transformation laws implies that the supersymmetry variations for the fermion fields be
symbolically expressed as follows:

δε(Fermions) = f(φ, ∂Bosons)ε . (3.117)

The fields transforming in representations of GR, as determined in our construction of the
Poincaré supermultiplets are therefore either the fermions (including the gravitino) or the
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composite fields f(φ, ∂Bosons), and not the scalar fields φs and vector fields AΛ
µ directly,

the latter being always real fields. One can view these composite objects f(φ, ∂Bosons) as
the actual bosonic fields that one would measure at spatial infinity on a solution.

Let us review the general structure of the fermion supersymmetry transformation laws:

δΨµ i = Dµεi −
1

8
T−ρσ ij γ

ρσγµε
j , (3.118)

δχijk = a1 Pijkl, s ∂µφ
s γµεl + a2 T

−
ρσ [ijγ

ρσεk] , (3.119)

δλiA = a3PA ij, s ∂µφ
s γµεi + a4 T

−
ρσ Aγ

ρσ εi , (3.120)

δζmi = a5 P
m
m ∂µq

m γµεi , (3.121)

where ak are constants to be fixed by requiring (no-shell) closure of the super-algebra and
the invariance of the action. The quantities

Pijkl, s(φ) ∂µφ
s, PA ij, s(φ) ∂µφ

s , Pm
m (q)∂µq

m , T−ρσ ij(φ, F
Λ) ,

are examples of derivatives of the bosonic fields dressed by the scalar fields through the coset
representative:

Pijkl, s(φ) ∂µφ
s, PA ij, s(φ) ∂µφ

s , Pm
m (q)∂µq

m , (3.122)

are components along the Cartan basis Ks of K of the vielbein matrix P (pulled back
on space-time by the scalar fields) defined in (3.47). They clearly have the general form
f(φ, ∂φ) and transform, as the scalar fields and vector fields are acted on by G, through the
compensating transformation in H, see Eq. (3.45). Let us define the quantity T−ρσ, ij(φ, F

Λ).
This has the general form f(φ, ∂A). To construct it we need to introduce, for a symplectic
(2nV )-vector V M = (V Λ, VΛ) a complex representation V M defined through the Cayley
matrix A:

V M =

(
V Λ

VΛ

)
=

1√
2

(
V Λ + i VΛ

V Λ − i VΛ

)
= AMM V M , (3.123)

AMM ≡
1√
2

(
1 i1
1 −i1

)
. (3.124)

The usefulness of this basis is the fact that, in the duality (symplectic) representation S,
the matrices representing H are block-diagonal. To see this consider the matrices S(g)
representing infinitesimal generators of G. The symplectic condition on generators reads:

g ∈ S(g) , gT C + Cg = 0 . (3.125)

This implies that the most general matrix form of g have the following block structure:

g =

(
A B
C D

)
; D = −AT , CT = C , BT = B . (3.126)

Exercise: Prove the above relations.
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If g is an element h of S(H), on top of the symplectic condition, it should also be, in a
suitable basis, anti-hermitian. Being the symplectic representation real, the generator h of
H is represented by an anti-symmetric matrix and therefore has the general form:

h =

(
A B
−B A

)
; A = −AT , BT = B . (3.127)

Let us now change basis to the complex one, so that the matrix h = (hMN) becomes
hc = (hMN) of the form:

hc = AhA† =

(
A− iB 0

0 A + iB

)
. (3.128)

Exercise: Prove the above relations.
Notice that A ± iB, being A antisymmetric and B symmetric, represent a generator of

U(nV ) in two representations of which one is the complex conjugate of the other. Therefore
the upper-half V Λ and the lower half VΛ = (V Λ)∗ of the complex vector V M in (3.123)
transform in two conjugate representations RV , RV of H.

Recall now the general form of H in Eq. (3.110) and the fact that in the gravitational
multiplet there are spin-1 states in the 2-times antisymmetric representation [N ]2 = N ∧N
of (S)U(N ) = GR while the spin-1 states in the vector multiplets (being top-spin states) are
singlets of GR while transform in general in a representation n of Hmatter, so that:

RV
GR×Hmatter−→ ([N ]2,1) + (1,n) ⇔ (VΛ) = (Vij, VA) ; V Λ = (VΛ)∗ = (V ij, V A) ,

(3.129)
where V ij = −V ji, Vij = −Vji. Written in the complex basis, a generator of H is, as we
have seen, block-diagonal, while a generator of K in the Cartan basis is block-off-diagonal:

k ∈ S[K] , kc = AkA† = (kMN) =

(
0 KΛΣ

KΛΣ 0

)
=

 0
Kij,kl Kij,B

KA,kl KAB

Kij,kl Kij,B

KA,kl KAB
0

 ,

(3.130)

where KΛΣ = (KΛΣ)∗ = KΣΛ. Correspondingly the K-valued vielbein one-form P in the
representation S, in the complex basis, reads

P c = AP A† = (PM
N) =

(
0 PΛΣ

PΛΣ 0

)
=

 0
P ij,kl P ij,B

PA,kl PAB

Pij,kl Pij,B
PA,kl PAB

0

 . (3.131)

This defines the first three quantities in (3.122). In particular the scalar states in (2.86)
belonging to the gravitational multiplet λ0 = 2 and to the vector multiplets λ0 = 1, in
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supergravity are described by composite fields which are nothing but components of the
vielbein of the scalar manifold:

scalars in the supergravity multiplet: |E, 2− 4

2
, [ijkl]〉 ↔ Pijkl, s∂µφ

s = Pij,kl, s∂µφ
s ,

scalars in the Ath vector multiplet: |E, 1− 2

2
, [ij], A〉 ↔ Pij,A, s∂µφ

s . (3.132)

These are the actual fields entering the supersymmetry transformation rules (3.118)-(3.120).
Consistency then requires:

Pijkl = Pij,kl = P[ikjl] , P ijkl = P ij,kl = P [ikjl] . (3.133)

We also write ω as a matrix in the complex basis:

ωc = AωA† = (ωMN) =

(
ωΛ

Σ 0
0 ωΛ

Σ

)
=


ωijkl 0

0 ωAB
0

0
ωij

kl 0
0 ωA

B

 . (3.134)

Since the coset representative L(φ) contracts to the right against fermion fields (see
(3.114)), which belong to complex representations, and to the left against bosonic fields,
which can be real (as the vector fields are), it is useful to express the corresponding sym-
plectic matrix S[L(φ)] changing only the right index to a complex one and thus defining the
following hybrid matrix :

Lc(φ) = (LNM) ≡ S[L(φ)]A† = (LMij, L
M
A, L

M ij, LM A) =

(
LΛ

ij LΛ
A LΛ ij LΛA

LΛ ij LΛA LΛ
ij LΛ

A

)
.

(3.135)
The reader can verify that this matrix satisfies the following properties (which derive from
the symplectic property of S[L(φ)] ):

Lc(φ)†CLc(φ) = $ , Lc(φ)$Lc(φ)† = C , (3.136)

$ ≡ ACA† = −i
(

1 0
0 −1

)
(3.137)

Exercise: Verify the above properties.
From the definition (3.94) ofM we can express this matrix in terms of the hybrid matrix

Lc:
M(φ) = CLc(φ)Lc(φ)†C . (3.138)

Next we define the following complex (2nV )-vector of 2-forms by “dressing” FM in (3.76)
with scalar fields by using Lc:

Tµν(φ, ∂AΛ) ≡ −Lc(φ)†CFµν = −(LM N CNP FPµν) =


T ijµν
TAµν
Tµν ij
Tµν A

 . (3.139)
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Let us see how the composite field T transforms under a transformation in G of the elemen-
tary fields it depends on:

T(φ′, ∂A′Λ) = −Lc(g ?φ)†CF′ = −hc(φ, g)Lc(φ)†S[g]TCS[g]F = hc(φ, g)T(φ, ∂AΛ) , (3.140)

where we have used (3.95) and the property of the compensating transformation in the
complex basis that (hc)

−1 † = hc. The composite field transforms only by the compensating
transformation in H, so that, transforming the fermion fields under the same transformation,
the equations (3.118) and (3.120) retain the same form in the transformed quantities.

In the transformation laws (3.118)-(3.120) we see that the chiral fermions are connected by
supersymmetry to the anti-self-dual component of the field strengths, entering the definition
of T−µν . The self-dual and anti-self-dual components of a field strength Fµν are defined as
follows:

F±µν ≡
Fµν ± i ∗Fµν

2
⇒ ∗F±µν = ∓i F±µν . (3.141)

Using Eq. (3.77) we can write these components as the result of a projection on the sym-
plectic vector FMµν :

F±µν = P± Fµν ; P± =
1

2
(1∓ iCM(φ)) . (3.142)

Exercise: Verify using the symplectic property of the matrix M that P± are projectors,
namely that:

P± P± = P± ; P± P∓ = 0 . (3.143)

From the definition (3.139) and using Eq. s (3.138), (3.136) we find:

T± ≡ −L†cCF± = −L†cCP± F = −1

2
L†cC

(
1± iLcL†cC

)
F = −1

2

(
L†cC± i$L†cC

)
F =

=
1± i$

2
(−L†cCF) =

1± i$
2

T . (3.144)

Using the expression of $ we then find:

T+
µν =

1 + i$

2
T =


T ijµν
TAµν
0
0

 ; T−µν =
1− i$

2
T =


0
0

Tµν ij
Tµν A

 . (3.145)

In other words we find:

T+
µν ij = T+

µν A = T ij−µν = TA−µν = 0 ⇔ Tµν ij = T−µν ij ; Tµν A = T−µν . (3.146)

that is the upper or lower position if the complex H indices are related to the chirality of
the fermion fields and to the (anti-) self-duality property of the field strengths. The reason
why chiral spinors transform into anti-self-dual composite tensors T− can be understood by
noticing that:

T±ρσγ
ρσ = T±ρσγ

ρσ 1

2
(1∓ γ5) , (3.147)
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so that

T+
ρσγ

ρσγµε
j = T+

ρσγ
ρσγµ

1

2
(1 + γ5)εj = 0 . (3.148)

Just as we did for the quantized charges, we define on a solution the central and matter
charges as the following integrals over a sphere S2

∞ at spatial infinity:

Zij(φ, e,m) ≡ 1

4π

∫
S2
∞

Tij = −LMij(φ) CMN ΓN = LΛ ij(φ)mΛ − LΛ
ij(φ) eΛ , (3.149)

ZA(φ, e,m) ≡ 1

4π

∫
S2
∞

TA = −LMA(φ) CMN ΓN = LΛA(φ)mΛ − LΛ
A(φ) eΛ , (3.150)

where we assume that the scalar fields at spatial infinity are constant over S2
∞. These can be

thought of as the physical charges measured on a solution at radial infinity. Together with
their complex conjugates, they can be arranged in a vector Z M in the complex symplectic
basis

Z (φ, e,m) = (Z M(φ, e,m)) =


Z ij

Z A

Zij

ZA

 = −L†c(φ)CΓ . (3.151)

Just as Tµν , this vector transforms under G through the compact compensator hc(φ, g) in
H:

Z (g ? φ; g Γ) = hc(φ, g) Z (φ; Γ) , (3.152)

where we have written Γ instead of (e,m) and g Γ instead of S[g] Γ, for the sake of notational
simplicity.

To make contact with our initial treatment of the supersymmetry algebra, we notice that
Zij are topological charges associated with composite fields Tµν ij entering the supersymme-
try transformation rules (3.118) of the gravitino. These charges Zij, ZA are not carried by
the elementary fields of the theory [38]. They are rather associated with non-trivial massive
configurations of elementary fields which solve the field equations and are known as solitons.
On these solitonic solutions Zij can be identified with the central charges Zij of the su-
persymmetry algebra (2.10) realized on the solution (see [11] in rigid-supersymmetric gauge
theories). The precise relation is:2324

Zij = −i Zij . (3.155)

23To see this, following [12], one should compute the supersymmetry generators Qi on the solution as
an integral over space of the (time component of the) conserved supersymmetry currents (i.e. the Noether
currents associated with supersymmetry). Anticommuting them gives rise to boundary terms of the form
(3.149) which, according to the general expression (2.10) can be identified with the central charges of the
superalgebra. The precise identification is given below. See [11] for an earlier computation in spontaneously
broken supersymmetric gauge theories.

