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1 Introduction

One of the finest achievements of string theory in the last decade is the AdS/CFT

correspondence and the use of holography to investigate strongly coupled quantum

field theories. One crucial aspect of the correspondence is the possibility of comput-

ing quantum effects in a strongly coupled field theory using a classical gravitational

theory. This has deep consequences that go far beyond string theory. Originally intro-

duced to study the quantum behaviour of scale invariant theories, the correspondence

has been extended to non conformal theories, where it gives an explanation for confine-

ment and chiral symmetry breaking. It has also been used to study non-equilibrium

phenomena in strongly coupled plasmas, and, more recently, applied to condensed

matter systems. The correspondence also naturally implements the ’t Hooft large N

expansion, thus providing a verification of many ideas about gauge theories at large

N .

These lectures grow from a Ph. D. course given at the EPFL in Lausanne to a
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public with minimal previous exposure to string theory and D-brane. The conceptual

framework of the correspondence is so simple that it can be discussed without entering

deeply in the string realm. We shall introduce the relevant ingredients of string theory

and D-branes using an effective theory language. In particular, the first half of these

lectures, where the abstract duality between CFTs and gravitational theories in AdS

is defined and discussed, uses nothing else than standard quantum field theory and

General Relativity. We shall need a little bit of string theory, in particular D-branes,

to provide explicit examples of dual pairs.

These lectures provide a very elementary introduction to the correspondence.

In particular, we do not cover in details the existing non conformal supersymmetric

solutions, the correspondence for conformal theories with less supersymmetry or in

dimension different than four, and the inclusion of flavors. The reader may find more

details on the basics of the correspondence in the original articles [1–4] and in very

good reviews [5–8]. Due to the large numbers of papers in the field, we refer to the

list of references in [5] and the other reviews. References to specific papers are given

only for specific results and are not exhaustive. A survey of more recent developments

can be found in [9–13].

These lectures are organized as follows. In the rest of this long introduction,

we introduce the two basic players of the correspondence, the conformal field theories

and the gravitational theories with AdS vacuum. We also give a brief review of the

large N limit in quantum field theory. General references for this background material

are [14,15]. The reader with some previous knowledge of these subjects is encouraged

to start from the main part of these lectures, beginning with section 2, and to return

to the introduction for reference.

In section 2, we discuss the conceptual content of the AdS/CFT correspondence

without resorting to explicit realizations. We shall explain how to construct consistent

correlation functions of a local quantum field theory from the equations of motion of

a classical gravitational theory in AdS. We shall also extend the correspondence to

the non-conformal case and discuss the holographic description of confinement.

In section 3 and 4 we discuss explicit realizations of the AdS/CFT correspon-

dence, focusing on the best understood example, the duality between N = 4 SYM

and AdS5×S5. Section 3 requires a minimal knowledge of supersymmetry, at the level

of N = 1 multiplets and superfields. All the necessary ingredients of string theory

and D-branes are introduced and discussed at the effective action level. Obviously,

an idea of what string theory is will help, but no specific knowledge is required.

4



1.1 Conformal theories

Theories without scales or dimensionful parameters are classically scale invariant. A

simple example is the scalar field with only quartic interaction

S =

∫
dx4

(
(∂φ)2 +

λ

4!
φ4

)
. (1.1)

The action is invariant if we simultaneously rescale the space-time coordinates (scale

transformation) and the field with a specific weight

φ(x)→ λ∆φ(λx) (1.2)

∆ is called the scaling dimension of the the field and here it coincides with the

canonical dimension ∆ = 1. The same theory would not be invariant if we add

a mass term, as the reader may easily check. Another example of classically scale

invariant theory is Yang-Mills coupled to massless fermions and scalars. In all these

theories, scale invariance is broken by quantum corrections, but we shall see soon

examples of quantum field theories with exact scale invariance.

1.1.1 The conformal group

Invariance under scale transformations typically implies invariance under the bigger

group of conformal transformations.