24In this relation we have redefined the central charges also from a dimensional point of view. The central
charge matrix Zij in the right hand side of (2.10) has dimension of a length−1, while Zij has dimension of
a charge. The actual relation is:

Zij = i
1

`2P

√
8πG

c2
Zij = i

c

~

√
8π

G
Zij . (3.153)
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The fact that the elementary fields do not carry Zij follows from the fact that they are
massless and thus supersymmetry requires the central charges to vanish on them (see Eq.
(2.139)). Solitons in supegravity are black holes to be discussed in the next section. The
composite fields Tµν ij are also called graviphoton field strengths since they are the objects
actually sitting in the supergravity multiplet. Let us notice that, if we skew-diagonalize the
central charge matrix Zij (or, equivalently Zij) by means of GR-transformations in H, it will
have the general form (2.127), (2.128):

Zij = Z(x,u),(y,v) = Zu εxyδuv , x, y = 1, 2, u, v = 1, . . . ,

[
N
2

]
, (3.156)

where the skew-eigenvalues Zu = −i zu are GR-invariant. From (3.152) it follows that Zu,
as functions of φ and Γ = (e,m), are G-invariant :

Zu(g ? φ; g Γ) = Zu(φ; Γ) . (3.157)

Since the vector Z M is an object transforming under H, we can compute the H-covariant
derivative of it ( just as we did for P in (3.47)) using the H-connection on the manifold ω:

D(H)Z ≡ dZ + ωc Z . (3.158)

Exercise: Prove that this is a covariant derivative, namely that:

D(H)Z (g ?φ; g Γ) = dZ (g ?φ; g Γ)+ωc(g ?φ)Z (g ?φ; g Γ) = hc(φ, g)D(H)Z (φ; Γ) , (3.159)

using the transformation property (3.46) of ωc:

ωc(g ? φ) = hc ω
c(φ)h−1

c + hcdh
−1
c (3.160)

We can express D(H)Z in terms of Z and of the complexified vielbein matrix P c. We start
from the definition (3.42) of P and ω in the complexified basis:

L−1
c dLc = P c + ωc ⇒ dLc = Lc P c + Lc ωc ⇒ dL†c = P c L†c − ωc L†c . (3.161)

From this we derive:

D(H)Z = −(d+ ωc)L†cΓ = −P c L†cΓ = P c Z . (3.162)

In components, using the matrix form (3.131), the above relation reads:

D(H)Zij =
1

2
Pij kl Z

kl + Pij A Z A , (3.163)

D(H)ZA =
1

2
PA ij Z ij + PAB Z B . (3.164)

For notational convenience, however, we shall use relation (3.155), remembering later, when making contact
with our previous discussion on the Bogomolny bound for super-Poincaré representations, to make the
replacement:

Zij →
~
c

√
G

8π
Zij ; Zij → −i

~
c

√
G

8π
Zij . (3.154)
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To understand why the physical charges are the “dressed” ones Zij, ZA instead of the
quantized ones eΛ, m

Λ, it is useful to refer to the higher dimensional origin of the D = 4
supergravity model. As mentioned in the introduction, four-dimensional supergravities can
be interpreted as the effective theories describing superstring-M/theories compactified on
suitable internal manifolds. This means that we consider the dynamics of the “microscopic”
objects described by superstring-M/theories (string and extended objects called branes)
propagating on a space-time of the form:

M4 ×Mint , (3.165)

whereMint is a compact internal manifold (which is six-dimensional in the case of superstring
theory or seven-dimensional in the case of M-theory), such as a sphere, a torus or a space with
more involved geometry. The smaller the volume of Mint, the larger the energy required
for propagating inside of it25: The modes describing propagation of the fields along the
internal directions of Mint become energetically suppressed as the internal volume tends
to zero. This is the Kaluza-Klein mechanism of dimensional reduction according to which
the effective low-energy theory is a four-dimensional one describing the propagation of the
lowest-lying superstring-M/theory modes only in four-dimensional space-time M4. In this
setting the vector fields of the D = 4 theory originate from higher-order forms in the higher-
dimensional parent theory which minimally couple to the microscopic extended objects in the
spectrum of superstring-M/theories26 and a four-dimensional (point-like) solution like a black
hole results from a system of higher dimensional extended objects whose spatial extension in
concealed in the effective D = 4 description since they extend over directions of the compact
internal space (in order for the configuration to be stable, the extended objects are wrapped
on unshrinkable cycles of Mint). Such objects have quantized charges with respect to the
fields they minimally couple to in ten or eleven dimensions, just as electric charge is quantized
in four-dimensions. These are the e,m charges of the four-dimensional solution (typically a
black hole). However, the extended objects are wrapped along cycles of the internal space
and thus interact non-trivially with its geometry (besides interacting among themselves).
The charges one would measure in D = 4 also depend on this interaction and thus depend
not just on the intrinsic charges e,m, but also on those scalar fields which describe the shape
and size of the internal cycle on which the microscopic objects are wrapped. In the definition
of the dressed charges Zij, ZA, this interaction of the extended objects with the geometry of
the internal manifold and among themselves is taken into account. It is important to stress
that the supergravity effective action is derived from superstring theory in the limit in which
higher-order curvature terms are negligible and at order zero in the string coupling constant.

The first condition requires the curvature to be small compared to 1/`2
P , `P ≡

√
G~
c3

being the

Planck length, i.e. supergravity description fails in the vicinity of the black hole singularity.

25This is similar to the dependence of the energy of the normal modes of a vibrating string on the length
of the string: the smaller the length the higher the energy of a same mode.

26Just as particles (i.e. objects with no spatial extension) minimally couple to 1-form potentials Aµ
through their quantized electric charge, a string (i.e. an object with one spatial dimension in dimensions
D > 4) minimally couples to a two-form field Bµν ; a p-brane (i.e. an object with p-spatial dimensions) to a
(p+1)-form field.
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Therefore solutions which are well described within supergravity are those with large horizon
area, outside of which the curvature can be small enough. These are called large black holes.
On the other hand the superstring description favors a different limit, namely that in which
(ten-dimensional) space-time is mainly flat and the extended (non-perturbative) building
blocks of these microscopic constructions (the D-branes) are space-time defects. In this
regime, very close to the branes the curvature explodes.

3.3 Black Holes in Supergravity

As a theory of gravity, supergravity has black hole solutions [13]. Seen as the effective low
energy theory of superstring/M-theories suitably compactified on some internal manifold,
supergravity provides a macroscopic (i.e. large scale) description of the solution, analogous
to the thermodynamic description of gases, the microscopic description of the solution being
provided by the higher dimensional superstring/M-theories. As mentioned in the previous
subsection, a supergravity black hole can be realized in terms of a system of extended objects
(which only extend over the internal space), belonging to the spectrum of superstring/M-
theories, wrapping cycles of the internal manifold and intersecting among themselves. Just
as the laws of thermodynamics can be derived from a molecular (i.e. microscopic) description
of gases (kinetic theory of gasses), which also allows to interpret the entropy of the system in
terms of the number of microscopic states realizing a same macroscopic one, the microscopic
description of black holes provided by superstring/M-theories should explain, in principle,
the laws of black hole thermodynamics and in particular account for the peculiar “area law”
for the black hole entropy (see below), through a microscopic state-counting.

Let us briefly recall the main facts about black hole thermodynamics. The first exact
solution to Einstein’s field equations in the vacuum (Rµν = 0) was found by in 1915 by Karl
Schwarzschild. It describes space-time metric around a point particle of mass M , which has
the form:

ds2 = (1− rs
r

) dt2 − dr2

(1− rs
r

)
− r2 (dθ2 + sin2(θ) dϕ2) , (3.166)

where rs ≡ 2GM/c2 is the Schwarzschild radius. Light from inside the sphere r = rs cannot
escape from it to radial infinity. For this reason, this sphere is named event horizon. and
the region inside it black hole. The horizon represents a coordinate singularity27, it can
be removed by a change in coordinates, while the point r = 0 is a true singularity (i.e.
RµνρσR

µνρσ diverges). As long as the singularity is “hidden” by a event horizon, it does not
pose a problem of predictability of events outside the black hole and the solution is perfectly
acceptable. The Schwarzschild’s solution is the most general spherically symmetric solution
to the Einstein equations in the vacuum (Birkhoff, 1923).

Between 1916-1918, Reissner and Nordström found the spherically symmetric solution
describing particle of mass M and charge Q′ (here we express the charge in the rationalized

27This was proven by David Finkelstein in 1958.
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Heaviside-Lorentz units):

ds2 =

(
1− 2 rM

r
+
r2
Q

r2

)
dt2 − dr2(

1− 2 rM
r

+
r2Q
r2

) − r2 (dθ2 + sin2(θ) dϕ2) , (3.167)

where

rM =
GM

c2
; r2

Q =
G

4πc4
Q′2 . (3.168)

This solution has two horizons at r± = rM ±
√
r2
M − r2

Q if rM > rQ while is singular (the

curvature singularity is not hidden inside a horizon) if rM < rQ.
In 1963 R. Kerr generalized Schwarzschild’s solution to describe a spinning particle, fur-

ther generalized by E. Newman in 1965 to describe a charged spinning particle (the Kerr-
Newman solution). This represents the most general asymptotically flat, axisymmetric so-
lution to Einstein’s theory of gravity coupled to an electromagnetic field (Einstein-Maxwell
theory)28.

From a purely classical analysis of black holes in general relativity the following general
properties were found [39]:

i) The surface gravity κ is uniform over the horizon;

ii) If a black hole absorbs a spinning, charged particle, its rest energy varies in the following
relation to the variation of its horizon area A, angular momentum at the horizon JH
and charge Q:29

δM =
κ δA

8πG
+

1

c2
ΩH δJH + Φ δQ , (3.169)

ΩH being the angular velocity at the horizon, Φ the electric potential and Q the electric
charge;

iii) The total area of the black hole horizons in the universe can not decrease: δA ≥ 0

iv) The solution with κ = 0 (extremal solution) can not be reached through a finite process.

There is a formal analogy between these properties and the zeroth, first, second and third
laws of thermodynamics, provided we identify κ with the temperature and A with the en-
tropy of the solution. That this is not just a formal analogy and that these are the actual laws
of thermodynamics applied to a black hole solution was proven when Hawking discovered
in 1974 [40] that black holes radiate and thus can be in thermal equilibrium with the sur-
rounding radiation. Hawking’s quantum analysis showed that black holes emit black-body
radiation at a temperature:

T =
κ ~

2π kB c
, (3.170)

28For references see below in Subsect. 3.3.1 when we comment on the no-hair theorem.
29In the presence of scalar fields coupled to the solution, which is typical of supergravity black holes, a

further term should be added, which depends on the scalar charges defined in terms of the radial derivatives
of the scalar fields at spatial infinity.
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where kB is the Boltzmann constant. Property ii) is then the first law of thermodynamics
and iii) the second law, provided we identify the entropy of the solution with:

S =
kB
4 `2

P

A , (3.171)

where `P ≡
√

G~
c3

is the Planck length. This is the so called “area law” or Bekenstein-Hawking

formula for the entropy [41].30

Explaining this formula from a microscopic point of view requires a microscopic description
of black holes, i.e. a quantum theory of gravity, and is one of the most challenging problem
in theoretical physics, besides being a testing ground for candidates for the quantum theory
of gravity, as superstring theory is. One of the main successes of superstring theory has been
indeed the derivation of the Bekenstein-Hawking formula (3.171) from a microstate counting.
The first computation of this type was performed in Type IIB string theory by Strominger
and Vafa [42]. They considered five-dimensional black holes originating from a system of a
1- and 5-branes (with a momentum along the overlapping dimension) suitably wrapped on
an internal manifold. A considerable number of other computations generalizing this result
followed.

The AdS/CFT duality conjecture put forward by Maldacena il 1998 [43], provided a new
understanding of the “area law” (3.171). This duality, in its strongest version, is a statement
that superstring theory realized on an anti-de -Sitter space-time solution is equivalent to a
conformal field theory on the boundary of this space.31 In other words the degrees of freedom
of the theory on this background are localized on its boundary, namely on a space-time with
one spatial dimension less. This holographic principle for gravity explains why, according
to (3.171), the entropy, instead of scaling with a volume (as an extensive quantity should),
actually scales as an area.

The microscopic description of a same supergravity solution is however not unique because
the microscopic theory is not unique. The idea behind string/M-theory duality (not to be
confused with the AdS/CFT mentioned above) is that these different constructions of a same
supergravity solution are different descriptions of the same microscopic degrees of freedom.
This correspondence between microscopic descriptions, which in general is non-perturbative
in the string coupling constant, is realized at the level of low-energy effective supergravity
in terms of global symmetries. They were conjectured in [33] to be described by the discrete
group G(Z) of the global symmetry group G of the classical theory (see discussion below
Eq. (3.109)). If the black hole entropy S “counts” the number of microscopic degrees of
freedom of a solution, it is reasonable to expect it not to depend on their description, namely
to be G(Z)-invariant. In fact it is found in the known supergravity solutions to be even G-
invariant as a function of the electric and magnetic charges and of the values of the scalar
fields at infinity. In extremal black holes (i.e. solutions with vanishing Bekenstein-Hawking

30Here we restored all the c, ~ and G factors. In the sequel we set, as usual, c = ~ = 1 = 8πG and
kB = 1/8π.