A conformal transformation in a D-dimensional space-time is a change of coor-

dinates that rescales the line element,

dilatation : xµ → λxµ (dx)2 → λ2(dx)2

conformal transformation : xµ → x′µ (dx)2 → (dx′)2 = Ω2(x)(dx)2 (1.3)

where Ω(x) is an arbitrary function of the coordinates. Clearly, scale transformations

are a particular case of conformal transformations with constant Ω = λ. Confor-

mal transformations rescale lengths but preserve the angles between vectors. At the

infinitesimal level x′µ = xµ + vµ(x), Ω(x) = 1 + ω(x)/2 we easily derive the condition

∂µvν + ∂νvµ = ω(x)ηµν (1.4)

Taking a trace we obtain Dω = 2∂µvµ and, substituting this expression in the pre-

vious formula, we obtain an equation identifying conformal transformations at the

infinitesimal level

∂µvν + ∂νvµ − 2

D
(∂τvτ )ηµν = 0 . (1.5)
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It is well known that in two dimensions there are infinite solutions of this equation

(given, after Euclidean continuation, by all possible holomorphic functions on a plane)

and the conformal group is infinite dimensional. For D 6= 2 the number of solutions

is smaller and given by at most quadratic functions vµ(x). The general solution is

indeed

δxµ = aµ Pµ

ωµνxν Jµν (ωµν = −ωνµ)

λxµ D

(bµx
2 − 2xµ(bx)) Kµ . (1.6)

We recognize, in the first two lines, translations (whose generator will be denoted

by Pµ) and Lorentz transformations (generated by Jµν); they are obviously confor-

mal transformations (with Ω = 1) since they leave the line element invariant. The

third line corresponds to the dilatation (generated by D). The only novelty is the

special conformal transformation (generated by Kµ) given by the fourth line. The

corresponding finite transformation is

xµ → xµ + cµx
2

1 + 2cx+ (cx)2
(1.7)

Altogether we have

D +
D(D − 1)

2
+ 1 +D =

(D + 1)(D + 2)

2
(1.8)

generators. In fact, one can check that the group is isomorphic to SO(2, D) (for

an algebraic proof see below). There is an extra discrete symmetry that acts as a

conformal transformation,

xµ → xµ
x2

(dx)2 → x2(dx)2 . (1.9)

Adding this discrete transformation we obtain the full conformal group O(2, D).

The important point is that, under mild conditions, a scale invariant theory

is also conformal invariant. We can easily construct currents associated with the

conformal transformations,

Jµ = Tµν δx
ν (1.10)
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This expression, with some subtelties and redefinitions, can be derived from Noether’s

theorem [14]. Conservation of the current corresponding to translations requires con-

servation of the stress energy tensor ∂µTµν = 0 and conservation of the current cor-

responding to Lorentz transformations is then automatic if Tµν is symmetric. The

current for dilation Jµ = Tµνx
ν is now conserved if

∂µ(Tµνx
ν) = T νν ≡ 0 (1.11)

We see that the condition for scale invariance is the tracelessness of the stress energy

tensor. Now, we easily see that in a Poincaré and scale invariant theory (with a

symmetric traceless conserved stress energy tensor) the conformal currents are auto-

matically conserved,

∂µ(Tµνv
ν) = ∂µTµνv

ν + Tµν∂
µvν =

1

2
T µν (∂µvν + ∂νvµ) =

1

D
∂τvτT

µ
µ ≡ 0 (1.12)

The conditions on trace and symmetry properties of the stress energy tensor can be

easily realized in most reasonable classical and quantum field theories and, although

exotic counterexamples exist, we can safely assume that a scale invariant theory enjoys

the full conformal invariance.

In the presence of supersymmetry, the conformal group is enhanced to a su-

pergroup 1 obtained by O(2, D) by adding the supercharges Qa and the R-symmetry

that rotates them. We also need to add the so-called conformal supercharges Sa.

These are required to close the superconformal algebra [K,Q] ∼ S. We shall not use

explicitly the algebra of the superconformal group; the reader can find more details

in the Appendix.