31In its original form it stated the duality between Type IIB string theory on AdS5×S5 and N = 4 super
Yang-Mills theory on the D = 4 boundary of the AdS5 space.
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temperature, either non-rotating or under-rotating, i.e. rotating without ergosphere) the
entropy only depends on the quantized charges e,m and not on the scalar fields at infinity.
This reflects a general property of these solutions known as attractor mechanism. Let us
review the main facts about static, spherically symmetric and asymptotically flat black hole
solutions in extended supergravities.

3.3.1 Spherically Symmetric, Asymptotically Flat Black Hole Solutions

Ansaz and equations. We shall now restrict our discussion to static, spherically sym-
metric and asymptotically flat black hole solutions. The general ansatz for the metric and
scalar fields has the following form:

ds2 = a(r)2 dt2 − a(r)−2 dr2 − b(r)2 (dθ2 + sin2(θ) dϕ2) , (3.172)

φs = φs(r) ,

fermions = 0 . (3.173)

where a(r), b(r) are functions of the radial variable to be determined by the equations
of motion. If we consider dyonic solution with quantized electric and magnetic charges
ΓM ≡ (mΛ, eΛ), the reader can verify that the following expression for FMµν

F =

(
FΛ
µν

GΛµν

)
dxµ ∧ dxν

2
=

1

b2
C · M(φ) Γ dt ∧ dr + Γ sin(θ) dθ ∧ dϕ , (3.174)

satisfies the Maxwell equations (3.104).
Exercise: Verify this. The first of (3.104) directly follows from the fact that the scalar

fields are taken to depend only on r. As for the second, use the property that, in our notations

∗(dxµ ∧ dxν) =
1

2e
εµνρσ dxρ ∧ dxσ ⇒

⇒ ∗(dt ∧ dr) = −b2 sin(θ) dθ ∧ dϕ ; ∗(dθ ∧ dϕ) =
1

b2 sin(θ)
dt ∧ dr ,

(3.175)

where e = b2 sin(θ).
Let us write now the scalar field equations (3.102). Using the ansatz (3.174) we can

rewrite the right hand side of this equation in a more compact way:

FTµν∂sMFµν = 2FTtr∂sMFtrgttgrr + 2FTθϕ∂sMFθϕgθθgϕϕ = − 2

b4
ΓTMCT∂sMCMΓ+

+
2

b4
ΓT∂sMΓ =

4

b4
ΓT∂sMΓ = − 8

b4
∂sVBH , (3.176)

where we have introduced a new quantity VBH(φ,Γ) called black hole effective potential
defined as:

VBH(φ,Γ) ≡ −1

2
ΓTM(φ)Γ > 0 . (3.177)
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The scalar field equation then reads:(
a2 b2 φs ′

)′
+ Γ̃suv φ

u ′φv ′ =
1

b2
Gsu ∂uVBH , (3.178)

where we have denoted by a prime the derivation with respect to r: f ′(r) ≡ df
dr

(r). It is
useful at this point to introduce a new radial variable τ = τ(r) defined by the condition:

dτ

dr
=

1

a2b2
. (3.179)

Using the short-hand notation ḟ(τ) ≡ df
dτ

(τ), equation (3.178) acquires the simpler form:

φ̈s + Γ̃suv φ̇
uφ̇v = a2Gsu ∂uVBH , (3.180)

describing the motion of an imaginary “particle” in the manifold Mscal, subject to a potential
VBH (if VBH = const., the motion would be geodesic,i.e. describing a free imaginary particle
moving on the scalar manifold).

Let us consider now the Einstein equations (3.89).
Exercise: Using the ansatze (3.172) for the metric, prove that the vierbein and the spin-

connection have the following form:

V 0 = a dt ; V 1 =
1

a
dr ; V 2 = b dθ ; V 3 = b sin(θ) dϕ ,

ω0
1 = a′ V 0 ; ω1

2 = −b
′

b
a V 2 ; ω1

3 = −b
′

b
a V 3 ; ω2

3 = −cotan(θ)

b
V 3 . (3.181)

Exercise: Using the ansatze (3.172) for the metric, verify that the non-vanishing components
of the Ricci tensor are:

Rt
t =

(aa′b2)′

b2
; Rr

r = (aa′)′ + 2
a

b
(ab′)′ ,

Rθ
θ = Rϕ

ϕ = − 1

b2

(
1− (a2bb′)′

)
. (3.182)

Exercise: Verify the following equations:

FTtrMFtr = 2
a2

b4
VBH ; FTrtMFrt = −2

1

a2b4
VBH ,

FTθϕMFθϕ =
2

b2
VBH ; FTϕθMFϕθ = 2

sin2(θ)

b2
VBH . (3.183)

Using (3.183) the Einstein equations read:

Rrr = Guv φ
u ′φv ′ − 1

a2b4
VBH ; Rtt =

a2

b4
VBH , (3.184)

Rϕϕ =
sin2(θ)

b2
VBH ; Rθθ =

1

b2
VBH . (3.185)

92



From the above equations we find:

Rt
t =

1

a2
Rtt =

1

b4
VBH =

1

b2
Rθθ = −Rθ

θ . (3.186)

Now use the expression of the components of the Ricci tensor in terms of the metric (3.182)
to find

Rt
t = −Rθ

θ ⇒
(aa′b2)′

b2
=

1

b2

(
1− (a2bb′)′

)
⇒ (a2b2)′′ = 2 . (3.187)

Last condition, which is implied on the ansatz by the Einstein equation, is solved in general
by setting32:

a2b2 = (r − r0)2 − c2 = (r − r+)(r − r−) ; r± ≡ r0 ± c . (3.188)

Here we have assumed c2 ≥ 0. If c2 < 0 the two roots r± are imaginary. As we shall see
r± can be identified with an inner and outer horizon, just as in the non-extremal Reissner-
Nordström solution [13], and thus if c2 < 0 the solution has no horizon to hide its singularity
and thus it is not regular.

Equation (3.179) then defines the “affine parameter” τ :

dτ

dr
=

1

a2b2
=

1

(r − r0)2 − c2
⇒ r − r0 = −c coth(cτ) ⇔ τ =

1

2c
log

(
r − r+

r − r−

)
.

(3.189)

The coordinate τ is non-positive and runs from −∞ at r = r+ (corresponding, as we shall
see, to the outer horizon of the black hole) to τ = 0 at radial infinity. We also find:

dτ

dr
=

1

(r − r0)2 − c2
=

sinh2(cτ)

c2
. (3.190)

We can now change notation and write both functions a(r), b(r) in terms of a single function
U(r) as follows:

a(r) = eU(r) ; b(r)2 = e−2U(r) (r − r+)(r − r−) = e−2U(r) c2

sinh2(cτ)
. (3.191)

The metric (3.172) now reads:

ds2 = e2U dt2 − e−2U
[
dr2 + (r − r+)(r − r−) dΩ2

]
, (3.192)

where dΩ2 ≡ dθ2 + sin2(θ) dϕ2. In terms of the new radial variable τ the metric has the
following form:

ds2 = e2U dt2 − e−2U

(
c4

sinh4(cτ)
dτ 2 +

c2

sinh2(cτ)
dΩ2

)
, (3.193)

32Below we introduce the integration constant c (extremality parameter) not to be confused with the speed
of light c.
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where U = U(τ). Notice that in the new radial coordinate the metric has the property that
the combination

e gττ =

(
e−2U c4

sinh4(cτ)
sin(θ)

)(
e2U sinh4(cτ)

c4

)
= sin(θ) , (3.194)

is independent of τ .
Using the property:

aa′b2 =
ȧ

a
= U̇ , (3.195)

from (3.186) we find:

(aa′b2)′ =
1

b2
VBH ⇔ Ü = e2U VBH . (3.196)

It is convenient to recompute the entries of the Ricci tensor in the coordinates t, τ, θ, ϕ.
Exercise: Verify that, in the new radial coordinate, the Ricci tensor corresponding to the

metric (3.193) has the following non-vanishing entries:

Rtt =
1

b4
Ü ; Rττ = 2c2 − 2U̇2 + Ü ; Rθθ =

1

sin2(θ)
Rϕϕ =

1

a2b2
Ü . (3.197)

From the first of Eq.s (3.184), using the second of (3.197), we find

2c2 − 2U̇2 + Ü = Guvφ̇
uφ̇v − e2U VBH ⇔ U̇2 +

1

2
Guvφ̇

uφ̇v − e2U VBH = c2 , (3.198)

where we have used (3.196). There is no further independent equation implied by the Einstein
equations.

To summarize the results so far, we have found that the most general ansatz for the static
solution depends on ns+1 independent functions of the radial variable τ : U(τ), φs(τ). These
are subject to the equations:

Ü = e2U VBH , (3.199)

φ̈s + Γ̃suv φ̇
uφ̇v = e2U Gsu ∂uVBH , (3.200)

U̇2 +
1

2
Guvφ̇

uφ̇v − e2U VBH = c2 . (3.201)

A distinctive feature of black hole solutions in supergravity theories is therefore the presence
of the scalar fields which participate in the solution due to their non-minimal coupling to the
vector fields, which determines the effective potential VBH(φ; e,m). The scalar fields which
do not couple to the electric-magnetic charges of the solution, do not enter the effective
potential and thus do not exhibit a radial evolution.

The first two equations (3.199), (3.200) can be derived from an effective action:

Seff =

∫
Leff dτ =

∫ (
U̇2 +

1

2
Gsu(φ) φ̇s φ̇u + e2U VBH(φ; Γ)

)
dτ . (3.202)
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This action describes an autonomous Lagrangian system in which the role of the time variable
is played by the radial one τ . The corresponding HamiltonianH is “conserved” on a solution,
where by conserved we refer to the dependence on the radial variable τ and not on time (!):
dH
dτ

= 0, i.e. H = const.. The Hamiltonian constraint, expressed in terms of U(τ), φs(τ) and
their derivatives, is nothing but (3.201):

H = U̇2 +
1

2
Gsu(φ) φ̇s φ̇u − e2U VBH(φ; Γ) = c2 . (3.203)

In this description the integration constant c2 plays the role that the energy would play in
an ordinary Hamiltonian system.

Let us now study the physical properties of the solution. The solution has a time-like
killing vector ξµ∂µ = ∂

∂t
and the ADM mass is given by the Komar integral [13] over the

sphere S2
∞ spanned by θ, ϕ at radial infinity (τ = 0):

MADM =
c2

8π G

∫
S2
∞

e εθϕµν ∇µξν dθ dϕ . (3.204)

As a simple exercise the reader can prove that, on our general solution:

MADM =
c2

G
lim
τ→0−

U̇ . (3.205)

Exercise: Prove this by first proving that:

∇tξ
τ = Γτtt = e4U sinh4(cτ)

c4
U̇ ; ∇τξ

t = Γtτt = U̇ . (3.206)

The solution is defined by the boundary conditions of the fields at radial infinity τ = 0:

U(0) = 0 ; U̇(0) =
G

c2
MADM ; φs(0) = φs0 ; φ̇s(0) = φ̇s0 , (3.207)

the boundary conditions on the vector fields being already fixed by the electric and magnetic
charges e,m. The first condition U(0) = 0 just expresses the requirement of asymptotic
flatness of the metric.

We can write the constraint (3.203) at radial infinity, restoring the constants33, in terms
of the boundary data:

G2

c4
M2

ADM +
1

2
Gsu(φ0) φ̇s0 φ̇

u − 8π G

c4
VBH(φ0; Γ) = c2 . (3.208)

Regularity of the solution implies the existence of the two horizons r± (which may coincide)
and this in turn requires c2 ≥ 0 and a corresponding condition on the boundary data,
according to (3.208).

33All terms in the constraint equation have dimension of a squared length. Since the scalar potential has
dimension of a squared charge (in the Heaviside-Lorentz units), when restoring the constants we need to
replace VBH → 8πG

c4 VBH .
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No scalar hair. In all known black hole solutions the radial derivatives of the scalar fields
φ̇s0 (which we shall also refer to as scalar charges) at infinity are not independent boundary
data but are expressed in terms of the other quantities at infinity, namely the ADM mass,
the electric and magnetic charges and the values φs0 of the scalar fields. A way to understand
this dependence of φ̇s0 on the other boundary data is to recall that in this class of solutions
the radial evolution of the scalar fields is only due to their non-minimal coupling to the
electric-magnetic charges. In other words they are “dragged along” with the solution by the
vector fields and have no independent dynamics.