1.1.2 Conformal quantum field theories

In a quantum theory, conformal invariance is broken by the introduction of a renor-

malization scale. The Renormalization Group (RG) and the Callan-Symanzick equa-

tion can be seen as anomalous Ward identity for dilatations. For example, in a pure

Yang-Mills theory, which is classically scale invariant, the gauge coupling runs with

the energy scale, a dimensionful parameter is introduced by dimensional transmuta-

tion, and the quantum stress energy tensor is not traceless anymore,

µ
d

dµ
g = β(g)→ g(µ),ΛQCD

T µµ ∼ β(g)F 2
µν (1.13)

1The superconformal group in four dimensions is usually denoted SU(2, 2|N) where N is the
number of supersymmetries; SU(2, 2) ∼ SO(4, 2).
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In a more general theory with gauge fields, fermions and scalars, all dimensionless

couplings run with the energy scale. In the following we will denote generically with g

the set of couplings of a theory. The classical dimension d of a field will be corrected

by the anomalous dimension

∆ = d+ γ(g), γ =
1

2
µ
d

dµ
lnZ (1.14)

Conformal invariant quantum field theories can be obtained as

• Fixed points of the RG. At points where the beta function vanishes β(g∗) = 0

the stress energy tensor becomes traceless, the RG equation becomes the Ward

identity for dilatations, with a quantum dimension for the fields given by ∆ =

d+γ(g∗). We can even start with massive theories in the UV and let them flow

(g):β

(g  )=0*β

g=0 g*

Figure 1: A standard textbook picture for the beta function behaviour near a fixed

point.

in the IR. Under certain circumstances, at low energies, we can find IR fixed

points.

• Finite theories. Suppose that we have a theory with no divergences at all. In

this case β(g) = 0 for all values of g and there is no RG flow. The theory is

conformal also at the quantum level. Since g can have an arbitrary value we have

a line (or manifold if there is more than one g) of fixed points. The standard

example in this class of theories is N = 4 SYM. As we shall discuss extensively

in section 3.1.5, the theory has non-abelian gauge fields, transforming under a

group G, coupled to four Weyl fermions and six real scalars, all in the adjoint

representation of G. The standard textbook formula for the one loop beta

function is

β(g) = − g3

16π2

(
11

3
c(A)− 2

3

∑
c(weyl)− 1

6

∑
c(scalar)

)
(1.15)

where c denote the second Casimir of the representation of gauge fields, fermions

and scalars. Since all the fields transform in the adjoint representation, all the
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Casimir are equal and we see that the fermions and scalars balance the negative

constribution of the gauge fields

−11

3
+

2

3
4 +

1

6
6 = 0 (1.16)

and the one-loop beta function is zero. It can be checked that the theory is

finite at three-loops and it is believed to be finite at all orders. It is customary

to combine coupling constant and theta angle in a complex parameter

τ =
4πi

g2
+ i

θ

2π
(1.17)

The theory is finite (and therefore conformal) for all value of τ , β(τ) = γ(τ) = 0

and we have a complex line of fixed points. The conformal group is enhanced

to SU(2, 2|4).

1.1.3 Constraints from conformal invariance

In a conformal invariant theory we have an unitary action of the conformal group

on the Hilbert space. The generators P, J,D,K will be represented by hermitian

operators. It is a tedious exercise to check that the generators P, J,D,K close the

following algebra (ηµν = diag(−1, 1, · · · , 1))

[Jµν , Jρσ] = iηµρJνσ ± permutation

[Jµν , Pρ] = i (ηµρPν − ηνρPµ)

[Jµν , Kρ] = i (ηµρKν − ηνρKµ)

[Jµν , D] = 0

[D,Pµ] = iPµ

[D,Kµ] = −iKµ

[Kµ, Pν ] = −2iJµν − 2iηµνD (1.18)

where, as familiar from quantum field theory courses, the first line is the algebra of

the Lorentz group SO(1, D − 1), the next three lines state that D is a scalar and

Pµ, Kµ are vectors, the next two lines state that Pµ and Kµ are ladder operators for

D, increasing and decreasing its eigenvalue, respectively. The last equation states

that P and K close on a Lorentz transformation and a dilatation. We can assemble

all generators in

JMN =

 Jµν
Kµ−Pµ

2
−Kµ+Pµ

2

−Kµ−Pµ
2

0 D
Kµ+Pµ

2
−D 0

 M,N = 1, ..., D + 2 (1.19)
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and check that the antisymmetric JMN is a rotation is a D + 2 dimensional space

with signature (2, D) (ηMN = diag(−1, 1, · · · , 1,−1))

[JMN , JRS] = iηMRJNS ± permutation . (1.20)

We thus recover algebraically the group SO(2, D).

Particles are usually identified by mass and Lorentz quantum numbers, cor-

responding to the Casimirs of the Poincaré group. When conformal invariance is

present, the mass operator PµP
µ does not commute anymore with other generators,

for example D. Mass and energy can be in fact rescaled by a conformal transforma-

tion. If a representation of the conformal group contains a state with given energy, it

will contain states with arbitrary energy from zero to infinity obtained by applying

dilatations. For this reason the entire formalism of S matrix does not make sense for

conformal theories. We need to find different ways of labeling states. In a conformal

theory we consider fields with good transformation properties under dilatations. If we

set λ = eα , eiαD will generates a dilatation. The quantum version of equation (1.2)

is [D,φ(x)] = i(∆ + xµ∂
µ)φ(x) and identifies fields of conformal dimension ∆. We

shall be interested in gauge theories and, in this case, the physical objects are gauge

invariant operators with given conformal dimension. We can also restrict to fields or

operators annihilated (at x = 0) by the lowering operator Kµ; these are called pri-

mary operators; the others, obtained by applying Pµ and other generators repeatedly,

are called descendants. The reader is referred to the appendix for more details. Pri-

mary operators are classified according to the dimension ∆ and the Lorentz quantum

numbers.

Note that there is another possibility of finding good quantum numbers for the

conformal group. D and Jµν correspond to the non-compact subgroup SO(1, 1) ×
SO(1, 3) of SO(2, 4). Sometimes it is more convenient to use the maximal compact

subgroup SO(2)×SU(2)×SU(2) ⊂ SO(2, 4). States are still labeled by three numbers

(∆, j1, j2), now viewed as eigenvalues of the Cartan generators of SO(2) × SU(2) ×
SU(2). The SO(2) generator is H = (P0+K0)/2 and it is called the conformal energy.

It would seem that its eigenvalues are integer. However, quantum theories strictly

realize representations of the covering space of SO(2, 4), obtained by unwinding SO(2)

and ∆ can assume continuous real values. The physical interpretation of the quantum

numbers under the maximal compact subgroup is more evident in the Euclidean

version of the theory, since R4 can be mapped by a conformal transformation to S3×R.

In this new description of the theory H becomes an Hamiltonian corresponding to

time translation and SU(2)×SU(2) = SO(4) gives quantum numbers of an expansion
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on S3. This type of conformal transformation is familiar from two dimensions and

corresponds to a radial quantization of the theory.

Conformal invariance gives many constraints on a quantum field theory:

• The Ward identities for the conformal group give constraints on the Green

functions. One can always find a basis of primary operators Oi(x), with fixed

scale dimension ∆i. The set of (Oi,∆i) gives the spectrum of the CFT. One-,

two- and three-point functions are completely fixed by conformal invariance.

For example, one-point functions are zero, while two-point functions equal

〈Oi(x)Oj(y)〉 =
Aδij

|x− y|2∆i
(1.21)

The coordinates dependence of 3-point functions is also fixed

〈Oi(xi)Oj(xj)Ok(xk)〉 =
λijk

|xi − xj|∆i+∆j−∆k |xj − xk|∆j+∆k−∆i |xk − xi|∆k+∆i−∆j
.

(1.22)

• Unitarity of the theory gives bounds restricting the possible dimensions of pri-

mary fields. We have inequalities that depend on the Lorentz quantum number

∆ ≥ f(j1, j2), which are discussed in the Appendix. Three cases will be partic-

ularly important for us

– The dimension of a four-dimensional scalar field must be greater than one,

∆ ≥ 1, and the saturation of the bound, ∆ = 1, implies that the operator

obeys free field equations.

– For a vector field Oµ , ∆ ≥ 3 and the bound is saturated if and only

if the operator is a conserved current ∂µOµ = 0. Analogously, a spin 2

symmetric operator Oµν has ∆ ≥ 4, and ∆ = 4 corresponds to conservation

∂µOµν = 0. In particular, conserved currents have canonical dimension and

are not renormalized.