Although there is no general proof of this feature in the context of supergravity theories,
it seems to indicate that the most general static black hole solution is completely determined
by its electric and magnetic charges, and its ADM mass (for stationary solutions we should
also include the angular momentum)34. This would represent a generalization to supergravity
black holes of the known “no-hair” theorem for ordinary black holes in general relativity [44].
This theorem stated that the most general, asymptotically flat, axisymmetric black hole in
the Einstein-Maxwell theory is the Kerr-Newman solution [45], which is totally defined by
its mass, electric, magnetic charges and angular momentum. This means that if a system of
charged matter collapses into a black hole, any other physical property (hair) like multipole
moments, baryon or lepton numbers etc. simply disappear. Let us stress, however, that
a general proof of an analogous theorem for the scalar coupled supergravity black holes is
still missing. Nevertheless, for black holes solutions in extended models with homogeneous-
symmetric scalar manifold there is a general argument in favor of this conclusion, which
makes use of an effective three dimensional description of the solution in which a larger
global symmetry connecting stationary solutions of the D = 4 theory is manifest [37]. We
shall not deal with it here.

The fact that on a black hole solution, once the electric-magnetic charges and the ADM
mass are fixed, the radial evolution of the scalar fields is completely determined by their
boundary values alone φs0, suggests that for the scalar fields there exists an effective descrip-
tion in terms of a system of first order differential equations. This seems indeed to be a
general feature and we shall explicitly work out this system for the BPS solutions (namely
for the black holes preserving an amount of supersymmetry).

Near-horizon behavior. The two zeros r± = r0 ± c of the metric (3.192) are coordinate
singularities representing an inner and outer horizons (just as in Reissner-Nordström solution
(RN) [13]). To see this let us require the 2-sphere S2 to have a finite area A = 4π r2

H as
r → rH = r+

A = lim
τ→−∞

∫
S2

√
gθθgϕϕ dθ dϕ = lim

τ→−∞
4π e−2U c2

sinh2(cτ)
. (3.209)

34Here we are just considering the physical quantities related to the radial derivatives of the fields at infinity.
The boundary values of the scalar fields do not have a physical meaning in an ungauged supergravity.
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Requiring this area to be finite, A > 0, implies for the warp factor eU the following behavior
for r → rH = r+:

e−2U ∼ AH
4π

sinh2(cτ)

c2
=

r2
H

(r − r+)(r − r−)
. (3.210)

Near r = r+ the metric then reads:

ds2 =
(r − r+)(r − r−)

r2
H

dt2 − r2
H

(r − r+)(r − r−)
dr2 − r2

H dΩ2 , (3.211)

Notice that this is the near-horizon geometry of a non-extremal Reissner-Nordström solution.
This justifies our identification of r± with the outer and inner horizons of the solution and
the condition c2 ≥ 0 as the regularity condition which implies the existence of these horizons.

We also require the scalar fields to have a regular behavior at the horizon. To this end
we define the physical distance ρ from the horizon by the equation:

dρ2 = e−2U dr2 , (3.212)

and require the scalar fields, as functions of ρ to run to finite values at the horizon (located
at ρ = ρH):

lim
ρ→ρH

φs(ρ) = φs∗ , |φs∗| <∞ , (3.213)

we shall comment below on the implications of this condition.
From the behavior of the general solution in the near-horizon region, we can deduce the

thermodynamic quantities like the temperature and the entropy. The temperature is given
by (3.170) in terms of the surface gravity κ.

Exercise: Compute the surface gravity of the solution and verify that (restoring all con-
stants):

κ =
c2 c

r2
H

. (3.214)

Hint: Use the general formula [13]:

κ2 = −c
4

2
∇µξν∇µξν , (3.215)

to prove, using Eq. (3.206), that

κ = c2 lim
τ→−∞

e2U sinh2(cτ)

c2
U̇ . (3.216)

From the near-horizon behavior (3.210), (3.214) follows.
The temperature and the entropy then read:

T =
~

2πkB

c c

r2
H

; S =
kB Ac

3

4G ~
, (3.217)
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so that we can identify:

c =
2GS T

c4
. (3.218)

The constant c is the extremality parameter, it is zero if and only if the temperature is zero,
namely when the solution is extremal. This is the case of the extremal RN solution in which
the two horizons coincide: r+ = r−.

In order to have a better grip on the equations (3.199)-(3.201) and their solutions, let
us look for a known solution: the Reissner-Nordström one. It can be shown that in a
supergravity model, charges can be chosen (e = Q, m = 0, Q being the only non vanishing
entry of eΛ) so that the solution is electrically charged and at the origin of the scalar manifold
(φs ≡ 0) the derivatives of the potential VBH(φ; e,m) vanish. It follows that φs(τ) = 0
all over space solves (3.200). Let us denote, in our units, by Q2/2 the constant value of
VBH(0; Q, 0), . The reader can verify that:

a2 = e2U =

(
1− 2 rM

r
+
r2
Q

r2

)
=

(r − r+)(r − r−)

r2
, b2 = r2 , (3.219)

where, restoring the constants35:

rM =
GMADM

c2
; r2

Q =
4π G

c4
Q2 =

8π G

c4
VBH(0; Q, 0) . (3.220)

r± = rM ±
√
r2
M − r2

Q , (3.221)

satisfies (3.199) (check it in the form of the first of Eq.s (3.196)).
Exercise: Check that this solution satisfies Eq. (3.201).
This is the RN solution with extremality parameter:

c =
√
r2
M − r2

Q , (3.222)

and ADM mass (restoring the constants):

MADM =
c2rM
G

. (3.223)

The two lengths r± are the inner and outer horizons. Regularity requires

c2 ≥ 0 ⇔ rM ≥ rQ ⇔ MADM ≥
√

4π

G
|Q| =

√
8π

G
VBH(0) . (3.224)

This bound is saturated for the extremal solution whose temperature is zero.

35Recall that our charges are those in the rationalized-Heaviside-Lorentz units divided by 4π and those in
the non-rationalized-Heaviside-Lorentz units divided by

√
4π.
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Extremal solutions and the attractor mechanism. Consider now extremal solutions
defined by the property c = 0. If we send c→ 0, from (3.189) we find:

τ = −1/r , (3.225)

where we have redefined r − r0 → r. The horizon is located at r = 0, corresponding to
τ → −∞. The near-horizon behavior of the warp function U can be deduced from Eq.
(3.210):

e−2U ∼ lim
c→0

r2
H

sinh2(cτ)

c2
= r2

Hτ
2 ⇒ e−U ∼ −τrH . (3.226)

The physical distance ρ from the horizon is then defined by the condition (3.212):

dρ = e−U dr = lim
c→0

e−U c2 dτ

sinh2(cτ)
= e−U

dτ

τ 2
∼ −rH

dτ

τ
, (3.227)

from which we find:
ρ = −rH log(−τ) . (3.228)

The horizon is located at ρH = −∞. Requiring regularity of the scalar fields at the horizon
implies then:

lim
ρ→−∞

φs(ρ) = φs∗ , |φs∗| <∞ . (3.229)

This in turn implies that al the derivatives of the scalar fields with respect to ρ vanish in
this limit:

lim
ρ→−∞

dk

dρk
φ(ρ) = 0 . (3.230)

This in particular implies, for k = 1 and 2 that:

lim
τ→−∞

τ φ̇s = lim
τ→−∞

τ 2 φ̈s = 0 . (3.231)

Let us now consider the equations for the scalar fields (3.200) near the horizon:

φ̈s + Γ̃suv φ̇
uφ̇v =

1

r2
Hτ

2
Gsu ∂uVBH ⇔ τ 2φ̈s + Γ̃suv (τ φ̇u)(τ φ̇v) =

1

r2
H

Gsu ∂uVBH . (3.232)

Taking the horizon limit of both sides and using (3.231), the left hand side vanishes, so that
we have:

lim
φs→φs∗

∂uVBH = ∂sVBH(φ∗; e,m) = 0 . (3.233)

We find that in going from radial infinity to the horizon of an extremal static black hole,
the scalar fields flow toward values φs∗ which define an extremum of the potential. In general
VBH may not depend on all the scalar fields, but have flat directions, which correspond to
scalar fields which are not effectively coupled to the solution. Eq. (3.233) will then only fix
those scalars along the non-flat directions as functions of the electric and magnetic charges
only

φs∗ = φs∗(e,m) . (3.234)
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As a consequence, the value of VBH at the extremum φs∗ will only depend on the electric and
magnetic charges: Vex = VBH(φ∗; e,m) = Vex(e,m).

If now we evaluate Eq. (3.199) near the horizon, we find:

1

τ 2
= Ü = e2U Vex =

1

r2
H τ

2
Vex ⇒ Vex = r2

H . (3.235)

In other words the area of the horizon can be expressed trough Vex(e,m) in terms of the
electric and magnetic charges only:36

A = 4π Vex(e,m) = A(e,m) . (3.236)

The near horizon metric can be easily computed from (3.211) and reads:

ds2 =
r2

r2
H

dt2 − r2
H

r2
dr2 − r2

H dΩ2 . (3.237)

It describes an AdS2× S2 space (Bertotti-Robinson solution) whose geometry only depends
on the area A of the horizon S2. It therefore only depends on the quantized charges of the
solution and not on the boundary values φ0 ≡ (φr0) of the scalar fields. This is the essence
of the attractor mechanism [46]: The scalars along the non-flat directions of the potential V
(namely which are non-trivially coupled to the black hole) flow from their values at radial
infinity φ0 towards fixed values at the horizon φ∗, solution to eq. (3.233) and only depending
on the quantized charges. Notice that the extremal black holes interpolate between two
vacua of the ungauged N -extended supergravity: Minkowski space-time and AdS2 × S2:

Minkowski at radial infinity ←→ AdS2 × S2 at the horizon . (3.238)

This is analogous to the general feature of solitonic solutions in field theory of interpolating
between different vacua. In this sense extremal black hole solutions can be regarded as
proper solitons of the ungauged supergravities.

If we consider extremal dyonic black holes, for a given set of charges e, m, we can always
find boundary conditions on the scalar fields for which the scalar fields are constant all over
space. It suffices to take:

φs(τ = 0) = φs∗ . (3.239)

In this case, being
∂sVBH(φ∗; e,m) = 0 , (3.240)

the scalar field equations are solved by φs(τ) ≡ φs∗. Such solutions are called double extremal.
Being VBH a constant VBH(φ∗(e,m); e,m) = Vex(e,m), the equation for U is easily integrated
as in (3.219) and we find an extremal Reissner Nordström solution with

rM =
GMADM

c2
; r2

Q =
8π G

c4
Vex(e,m) , (3.241)

36Restoring the constants and recalling that V has dimension of a charge squared, we would write:

A = 4π

(
8πG

c4
Vex(e,m)

)
.
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and

c2 = 0 ⇔ rM = rQ ⇔ MADM =

√
8π

G
Vex(e,m) = MADM(e,m) . (3.242)

If we repeat this analysis for the non-extremal case, we find that ρ has the following form:

dρ = − c

sinh(cτ)
dτ ∼ 2c ecτ dτ ⇒ ρ(τ) = 2 ecτ . (3.243)

Now the horizon is located at ρH = 0 and thus the regularity condition on the scalar fields:

lim
ρ→0

φs(ρ) = φs∗ , |φs∗| <∞ , (3.244)

no longer implies the vanishing (3.230) of the derivatives of φs with respect to ρ. In particular
equation (3.200) no longer implies that φs∗ be an extremum, for the potential.

Exercise: Prove that near the horizon (3.200) becomes:

d2φs

dρ2
+

1

ρ

dφs

dρ
+ Γ̃suv

dφu

dρ

dφv

dρ
=

4π

A
Gsu∂uVBH , (3.245)

using the property
e2U ∼ c2ρ2/r2

H . (3.246)

Expanding φs in Taylor series about ρ = 0 find that at the horizon

lim
ρ→0

dφs

dρ
= 0 , (3.247)

while the second derivative is given in terms of the gradient of the potential at the origin,
which therefore need not be zero.