– In supersymmetric theories the bounds relate dimension to spin and R

symmetry quantum numbers. A typical case in 4d N = 1 supersymmetric

theories is the scalar bound ∆ ≥ 3
2
R, relating dimension to R-charge,

which is saturated by chiral operators. In this case, the saturation of the

bound implies that the operator is annihilated by some combinations of

the supercharges. This will be further discussed in section 3.3.1
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In all cases, the saturation of the bound corresponds to a shortening of the

(super) conformal multiplet and some non-renormalization property, which are

discussed in the Appendix.

1.2 AdS space

We introduce now the gravitational side of the story.

AdS5 is the maximally symmetric solution of the Einstein equations in five

dimensions with cosmological constant. From

S =
1

16πG5

∫
dx5
√
|g| (R− Λ)

Rµν − gµν
2
R = −Λ

2
gµν (1.23)

we have R = 5
3
Λ and therefore the Ricci tensor is proportional to the metric

Rµν =
Λ

3
gµν (1.24)

This equation tells us that the solution is an Einstein space. If we further require

that

Rµντρ =
Λ

12
(gµτgνρ − gµρgντ ) (1.25)

we have a maximally symmetric space. In Euclidean signature, the maximally sym-

metric solution with positive cosmological constant (and therefore positive curvature)

is the sphere S5 with isometry SO(6) and the one with negative curvature is the

hyperboloid H5 with isometry SO(1, 5). In Minkowskian signature, the maximally

symmetric solution with Λ > 0 is called de-Sitter space (dS5) and the one with Λ < 0

is called Anti-de-Sitter (AdS5). All of these spaces can be realized as the set of solu-

tions of a quadratic equation in a six dimensional flat space with suitable signature

Rd,6−d 2. Let us focus on AdS5. We define it as the set of solutions of

x2
0 + x2

5 − x2
1 − x2

2 − x2
3 − x2

4 = R2 ,
1

R2
= − Λ

12
(1.26)

in a flat R2,4 with line element ds2 = −dx2
0−dx2

5 +dx2
1 +dx2

2 +dx2
3 +dx2

4. It is obvious

from this defining equation, that AdS5 has isometry group O(2, 4), identical to the

conformal group in four dimensions.

2For example, in Euclidean signature, the sphere S5, is defined by a quadratic equation x2
0 +x2

1 +
...+ x2

5 = R2 in R6 and the hyperbolid H5 by x2
0 − x2

1 − ...− x2
5 = R2 in R1,5.
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A set of coordinates is given by

x0 = R cosh ρ cos τ

x5 = R cosh ρ sin τ

xi = R sinh ρx̂i ,
4∑
i=1

x̂2
i = 1 (1.27)

and the metric reads

ds2 = R2
(− cosh2 ρ dτ 2 + dρ2 + sinh2 ρ dΩ3

)
(1.28)

where Ω3 is the line element of a three-sphere. It is easy to verify that ρ ∈ R+ and

τ ∈ [0, 2π] cover the Minkowskian hyperboloid exactly once, and for this reason these

coordinates are called global. Note that time is periodic and therefore we have close

time-like curves. To avoid this we can take the universal cover where τ ∈ R: we shall

always refer to AdS5 as this universal cover.

We can find a second set of coordinates given by a four dimensional Lorentz

vector xµ and a fifth coordinate u > 0 by a redefinition

x0 =
1

2u

(
1 + u2(R2 + ~x2 − t2)

)
x5 = Ru t

x1,2,3 = Rux1,2,3

x4 =
1

2u

(
1− u2(R2 − ~x2 + t2)

)
(1.29)

which brings the metric to the form

ds2 = R2

(
du2

u2
+ u2(dxµdx

µ)

)
(1.30)

We see that the metric has slices isomorphic to four-dimensional Minkowski space-

time, and for this reason these coordinates are called Poincaré coordinates. The

four dimensional space-time is foliated over u which runs from zero to infinity. The