From the the definition (3.243) of ρ, the property (3.247) and the near horizon behavior
(3.246) of U we find in the non-extremal case:

lim
ρ→0

e−U φ̇s = lim
ρ→0

e−U cρ
dφs

dρ
= lim

ρ→0
rH
dφs

dρ
= 0 . (3.248)

From this equation and from (3.231) we conclude that in both the extremal and non-extremal
cases:

lim
τ→−∞

e−U φ̇s = 0 . (3.249)

3.3.2 BPS-Solutions

In this subsection we shall focus on black hole solutions preserving a fraction of supersym-
metries. Since black holes are bosonic backgrounds, this happens, see Eq.s (2.170) if the
supersymmetry variations of the fermionic fields vanish on the solution along certain direc-
tions in the supersymmetry parameter space. As we did at the end of Sect. 2.3, we split the
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supersymmetry index i into the pair i = (x, u) (do not mistake in this paragraph the index
u with the one labeling the scalar fields), where x = 1, 2 and u = 1, . . . , [N /2]. Suppose
the solution preserves one out of N supersymmetries. The corresponding (Killing spinor)
parameter εi, once we transform the supersymmetry generators to the basis in which Zij is
skew-diagonal, is defined by the condition (2.166):

S(+)
(x,1),(y,v) ε(y,v) = ε(x,1) + i ζa γ

a Z1

|z1|
εxyε(y,1) = 0 , u = 1, . . . , q , (3.250)

ε(x,u) = 0 , u = 2, . . . ,N /2 , (3.251)

where we have written:
Z(x,u)(y,v) = Zuεxyδuv = −i zuεxyδuv .

Before evaluating the Killing spinor equations, let us compute the expression of the gravipho-
ton field strength Tµν ij on the solution in terms of the central charges. From (3.142) and
(3.174) we find:

F± = P± F =
1

2
(1∓ iCM)

[
e2U CM(φ) Γ dt ∧ dτ + Γ sin(θ) dθ ∧ dϕ ,

]
=

=
1

2
(1∓ iCM) Γ

[
±i e2U dt ∧ dτ + sin(θ) dθ ∧ dϕ

]
= P±ΓE± , (3.252)

where:
E± = ±i e2U dt ∧ dτ + sin(θ) dθ ∧ dϕ . (3.253)

Exercise: Verify that ∗E± = ∓ i E±.
Next we compute T± from (3.144) and (3.145):

T± = −L†cCF± = −L†cCP±ΓE± =
1

2
(1± i$) Z E± . (3.254)

In particular we have:
T−µν ij = Zij E

−
µν ; T−µν A = ZAE

−
µν . (3.255)

From the the gravitino (3.118) we derive one of the Killing spinor equations:

δΨµ i = Dµεi −
1

8
T−ρσ ij γ

ρσγµε
j = Dµεi −

1

8
Zij Eρσ γ

ρσγµε
j = 0 , (3.256)

where εi is subject to the conditions (3.251). Let us work out from (3.256) the corresponding
conditions on the background fields.

We start evaluating Eρσ γ
ρσ on the solution:

Eρσ γ
ρσ = 2 (Etτ γ

tτ + Eθϕ γ
θϕ) . (3.257)

Writing the metric in the τ radial variable:

ds2 = a2 dt2 − a2 b4 dτ 2 − b2 dΩ2 ⇒ e = a2 b4 sin(θ) , (3.258)
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and using (A.47), we find:

γθϕ = −i e εθϕtτ γtτγ5 = −i a2 b4 sin(θ) γtτγ5 ⇒ γθϕ = −i a2

sin(θ)
γtτγ5 . (3.259)

Substituting in (3.257) we have:

Eρσ γ
ρσ = −2i a2 γtτ (1 + γ5) = −2i

b2
γ01(1 + γ5) , (3.260)

where we have used: γ01 = Vt
0Vτ

1 γtτ = a2 b2 γtτ . To evaluate the right hand side of (3.256)
we also need to compute Dµεi. Let us use the following ansatz for the Killing spinor:

εi = εi(τ) = f(τ) ζi , (3.261)

where ζi are constant spinors subject to (3.251), so that:

Dµεi = ∂µf ζi +
1

4
ωµabγ

ab f ζi . (3.262)

Let us evaluate the µ = t component of (3.256):

1

f(τ)
δΨt i =

1

4
ωt abγ

ab ζi −
1

8
Zij Eρσ γ

ρσγµζ
j =

1

2
ωt 01γ

01ζi +
i a

4b2
Zij γ

01γ0(1− γ5)ζj =

=
1

2
ωt 01γ

01ζi +
i a

2b2
Zij γ

01γ0ζ
j =

1

2

ȧ

a b2
γ01ζi +

i a

2b2
Zij γ

01γ0ζ
j . (3.263)

where we have used ωt 01 = a′a = ȧ
a b2

. Now we write the first (3.251) for u = 1 in Weyl
spinors:

ε(x,1) + i γ0 Z1

|z1|
εxyε

(y,1) = 0 , (3.264)

Recall that Zij ≡ i γ5Rij + Iij and Zij = Rij + i Iij = iZij, so that:

Zijεi = (−i Rij + Iij)ε
j = −i Zijεj = Zij ε

j . (3.265)

Equation (3.264) then becomes:

0 = ε(x,1) + i γ0 Z1

|z1|
εxyε

(y,1) = 0 ⇒ i γ0 Z1

|z1|
εxyε

(y,1) = −ε(x,1) . (3.266)

This condition now allows us to make the last two terms in the last line of (3.263) proportional
to the same spinor. To see this write in (3.263) i = (x, u), with u = 1:

1

f(τ)
δΨt (x,1) =

1

2

ȧ

a b2
γ01ζ(x,1) +

i a

2b2
Z1 γ

01γ0εxyζ
(y,1) =

1

2b2

(
ȧ

a
− a|z1|

)
γ01ζ(x,1) , (3.267)
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which implies the following first order equation in the warp function U(τ):37

U̇ = eU |z1| , (3.268)

recall that |zu| are field and charge-dependent:

zu = zu(φ(τ); e,m) . (3.269)

The component µ = τ of δΨµ implies a differential equation for f(τ), while the other
components imply no other condition.

Computing (3.268) at radial infinity, restoring the constants and recalling that U̇(τ =
0) = G

c2
MADM , U(τ = 0) = 0, one finds:38

MADM =

√
8π

G
|z1|∞ , (3.271)

which is nothing but the saturation of the bound (2.147) on the mass of the black hole. Here
we have just required the preservation of one supersymmetry out of the N and found (3.268)
as a necessary condition. If more supersymmetries were preserved then (3.268) would still
hold, but |z1| = · · · = |zq| > |zq+1| > . . . .

Let us prove form our previous analysis that BPS solutions are extremal, i.e. that c2 = 0.
To this end it is useful to rewrite the potential VBH in terms of central and matter charges:

VBH(φs; e,m) = −1

2
ΓTM(φ)Γ =

1

2
ΓTCTLc L†cCΓ =

1

2
Z †Z =

1

2
ZijZ

ij+ZAZ A , (3.272)

where we have used (3.138) and the definition of Z . In the basis in which Zij is skew-
diagonal (Z(x,u)(y,v) = Zuεxyδuv = −i zuεxyδuv) we can write:

VBH =

[N2 ]∑
u=1

|zu|2 + ZAZ A . (3.273)

Consider now the constraint (3.201) and use (3.268) together with the above expression of

37Restoring the constants we would write: U̇ = eU
√

8πG

c2 |z1|.
38Actually, see footnote 22, to make contact with our discussion about representations and Bogomolny

bound we should further make the replacement (3.154), so as to finally find:

MADM =
~
c
|z1|∞ , (3.270)

which is the correct relation between the mass and the central charge of the algebra (which has dimension
of a length−1).

104



the potential:

c2 =
1

2
Guvφ̇

uφ̇v + e2U |z1|2 − e2U

[N2 ]∑
u=1

|zu|2 + ZAZ A

 =

=
1

2
Guvφ̇

uφ̇v − e2U

[N2 ]∑
u=2

|zu|2 + ZAZ A

 . (3.274)

Recall that at the horizon φ̇s and e2U always vanish, while the central and matter charges
tend to a finite value. Taking the near horizon limit of the above equation we find:

c2 = 0 , (3.275)

namely the BPS solution is extremal. This allows to rewrite the constraint in the following
form:

1

2
Guvφ̇

uφ̇v = e2U

[N2 ]∑
u=2

|zu|2 + ZAZ A

 . (3.276)

which has to hold for any τ . This condition is implied by the other Killing spinor equations,
in particular from

δχijk = δλiA = 0 , (3.277)

which yield a system of first order differential equations in the scalar fields of the form:

φ̇s = 2 eU Gss′∂s′|z1| . (3.278)

This is best seen in the N = 2 theory. Since i, j = 1, 2 the components P ijkl = P [ijkl] and
Pijkl = P[ijkl] of the scalar manifold are not present. Moreover the central charge matrix has
only one skew-eigenvalue Zij = εij Z . From (3.163) we have:

D(H)Z = PA Z A , (3.279)

where we have written Pij,A = εij PA. In the N = 2 theory there are no dilatinos χijk,
but just gauginos λiA and hyperinos ζmi. The scalar fields in the vector multiplets are
complex zα and PA = Pα,A dz

α, PA = PA
ᾱ dz̄

ᾱ represent the complex viebein 1-forms of the
corresponding special Kähler manifold:

Gαβ̄(z, z̄) = Pα,APβ̄
A ; Pα,APβ̄

B Gαβ̄ = δBA . (3.280)

The gaugino variation along the Killing spinor εi reads:

δλA i = i Pα,A∂µz
α εijγ

µεj − i

4
T−ρσ Aγ

ρσεi = 0 . (3.281)
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Now use the second of (3.255) and (3.260) to find:

0 = i Pα,Aż
α εijγ

τ εj − 1

b2
ZAγ

01εi =
i

ab2
Pα,Aż

α εijγ
1εj +

i

b2
ZA

Z

|Z |
γ01γ0εijε

j =

=
i

ab2

(
Pα,Aż

α − a ZAZ

|Z |

)
εijγ

1εj , (3.282)

where we have used (3.266). The above condition yields the following first order differential
equations on the scalar fields in the vector multiplets:

Pα,Aż
α = eU

ZAZ

|Z |
. (3.283)

Consider now the complex conjugate of Eq. (3.279) in components

D(H)Z = PA ZA = PA
ᾱ dz̄

ᾱZA = D(H)
ᾱ Z dz̄ᾱ , (3.284)

which in particular implies that:

D(H)
α Z = D(H)

ᾱ Z = 0 . (3.285)

This allows to rewrite (3.283) in the form:

żα = eU GαᾱPA
ᾱ

ZAZ

|Z |
= eU GαᾱD

(H)
ᾱ Z Z

|Z |
= 2 eU GαᾱD(H)

ᾱ |Z | = 2 eU Gαᾱ∂ᾱ|Z | , (3.286)

where we have used the property that the norm |Z | is H-invariant, so that:

D(H)
ᾱ |Z | = ∂ᾱ|Z | . (3.287)

Finally the Killing spinor condition on the hyperini variation implies:

q̇m = 0 . (3.288)

From the requirement that a fraction of supersymmetries be preserved by the black hole in
the N = 2 theory we have therefore found a set of first order equations

U̇ = eU |Z (φ; e,m)| ; żα = eU GαᾱPA
ᾱ

ZAZ

|Z |
= 2 eU Gαᾱ∂ᾱ|Z | ; q̇m = 0 , (3.289)

which in turn imply

c2 = U̇2 + Gαβ̄(z, z̄)żα ˙̄zβ̄ +
1

2
Gmn(q)q̇mq̇n − e2U

(
|Z |2 + ZAZ A

)
= 0 , (3.290)

in line with our general conclusion, namely (3.276). Notice that q̇m = 0 means that in a
BPS solution the hyperscalars do not participate. This is due to the fact that they are not
coupled to the vector fields, i.e they do not enter the matrix M(φ), which in turn follows

106



from the fact that they are not connected to vector fields by supersymmetry, i.e. there is no
vector field-strength in the hyperini variation (3.121). The hyperscalars qm are flat directions
of the potential VBH = VBH(z, z̄).

Let us now come back to the general case N > 2 and make some other general consider-
ations. Multiply both sides of (3.276) and consider the near horizon limit, using the general
property (3.249):

lim
τ→0

[N2 ]∑
u=2

|zu|2 + ZAZ A

 = lim
τ→0

e−2U

2
Guvφ̇

uφ̇v = 0 , (3.291)

which in turn implies that all the skew-eigenvalues of the cental different from Z1 and all
matter charges vanish at the horizon on a BPS solution:

Zu(φ∗; e,m) = 0 , (u = 2, . . . ,

[
N
2

]
) ; ZA(φ∗; e,m) = 0 . (3.292)

Therefore the value of the potential at the horizon is (resuming constants):

Vex = VBH(φ∗; e,m) = |Z1(φ∗; e,m)|2 =
c4

8π G
rH(e,m)2 , (3.293)

where we have used (3.236). The behavior of the warp function

e−U ∼ −τ rH =
rH
r

=
|Z1(φ∗; e,m)|

r
, (3.294)

and the near horizon metric is a Bertotti-Robinson metric of the form (3.237) describing an
AdS2 × S2 space.