Minkowski metric is multiplied by a warp factor u2, whose meaning is that an observer

leaving on a Minkowski slice sees all lengths rescaled by a factor of u according to

its position in the fifth dimension. The plane u = ∞ is referred as the boundary

of AdS5. Note however that for u → ∞ the metric ds2 blows up. Mathematically

u = ∞ is a conformal boundary (strictly speaking, it is the conformally equivalent

metric ds̃2 = ds2/u2 to have a boundary R1,3 at u =∞). The plane u = 0 is instead

a horizon: the killing vector ∂
∂t

has zero norm at u = 0. These coordinates are
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convenient since they contain a Minkowski slice, and we shall use them in most of

our applications. However, they cover only half of the hyperboloid; u = 0 does not

correspond to a singularity and the metric can be extended after the horizon (using

for example global coordinates).

There are other forms of the metric in Poincaré coordinates that are commonly

used. They all differ by a redefinition of the fifth coordinate u. For example with

u = 1/z = er we have

ds2 = R2

(
dz2 + dxµdx

µ

z2

)
= R2

(
dr2 + e2rdxµdx

µ
)

(1.31)

The boundary is now at z = 0 and r =∞ and the horizon at z =∞ and r = −∞.

As we have already said, the isometry group of AdS5 is SO(2, 4) which is the

same as the conformal group in four dimensions. The AdS/CFT correspondence

exploits deeply this fact. It is interesting to compare closely the realization of the two

groups. Since the full group is not always manifest in explicit realizations or choices

of coordinates, we shall look at particular subgroups,

• The subgroup SO(2) × SO(4) is manifest when we use global coordinates. In

field theory, it is useful for studying quantization on S3×R. We see an explicit

copy of S3 in the metric and a time τ . SO(2) corresponds to the Hamiltonian in

field theory and it is time translation in AdS5. Notice that in global coordinates

the Killing vector ∂
∂τ

is never vanishing and everywhere defined. Both in field

theory and gravity we take time τ ∈ R and we consider the universal cover of

SO(2, 4).

• The subgroup SO(1, 1) × SO(1, 3) is manifest in Poincaré coordinates. The

Minkowski slice in the metric with isometry SO(1, 3) can be associated with

the four-dimensional space-time where we quantize our field theory. SO(1, 1) is

the dilatation in field theory and it is realized as (u, xµ)→ (λu, xµ/λ).

To conclude this brief excursus on the geometry of AdS5 let us consider the

Euclidean continuation of the metric. This is important because in field theory we

shall often perform a Wick rotation to Euclidean signature. We can do this by sending

x5 → −ix5, or, in each set of coordinates, τ → −iτ and t→ −it. The resulting metric

is

R2
(
cosh2 ρ dτ 2

E + dρ2 + sinh2 ρ dΩ3

)
= R2

(
du2

u2
+ u2(dt2E + d~x2)

)
(1.32)
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Figure 2: The Euclidean picture of AdS5 as a five-dimensional ball.

The u = ∞ boundary plane R1,3 of the Minkowskian version is replaced by R4. On

the other hand, the u = 0 plane, which was a plane of null vectors in the Minkowski

version, now shrinks to a point.

It is sometime convenient to compactify the boundary of our flat four-dimensional

space to S4 by adding the point u = 0 to the boundary R4. One can show that the

space is diffeomorphic to a five-dimensional ball in R5 with metric

R5 : y2
1 + · · ·+ y5

5 ≤ R2, ds2 =
(dy)2

R2 − |y|2

Exercise: It is probably instructive for the reader to check these statements in details

for AdS2, obtained by the previous formulae by neglecting ~x. In Poincaré coordinates,

by defining z = tE + i
u

we have

R2

(
du2

u2
+ u2dt2E

)
= R2 dzdz̄

(Imz)2
(1.33)

and we recognize a familar hyperbolic metric on the upper half-plane. The boundary is

the real axis and we can include the point at infinity. With a conformal transformation

we can map the half-plane to a disk. The metric will diverge at the circle bounding

the disk.

1.3 The large N limit for gauge theories

An U(N) Yang-Mills gauge theory can be simplified in the limit where the number

of colors N is large. t’Hooft first proposed to send N → ∞ and do a systematic

expansion in 1/N . The large N expansion has proved to be useful for various reasons:

• It is a systematic expansion.