As a consequence of property (3.292), if the solutions preserves a fraction q/N of super-
symmetries, with q > 0, we will have:

Z1(φ∗; e,m) = Z2(φ∗; e,m) = 0 , (3.295)

that is all the central charges vanish at the horizon. This in turn implies, from Eq. (3.293),
that the horizon area vanishes. The solution is therefore not regular: The horizon coincides
with the singularity. Such solutions, named small black holes, having vanishing horizon area
in the supergravity description, also have vanishing entropy, according to the Bekenstein-
Hawking area law. We must however recall that the supergravity description of the solution,
if we interpret supergravity as an effective low-energy theory, can be trusted if curvatures
are sufficiently small, namely if there is a horizon which keeps the predictable region of
space-time far enough from the singularity, where the curvature explodes. This is not the
case for small black holes and we would expect corrections which are of higher-order in the
curvatures, to play an important role near their singularity. This is indeed the case: higher
order curvature string corrections do regularize the solution giving it a finite horizon area
and finite entropy (see for instance [47] and references therein).
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If we consider the double extremal BPS solution by choosing φs(τ = 0) = φs∗ so that
φs(τ) ≡ φs∗ for any τ , we end up with an extremal Reissner-Nordström solution which, by
construction, is BPS as well, with (restoring the constants)

MADM =

√
4π

G
|Q| =

√
8π

G
|Z1(φ∗; e,m)| . (3.296)

The BPS orbit of charges. We have learned that BPS solutions are characterized by
the property that, at the extremum φs∗(e,m) of the potential all matter charges ZA and all
central charges Zu but one must vanish, according to (3.292). Recalling that the quantities in
(3.292) are to be computed at φs∗(e,m), this amounts to non-linear conditions the quantized
charges. By virtue of (3.152) and (3.157), such conditions are invariant if we transform the
charges under the duality group G: Γ → g Γ and thus define an orbit of the charge vector
Γ = (m, e) under the action of G. Such orbit is called the BPS-orbit. If the charges are not
in the BPS-orbit, a solution to the Killing spinor equations is not a physical black hole.

Let us now make some more general comments. If a black hole, as a solitonic massive
object, is to be described in the Hilbert space of the quantum theory, our general discussion
in Sect. 2.3 implies that its mass must be greater than the norm of all the skew-eigenvalues
of the central charge:

MADM ≥
√

8π

G
|Zu| , u = 1, . . . ,

[
N
2

]
. (3.297)

Stability of BPS solutions. Suppose the quantized charges are in the BPS-orbit, let us
give an argument for the stability of the BPS solution, following [38]. If |Z1| is the largest
of the eigenvalues of the central charge, the extremal solution is the BPS one in which the

ADM mass coincides with
√

8π
G
|Z1|. In a non-extremal solution therefore M 6= |Z1| but

condition (3.297) only allows for the possibility

MADM >

√
8π

G
|Z1| , (3.298)

corresponding to a solution with the same charges as the extremal one but a greater mass.
From the constraint at infinity (3.208) we see then that c2 > 0, namely the solution is
non-extremal, that is it has a non-vanishing temperature. Since we have proven that BPS
solutions are extremal, this solution breaks all supersymmetries. Being T 6= 0, the black hole
will radiate according to Hawking’s quantum process. It can only emit elementary particles
in the theory. Our model is an ungauged extended supergravity which describes massless
fields (graviton, gravitino, fermions and gauge fields) which are neutral, since there is no
minimal coupling of the gauge fields to any other field. Charges and mass are only carried
by the solitonic black hole solution. Emitting neutral, massless particles, the mass MADM

of the solution will decrease, while its charge |Z1| will remain constant. This evaporation
process will last until the solution becomes (after infinite time) extremal BPS (i.e. MADM =
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√
8π
G
|Z1|) and the temperature drops to zero. In this limiting state the solution will no longer

radiate. BPS solutions can then be regarded as (quantum mechanically) stable solutions
of supergravity/superstring theory. Their mass has the minimum value allowed by the
supersymmetry of the theory (not of the solution), according to (3.297). Since lower masses,
for the same charges, would correspond to singular solutions (c2 < 0), the supersymmetry of
the theory seems to provide a first principle for excluding solutions with naked singularities
(i.e. acts as a cosmic censor [13, 14]).

BPS solutions have played an important role in the early nineties in the study of string
dualities [48]. Let us recall that dualities are correspondences between superstring theories
( and M-theory) realized on different backgrounds which allow to identify these effective
theories as different descriptions of the same microscopic degrees of freedom. These cor-
respondences may be non-perturbative, namely relate the strong-coupling regime (referred
to the superstring coupling constant) of a superstring theory on some background to the
weak-coupling regime of a different theory on some other background. The action of these
dualities on the background fields are described, at the level of low-energy supergravity, by
transformations in G (or in a suitable extension of G) [33]. Two dual theories must have the
same spectrum and interactions. In particular the spectrum of BPS states should coincide.
Verifying this coincidence on BPS states is definitely more affordable a task than on generic
massive states because the BPS mass formula (3.296) is duality invariant (being G-invariant)
and, most importantly, supersymmetry protects, to some extent, the masses from quantum
corrections, by virtue of non-renormalization theorems. Quantum corrections may affect
both sides of (3.296), the equality however must still hold at the quantum level. If this were
not the case, a state belonging classically to a short (i.e. BPS) multiplet, at the quantum
level would be described by a long one. In other words quantum corrections would introduce
new degrees of freedom, which is unlikely [11, 12].

Horizon as an stable attractor point. Summarizing, we have seen that, if we choose
certain quantized electric and magnetic charges (belonging to the 1/N -BPS orbit), at the
extremum of the potential all matter and central charges vanish except one central charge
skew-eigenvalue (Z1). The regular BPS solution is solution to a system of first order differ-
ential equations of the form:39

U̇ = eU W (φ; e,m) , (3.299)

φ̇s = 2 eU Gss′∂s′W (φ; e,m) , (3.300)

where we have defined W (φ; e,m) = |Z1(φ; e,m)|. At the horizon, since e−U φ̇s vanishes,
not only VBH , but also |Z1(φ; e,m)| has an extremum:

∂s′W (φ∗(e,m); e,m) = ∂s′ |Z1(φ∗(e,m); e,m)| = 0 . (3.301)

The horizon point φs = φs∗(e,m) is an equilibrium point for the dynamical system (3.300),
since the right-hand-side vanishes. Let us notice that, by definition, W is always positive

39Restoring the constants we would write: U̇ = eU
√

8πG

c2 W (φ; e,m).
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definite. Moreover its derivative along the solution φr(τ) is positive definite as well (except
in φ∗ where it vanishes):

dW

dτ
= φ̇r∂rW =

1

2
e−U Grs(φ) φ̇r φ̇s > 0 . (3.302)

We see that, if φ∗ is isolated40, W has the properties of a Liapunov’s function and thus, by
virtue of Liapunov’s theorem, φ∗ is a stable attractor point (we refer the reader to Appendix
C for a brief review of the notion of asymptotic stability in the sense of Liapunov and of
Liapunov’s theorem, see also standard books like [49]). This conclusion extends to models
based on a generic (not necessarily homogeneous) scalar manifold: The very existence of a
W -function even just in a neighborhood of an isolated critical point φ∗, in terms of which the
evolution of the scalar filed is described by a dynamical system of the form (3.300), is enough
to guarantee asymptotic stability of φ∗, and thus that the horizon is a stable attractor (see
the second of [54]). Let us emphasize that in this case we need not evaluate the Hessian of the
potential on φ∗. In other words the (local) existence of W can be taken as an alternative and
more powerful characterization of the attractiveness and stability properties of the horizon
point φ∗.

Our analysis also extends to multicenter BPS solutions, see for instance [50] and references
therein. We shall not deal with them here.

3.3.3 Non-BPS Extremal Solutions

BPS extremal solutions were the first to be studied. Eventually new extremal non-BPS (i.e.
breaking all supersymmetries) solutions were found [51]. These are defined by quantized
electric and magnetic charges belonging to orbits with respect to the duality action of G
which are different from the BPS one, which we shall refer to also as “orbit-I”. One of
these orbits, to be dubbed “orbit-II”, has the distinctive feature that at the extremum of
the potential all central and matter charges vanish, except one matter charge ZA0 . The
corresponding regular solution is described by a system of first order differential equations of
the form (3.299),(3.300), where now W (φ; e,m) = |ZA0(φ; e,m)|. A class of N < 8 models
can be obtained as consistent truncations of the maximal N = 8 theory. This means that
they are obtained by setting fields of the maximal theory to zero so that all solutions of
these models are also solutions to the N = 8 theory. Since in the N = 8 model there are no
matter multiplets, all charges at infinity are central charges Zij. In particular the matter
charge ZA0 of the N < 8 model defining the non-BPS extremal solution, in the context of the
N = 8 theory is one of the four central charge skew-eigenvalues Zu. The non-BPS extremal
black hole becomes then BPS if viewed as solution to the maximal theory. It preserves one

40In N = 2 supergravity, the BPS fixed point is isolated in the special-Kähler manifold spanned by the
scalar fields zα, z̄ᾱ in the vector multiplets. For N > 2, the scalar potential VBH has flat directions. Just as
the hyperscalars qm in the N = 2 models, the scalar fields corresponding to the flat directions of VBH do not
have an independent evolution. Once we fix them at radial infinity, all the other scalar fields evolve towards
a single fixed point at the horizon, defining in their evolution an hypersurface inside Mscal on which the
fixed point isolated and the theorem applies. In the whole Mscal the fixed points φs∗ define a hypersurface
parametrized by the flat directions which is a stable attractor hypersurface.
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of its eight supersymmetries, which is among the 8 −N supersymmetries which are lost in
the truncation to the N < 8 model.

There is a further orbit of charges, to be referred to as “orbit-III”, for which the moduli
of all the central charge skew-eigenvalues Zu and matter charges ZA become equal at the
extremum of VBH . The corresponding solutions cannot be BPS, since, as we have seen, if in
a BPS solution all of the Zu coincide at the horizon, the whole central charge matrix has to
vanish at that point. They were first studied in [52]. The corresponding regular solution is
described by a system of first order differential equations of the form (3.299),(3.300). The
explicit form of the corresponding W -function is not known. Only parametric or integral
expressions of W were found [53],[54]. In the maximal theory, if we denote by σ(e,m) the
common value of the four central charge skew-eigenvalues Zu at the horizon, the W function
at that point is given by:

W (φ∗(e,m); e,m) = 2 σ(e,m) . (3.303)

This is also the ADM mass of the corresponding double-extremal solution. It is greater than
the value σ(e,m) of the central charge skew-eigenvalues Zu at the horizon, consistently with
the general condition (3.297). Also for regular (non-BPS) extremal black holes of type II
and III the function W defining the system of first order equations is a Liapunov function
whose existence implies that the corresponding horizons are stable attractor points (or better
stable attractor hypersurfaces, see footnote 32, if we take the flat directions into account) of
the dynamical system of the scalar fields.

Extremal (i.e. T = 0), asymptotically flat black holes are expected to belong to irreducible
representations of the super-Poincaré algebra.41 BPS solutions are described by massive short
multiplets, while non-BPS ones by massive long multiplets.

In each of these orbits, as we have seen in the previous subsection, we can find a double
extremal solution in which all scalar fields are constant and fixed all along the radial direction
to their horizon values. These solutions are defined by the boundary condition:

φs(τ = 0) = φs∗(e,m) . (3.304)

and are of extremal Reissner-Nordström type. This means that there is more than one
embedding of the extremal Reissner-Nordström solution an extended supergravity, of which
only one, modulo transformations of the global symmetry group, preserves supersymmetries,
the other being non-BPS.42

3.3.4 The Black Holes and Duality

We have learned that the on-shell global symmetries of an extended supergravity, at the
classical level, are encoded in the isometry group G of the scalar manifold (if non-empty),

41Supersymmetry is well defined only at zero-temperature. Non-extremal solutions have non-vanishing
temperature and therefore are not described by pure states, but rather by non-supersymmetric statistical
ensembles of states [38]. Their description within a Hilbert space generated by (pure) states in representations
of the super-Poincaré algebra implies however the inequality (3.297).

42Modulo transformations of the global symmetry group, since the orbits of regular extremal solutions are
at most three, see below, there are at most three inequivalent embeddings of the extremal Reissner-Nordström
solution an extended supergravity.
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whose action on the fields of the model is described in (3.116): Its non-linear action on the
scalar fields φs is combined with a simultaneous linear symplectic action on the field strengths
FΛ and their duals GΛ. This duality action of G is defined by a symplectic representation
S of G. The fermion fields transform under the compensating transformation h(g, φ) in
H. Under this action static black hole solutions, defined by the general ansatz (3.172), are
mapped into solutions of the same kind. More precisely a duality transformation g ∈ G
maps a black hole solution U(τ), φr(τ), with charges ΓM = (mΛ, eΛ) and ADM mass MADM ,
into a new solution U ′(τ) = U(τ), φ′ r(τ) = g ? φr(τ) with charges Γ′ = S[g] Γ and the same
ADM mass (the ADM mass, being a property of the metric of the solution, is not affected by
duality transformations which leave the metric unaltered). In particular if, for given charges
and ADM mass, the solution U(τ), φs(τ) is uniquely defined by the boundary condition φs0
for the scalar fields, U ′(τ) = U(τ), φ′ s(τ) is the unique solution with charges Γ′ defined by
the boundary condition φ′0 = g ? φ0

g ∈ G :


U(τ)

φ(τ)

Γ

−→


U ′(τ) = U(τ)

φ′(τ) = g ? φ(τ)

Γ′ = S[g] Γ

. (3.305)

Using eq.s (3.90) and (3.305), we see that the effective potential VBH(φ; Γ), as a function
of the scalar fields and of the quantized charges, is invariant under the simultaneous action
(3.305:

VBH(φ,Γ) = V (g ? φ,S[g] Γ) . (3.306)

This implies that VBH , as a function of the scalar fields and quantized charges, is G-invariant.
From this property of VBH it follows that the effective action (3.202) and the extremality
constraint (3.203) are manifestly duality invariant. A consequence of this is that black holes
in extended supergravities can be classified in orbits with repsect to the action (3.305) of the
global symmetry gorup G.

We have denoted by φs∗(Γ) = φs∗(e,m) the extremum of VBH(φ; Γ):

∂sVBH(φ∗(Γ); Γ) = 0 . (3.307)

From (3.306) we find:

∂sVBH(φ∗(Γ); Γ) = 0 ⇔ ∂sVBH(g ? φ∗(Γ); S[g] Γ) = 0 . (3.308)

This implies that the point g ? φ∗(Γ) extremizes the potential V (φ′,S[g] Γ). But such ex-
tremum was denoted by φ∗(S[g] Γ), so we can write:

g ? φs∗(Γ) = φs∗(S[g] Γ) . (3.309)

This has an important implication for extremal solutions:

Vex(Γ) = VBH(φ∗(Γ); Γ) = VBH(g ? φ∗(Γ); S[g] Γ) = VBH(φ∗(S[g] Γ); S[g] Γ) = Vex(S[g] Γ) .
(3.310)
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In other words the value of scalar potential at the extremum, which defines the horizon area
A and thus the entropy of the solution, is described by a G-invariant function of the quantized
charges only. Therefore the entropy of the extremal solution is a G-invariant function of Γ.
In all the models with homogeneous-symmetric scalar manifold in Table 3.1.1, except the
N = 2 ones with G = U(1, n) and theN = 3 supergravity, the representation S of G in which
the electric and magnetic charges transform has a single invariant function I4(Γ) = I4(e,m)
of the electric-magnetic charge vector Γ, which has degree four in the charges. Denoting by
(TA)M

N the matrices S[TA] representing the generators TA of G in the symplectic duality
representation S, the quartic invariant in these models can be written inn the general form:

I4(Γ) = −nV (2nV + 1)

6d
(TA)MN (TA)PQ ΓM ΓN ΓP ΓQ , (3.311)

where the symplectic indices are raised and lowered by CMN and CMN , the index A is raised
by the inverse of ηAB ≡ (TA)M

N(TB)N
M and d is the dimension of G. In terms of I4 the

potential at the extremum reads:

Vex(e,m) =
√
|I4(e,m)| , (3.312)

and the horizon area reads (resuming the constants):

A(e,m) = 4π

(
8πG

c4

√
|I4(e,m)|

)
, (3.313)

and the entropy of the extremal solution therefore reads:

S(e,m) =
kB
`2
P

π

(
8πG

c4

√
|I4(e,m)|

)
. (3.314)

The orbits I (BPS), II and III of Γ with respect to the action of G, discussed in the previous
subsection, have the following features:

Orbit I (BPS) I4 > 0 ,

Orbit II (non-BPS) I4 > 0 ,

Orbit III (non-BPS) I4 < 0 .

(3.315)

Orbits of the electric and magnetic charges with vanishing quartic invariant I4(e,m) = 0
define small black holes. It was shown that orbits I, II and III exhaust all possible orbits of
regular black holes in extended supergravities [55]. Within each of these orbits the extremal
solutions are defined by the condition that, at radial infinity:

MADM =

√
8π

G
W (φ0; e,m) . (3.316)

Only for the BPS solution (orbit I), the value of the ADM mass corresponds to one of
the skew-eigenvalues (the one with largest modulus) of the central charge matrix. In the
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other orbits its value is strictly greater than the moduli of any of the central charge skew-
eigenvalues. Non-extremal solutions (c2 > 0) in each orbit are characterized, for the same
charges, by a larger ADM mass than the corresponding extremal solution:

MADM >

√
8π

G
W (φ0; e,m) . (3.317)

Hawking-evaporation will then reduce their mass keeping the charges and thereforeW (φ0; e,m)
constant. Just as for the BPS orbit, ADM mass of the black hole will tend to its lower bound
W (φ0; e,m) defined by the corresponding extremal solution. This lower bound for the non-
BPS orbits of electric and magnetic charges is strictly larger than any of the |Zu|.

The general relation of the scalar potential to the W -function defining the extremal solu-
tion is derived from the general constraint (3.201) and from the system of first-order equations
(3.299) and (3.300):

VBH(φ; e,m) = W 2 +Gss′(φ)∂sW∂s′W . (3.318)

This can be viewed as a partial differential equation defining W . In fact it corresponds to
the Hamilton-Jacobi equations (for “zero energy solutions” c = 0) [53] associated with the
effective autonomous Lagrangian system (3.202) which describes the black hole solutions. At
the horizon W is extremized as well as the potential and therefore:

Vex(e,m) = VBH(φ∗(e,m); e,m) = W (φ∗(e,m); e,m)2 = r2
H . (3.319)

Recalling that theW function, if evaluated on the solution (W (φs(τ); e,m)), is monotonically
increasing from the horizon to radial infinity (see Eq. (3.302)), it monotonically interpolates
between the horizon area for τ → −∞ and the ADM mass for τ = 0, so that, restoring the
constants:

c2

√
8π G

rH
τ→−∞←− W (φs(τ); e,m)

τ→0−→
√
G

8π
MADM . (3.320)

A Notations

Poincaré transformations. We use the “mostly minus” convention for the signature of
the metric, so that the Lorentz metric in flat Minkowski space-time is ηµν = diag(+1,−1,−1,−1).
A generic Poincaré transformation (Λ, x0) is defined by a Lorentz transformation Λ = (Λµ

ν)
and a space-time translation by x0 = (xµ0):

xµ
(Λ, x0)−→ x′µ = Λµ

ν x
ν − xµ0 , (A.1)

where Λµ
ρΛν

σηρσ = ηµν . We also use the convention: ε0123 = −ε0123 = 1, so that:

dx0 ∧ dx1 ∧ dx2 ∧ dx3 = d4x = −ε0123 d4x ⇒ dxµ ∧ dxν ∧ dxν ∧ dxρ = −εµνρσ d4x . (A.2)

The abstract generators of the Lorentz group and of space-time translations are denoted
by Lµν , Pµ and satisfy the commutation relations:

[Lµν , Lρσ] = ηνρ Lµσ + ηµσ Lνρ − ηνσ Lµρ − ηµρ Lνσ , (A.3)

[Lµν , Pρ] = Pµ ηνρ − Pν ηµρ . (A.4)

114



On 4-vectors V µ, in the (1
2
, 1
2
) of SL(2,C), Lµν has the matrix form: (Lµν)ρσ = δσµ ηνρ−δσν ηµρ.

An abstract Poincaré transformation is then given by:

T (Λ, x0) = ex
µ
0 Pµ · Λ = Λ · ex

′µ
0 Pµ ; Λ = e

1
2
θµν Lµν , (A.5)

where x′0 = Λ−1 x0.
Let Φm(xµ) be a classical field transforming in a representation D of the Lorentz group.

Under a generic Poincaré transformation it transforms as:

Φm(x)
(Λ, x0)−→ Φ′m(x′) = D(Λ)mn Φn(x) =

[
O(Λ, x0) · Φ

]m
(x′) , (A.6)

where O(Λ, x0) is a realization of the group on the fields in terms of differential operators:

O(Λ, x0) = exp(x0 · O(P)) · exp(
1

2
θµν O(Lµν)) ,

O(Pµ) = ∂µ ; O(Lµν) = D(Lµν) + xµ∂ν − xν∂µ . (A.7)

In the quantum theory the Poincaré generators are represented by anti-hermitian operators
L̂µν , P̂µ on the infinite dimensional Hilbert space of states. The four-momentum and the
total angular momentum operators are

P̂µ = i~ P̂µ ; Ĵi =
i ~
2
εijk L̂jk = Ŝi + M̂i , (A.8)

M̂i and Ŝi being the orbital and spin components, respectively. We shall set ~ = c = 1. The
action of a (unitary) Poincaré transformation on the hermitian operator Ô, representing an
observable O is:

Ô
(Λ, x0)−→ Ô′ = U(Λ, x0)† Ô U(Λ, x0) , (A.9)

and on a field operator Φ̂m(x), in the Heisenberg representation:

Φ̂m(x)
(Λ, x0)−→ Φ̂′m(x′) = U(Λ, x0)† Φ̂m(x′)U(Λ, x0) = D(Λ)mn Φ̂n(x) =

[
O(Λ, x0) · Φ̂

]m
(x′) .

(A.10)
The infinitesimal variation of Φ̂m(x) reads:

δΦ̂m(x) =
εµν

2
[Φ̂m(x), L̂µν ] + εµ [Φ̂m(x), P̂µ] . (A.11)

In the Heisenberg representation the effect of two consecutive transformations g1 and g2,
which in the Schroedinger picture would transform a state |s〉 as follows:

|s〉 g1−→ |g1 s〉 = U(g1)|s〉 g2−→ |g2g1 s〉 = U(g2)|g1s〉 = U(g2g1)|s〉 , (A.12)

is implemented by keeping |s〉 unchanged and transforming the field operators as follows:

Φ̂m(x)
g1−→ U(g1)†Φ̂m(x′)U(g1)

g2−→ U(g1)†U(g2)†Φ̂m(x′′)U(g2)U(g1) =

= U(g2g1)†Φ̂m(x′′)U(g2g1) . (A.13)
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The one used above is the active description of transformations on Φ̂, if g1 = eT1 ≈ 1 + T1

and g2 = eT2 ≈ 1 + T2, T1, T2 infinitesimal, δ2δ1Φ̂ = O(T2)δ1Φ̂ = O(T2)O(T1)Φ̂, so that:

(δ2δ1)activeΦ̂ = O(T2·T1)Φ̂ = [[Φ̂, T2], T1] ⇒ [δ2, δ1]activeΦ̂ = O([T2, T1])Φ̂ = [Φ̂, [T2, T1]] ,
(A.14)

where we have used the Jacobi identity on commutators. Using the passive description
instead, the original fields Φ̂ are expressed in terms of the transformed ones Φ̂′ so that
δΦ̂ = f(Φ̂′) and a subsequent transformation will be effected by expressing Φ̂′ inside f in
terms of the new one Φ̂′′. Clearly we have:

[δ2, δ1]passiveΦ̂ = −[δ2, δ1]activeΦ̂ . (A.15)

From this it follows that, if {TA} are the infinitesimal generators of a Lie group which close
a Lie algebra with structure constants fAB

C :

[TA, TB] = fAB
C TC , (A.16)

and if δAΦ̂ = [Φ̂, TA] denote an infinitesimal variations generated by TA, the commutators of
these variations in the active description close an algebra with the same structure constants,
while in the passive one they close with the opposite structure constants:

[δA, δB]active = fAB
C δC , [δA, δB]passive = −fABC δC . (A.17)

The invariants of the Poincaré group are constructed out of the momentum generator P̂µ and

the Pauli-Lubanski 4-vector Ŵµ ≡ i
2
εµνρσ L̂νρP̂ σ. In particular, for massive single-particle

representations, in the rest-frame:

〈ŴµŴ
µ〉 = −

3∑
I=1

〈ŴIŴI〉 = −m2 c2 〈|Ŝ|2〉 = −m2 c2 ~2 s (s+1) ; 〈P̂µP̂ µ〉 = m2 c2 . (A.18)

On a massless state of momentum pµ

〈Ŵµ〉 = pµ 〈Γ̂〉 , (A.19)

where Γ̂ is the helicity operator.

Spinors. We mostly follow the notations of [2]. In flat space-time we choose the γ-matrices,
satisfying the relation {γµ, γν} = 2 ηµν , to have the following form:

γµ =

(
0 σµ

σ̄µ 0

)
; σµ = (1, σI) ; σ̄µ = (1,−σI) (I = 1, 2, 3) , (A.20)

σI being the three Pauli matrices. The spinor representation of the Lorentz generators is
given by:

D(Lµν) =
γµν
2

; γµν ≡
1

2
[γµ, γν ] . (A.21)
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One can verify that:
γ0γµγ0 = (γµ)† = ηµµ γµ . (A.22)

A 4-component spinor is an array of four complex Grassmannian entries transforming in
the (1

2
,0) + (0, 1

2
) of SL(2,C). We use for the complex conjugation of Grassmann numbers

the following convention: (ξ1 ξ2)∗ = ξ∗2 ξ
∗
1 . Dirac and complex conjugations on a spinor ψ as

defined, respectively, as follows:

ψ̄ ≡ ψ†γ0 ; ψc ≡ C ψ̄T , (A.23)

where the charge conjugation matrix C is defined as C = −iγ2 γ0 and satisfies the properties:

C−1γµC = (γµ)T ; C = C∗ = −CT = −C−1 . (A.24)

Defining
γµ1...µk ≡ γ[µ1 . . . γµk] , (A.25)

the following properties hold:

(Cγµ1...µk)T = −(−1)
k(k+1)

2 Cγµ1...µk ,

χ̄cγ
µ1...µkλ = (−1)

k(k+1)
2 λ̄cγ

µ1...µkχ ,

(χ̄cγ
µ1...µkλ)∗ = (−1)k χ̄γµ1...µkλc . (A.26)

The spinor representation can be reduced by imposing the Majorana condition on spinors:

ψ = ψc = C ψ̄T . (A.27)

From the last of Eq.s (A.26) it follows that, if χ, λ are Majorana spinors, χ̄λ and iχ̄γµλ are
real.

We define the matrix γ5 as follows

γ5 ≡ i

4
εµνρσγ

µγνγργσ = i γ0γ1γ2γ3 =

(
−1 0
0 1

)
. (A.28)

The following properties hold:

γ5γµ = − i

3!
εµνρσγ

νρσ ; γ5γµν = − i
2
εµνρσγ

ρσ ,

γ5γµνρ = i εµνρσγ
σ ; γ5γµνρσ = i εµνρσ . (A.29)

Of particular use is the basic Fierz identity:

λ χ̄ = −1

4
(χ̄λ)− 1

4
(χ̄γ5λ) γ5 − 1

4
(χ̄γµλ) γµ +

1

4
(χ̄γ5γµλ) γ5γµ +

1

8
(χ̄γµνλ) γµν . (A.30)
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If we apply the above identity to a single spinor 1-form Ψ = Ψµ dx
µ, the only non-vanishing

bilinears are Ψ̄ ∧ γµΨ and Ψ̄ ∧ γµνΨ, so that:

Ψ[ρ Ψ̄σ] = −1

4
(Ψ̄[σγ

µΨρ]) γµ +
1

8
(Ψ̄[σγ

µνΨρ]) γµν =
1

4
(Ψ̄[ργ

µΨσ]) γµ−

− 1

8
(Ψ̄[ργ

µνΨσ]) γµν . (A.31)

From the above identity one can verify that:

γµ Ψ ∧ Ψ̄ ∧ γµΨ = 0 . (A.32)

Below are other useful properties of the γ-matrices:

γµνγ
ρ = 2 γ[µδ

ρ
ν] + γµν

ρ = 2 γ[µδ
ρ
ν] + iεµν

ρσγ5γσ ,

γµνγ
ρσ = γµν

ρσ − 4 δ
[ρ
[µγν]

σ] − 2 δρσµν ,

γ[ργµνγ
σ] = γµν

ρσ + 2 δρσµν = 2 (δρσµν +
i

2
εµν

ρσ γ5) ,

γργ
µ1...µkγρ = 2(−1)k(2− k) γµ1...µk . (A.33)

We shall also use the 2-component notation and write:

χ =

(
ξα
ζ̄ α̇

)
, (A.34)

where ζ̄ α̇ = (ζα)∗, ζ̄α̇ = (ζα)∗ and the indices α, α̇ = 1, 2 are raised and lowered as follows:

λα = εαβλβ ; λβ = εαβ λ
α ,

λ̄α̇ = εβ̇α̇λ̄β̇ ; λ̄β̇ = εβ̇α̇ λ̄
α̇ ,

where ε12 = ε12 = −ε1̇2̇ = −ε1̇2̇ = 1. Clearly we have ζα1 ξ2α = −ζ1α ξ
α
2 and the same for the

dotted components. The action of the spin SU(2) on ξα and ζ̄ α̇ is the same:

SI =
i

2
εIJK D(LJK) =

1

2

(
σI 0
0 σI

)
(I, J,K = 1, 2, 3) , (A.35)

while the action of the Lorentz generators reads:

D(Lµν) = − i
2

(
(σµν)α

β 0
0 (σ̄µν)α̇β̇

)
,

σµν ≡ i σ[µσ̄ν] ; σ̄µν ≡ i σ̄[µσν] . (A.36)

The Dirac conjugate of a spinor then, in the 2-component notation, reads:

χ̄ = (ζα, ξ̄α̇) . (A.37)
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One can also verify that:

(σµ)α
β̇ = (σ̄µ)β̇α , (σµν)β

α = (σµν)αβ ; (σ̄µν)β̇
α̇ = (σ̄µν)α̇β̇ ,

σ̄µν = (σµν)† = ε (σµν)∗ ε , (A.38)

where ε ≡ (εαβ). In these notations the charge conjugation matrix reads:

C = −
(
εαβ 0

0 εα̇β̇

)
, (A.39)

so that:

χc =

(
ξα

ζ̄α̇

)
. (A.40)

The Lorentz-invariant contraction between two spinors χ1, χ2 reads:

χ̄1 χ2 = (ζα1 , ξ̄1 α̇)

(
ξ2α

ζ̄ α̇2

)
= ζα1 ξ2α + ξ̄1 α̇ ζ̄

α̇
2 (A.41)

The general form of a Majorana spinor is:

χ =

(
ξα
ξ̄α̇

)
, (A.42)

that is the two 2-spinor components ξ and ζ coincide. In the case of two Majorana spinors
spinors χ1, χ2, one can easily verify that

χ̄1 χ2 = ξα1 ξ2α + ξ̄1 α̇ ξ̄
α̇
2 = χ̄2 χ1 . (A.43)

In curved space M4, we define rigid indices a, b, c, . . . , labeling the vierbein V a = V a
µ

basis of T ∗M4, or their duals Va = V µ
a ∂µ in TM4. The vierbein basis defines the moving or

free-falling frame and satisfies the defining condition:

gµν(x) = V a
µ (x)V b

ν (x) ηab , (A.44)

where gµν(x) is the metric tensor. We define constant γ-matrices γa by the condition
{γa, γb} = 2 ηab. All the above definitions and properties given for flat space, apply to
the matrices γa, and therefore we just need to replace the curved indices µ, ν, . . . with rigid
ones. We can also define point-dependent matrices γµ(x) ≡ Va

µ(x) γa, satisfying

{γµ, γν} = 2 gµν(x) . (A.45)

The above properties still apply to these matrices provided we take the dependence of the
vierbein in due care. The constant matrix γ5 is now defined as:

γ5 ≡ i

4
εabcdγ

aγbγcγd =
i e

4
εµνρσγ

µγνγργσ =

(
−1 0
0 1

)
, (A.46)
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where e = det(Vµ
a) =

√
|det(gµν)|. We will then write:

γ5γµ = −ie
3!
εµνρσγ

νρσ ; γ5γµν = −ie
2
εµνρσγ

ρσ ,

γ5γµνρ = i eεµνρσγ
σ ; γ5γµνρσ = ie εµνρσ , (A.47)

and

γµνγ
ρ = 2 γ[µδ

ρ
ν] + γµν

ρ = 2 γ[µδ
ρ
ν] + ie εµν

ρσγ5γσ ,

γµνγ
ρσ = γµν

ρσ − 4 δ
[ρ
[µγν]

σ] − 2 δρσµν ,

γ[ργµνγ
σ] = γµν

ρσ + 2 δρσµν = 2 (δρσµν +
ie

2
εµν

ρσ γ5) . (A.48)

B Massive Representations of the Supersymmetry Al-

gebra

We have listed in Tables 2, 3 and 4 all possible massive representations with highest spin
sMAX ≤ 3/2 for N ≤ 8. We have denoted the spin states by (s) and the number in front
of them is their multiplicity. In the fundamental multiplet, with spin s0 = 0 vacuum, the
multiplicity of the spin (N−q−k)/2 is the dimension of the k-fold antisymmetric Ω-traceless
representation of USp(2(N − q)). For multiplets with s0 6= 0 one has to make the tensor
product of the fundamental multiplet with the representation of spin s0. We also indicate if
the multiplet is long or short.

C Stability and Asymptotic Stability in the Sense of

Liapunov

Let us briefly recall the notion of stability (in the sense of Liapunov) and of attractiveness
of an equilibrium point. Given an autonomous dynamical system:

φ̇r = f r(φ) , (C.1)

an equilibrium point φ∗ (f r(φ∗) = 0), is attractive (or an attractor), for τ → −∞, if there
exist a neighborhood Iφ∗ of φ∗, such that all trajectories φr(τ, φ0) originating at τ = 0 in
φ0 ∈ Iφ∗ evolve towards φ∗ as τ → −∞:

lim
τ→−∞

φr(τ, φ0) = φr∗ , ∀φ0 ∈ Iφ∗ . (C.2)

An equilibrium point φ∗ (not necessarily attractive) is stable (in the sense of Liapunov) if,
for any ε > 0, there exist a ball Bδ(φ∗) of radius δ > 0 centered in φ∗, such that:

∀φ0 ∈ Bδ(φ∗) , ∀τ < 0 : φ(τ, φ0) ∈ Bε(φ∗) , (C.3)
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N massive spin 3/2 multiplet long short

8 none

6 2×
[
(3

2
), 6(1), 14(1

2
), 14′(0)

]
no q = 3, (1

2
BPS)

5 2×
[
(3

2
), 6(1), 14(1

2
), 14′(0)

]
no q = 2, (2

5
BPS)

4 2×
[
(3

2
), 6(1), 14(1

2
), 14′(0)

]
no q = 1, (1

4
BPS)

2×
[
(3

2
), 4(1), 6(1

2
), 4(0)

]
no q = 2, (1

2
BPS)

3
[
(3

2
), 6(1), 14(1

2
), 14′(0)

]
yes no

2×
[
(3

2
), 4(1), 6(1

2
), 4(0)

]
no q = 1, (1

3
BPS)

2
[
(3

2
), 4(1), 6(1

2
), 4(0)

]
yes no

2×
[
(3

2
), 2(1), (1

2
)
]

no q = 1, (1
2
BPS)

1
[
(3

2
), 2(1), (1

2
)
]

yes no

Table 2: Massive spin 3/2 multiplets.

that is, provided we take the starting point φ0 sufficiently close to φ∗, the entire solution will
stay, for all τ < 0, in any given, whatever small, neighborhood of φ∗. Finally an equilibrium
point is asymptotically stable (in the sense of Liapunov) if it is attractive and stable.

Liapunov’s Theorem: If there exist a function v(φ) which is positive definite in a neigh-
borhood of φ∗ (that is positive in a neighborhood of φ∗ and v(φ∗) = 0) and such that
also the derivative of v along the solution, in the same neighborhood, is positive definite43:
dv
dτ

= φ̇r∂rv > 0, then φ∗ is an asymptotically stable equilibrium point or, equivalently, a
stable attractor.

For large extremal black holes such function is v(φ) = W (φ)−W (φ∗) = W (φ)−
√
|I4|.
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N massive spin 1 multiplet long short
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4 2×
[
(1), 4(1

2
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