• It provides a weakly coupled Lagrangian for mesons and glueballs and it explains

U(1) anomalies.

15



j
q

q
i

Ai j
gluons, ajoint rep.  
N  N hermitian matrices

quark: fundamental rep.

anti-quark: anti-fundamental rep.

Figure 3: Double-line notation for objects transforming in the fundamental (quarks),

anti-fundamentals (anti-quark) and adjoint representation (gluons) of the gauge

group.

j

j

j

i

i

is

s
= O(N)

g g

Figure 4: A graph contributing to the gluon self-energy.

• It simplifies the perturbative computation.

• Some QCD models in two dimensions become solvable in the large N limit.

Let us discuss the large N expansion for an U(N) gauge theory

L = Tr
(
F 2
µν + Lmatter

)
(1.34)

with Fµν = ∂µAν − ∂νAµ + igYM [Aµ, Aν ] and Lmatter is the matter Lagrangian, which

will include fundamental and adjoint fields in our applications. There is a convenient

pictorial representation of Feynman graphs in terms of a double line notation, de-

scribed in Figure 3. Fundamental and anti-fundamental fields can be written as qi

and qj̄, respectively, where i, ī = 1, · · · , N and the bar distinguishes indices transform-

ing in the anti-fundamental representation. Adjoint fields of U(N) can be written as

hermitian matrices Aij̄ and thought as formal products of a fundamental and anti-

fundamental representation. We shall use a Feynman graph notation where oriented

lines are associated with indices i and j̄ and not with fields. In this way, the propa-

gator for an adjoint field can be then naturally written as a double line.

The Feyman rules follow straightforwardly from the Lagrangian and can be

easily understood by looking at explicit examples. Consider the case of the self-

energy of a gluon, pictured in Figure 4. The indices at the beginning and end of
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a line have been identified, since the kinetic term in the Lagrangian is diagonal on

each component of qi and Aij̄. Similarly, indices in the vertices have been contracted

according to matrix multiplication TrA3 = Aij̄Ajp̄Ap̄i. We see that the only free index

is the internal one s, which may take N different values. The self-energy diverges as

O(N). Many other graphs diverge as well. It seems that N → ∞ is not a sensible

limit. However, the self-energy contains powers of the coupling constant and it is of

order O(g2
YMN). If we take the t’Hooft limit

N →∞,
gYM → 0 x = g2

YMN fixed (1.35)

the self-energy remains finite. The same happens to all other graphs. We shall now

see that the t’Hooft limit makes sense for the entire perturbative expansion.

It is better to redefine fields and bring all dependence on gYM in front of the

Lagrangian,

L =
1

g2
YM

Tr
(
F 2
µν + ...

)
=
N

x
Tr
(
F 2
µν + ...

)
(1.36)

This convention will be used in the rest of these notes. The propagators now bring

a factor of x/N and all type of vertices a factor of N/x. Let us first restrict to a

theory with only adjoints fields. Two simple examples of graphs contributing to the

free energy are reported in Figure 5. The first graph is planar, meaning that it can

be drawn on a plane. More formally, it can be seen as a triangulation of a sphere.

This is explicitly manifest in the double line notation as indicated in the Figure. The

second graph instead is not planar; if we insist to draw it on a plane some of its lines

will intersect in points which are not vertices of the graph. The best we can do is

to consider it as drawn on a torus. Every graph can be drawn without intersecting

lines on a Riemann surfaces of Euler characteristic 2 − 2g = F − V + E where F

is the number of faces of the graph, E is the number of edges and V the number of

vertices. g is the genus, or the number of holes, of the Riemann surface. We see from

the examples that graphs with different topology have different powers of N . We can

derive a general formula, taking into account that we have a factor of N/x for each

propagator (E), a factor of x/N for each vertex (V ) and a factor of N for each loop

(F ),

xV−ENF−V+E = O(N2−2g) (1.37)

17



sphereplanar graph

non planar torus
(first non-trivial topology)

O(1)

2O(N )

Figure 5: Planar and non-planar graphs and their relation with Riemann surfaces

We see that the t’Hooft expansion organizes graphs according to their topology.

The expansion of the free energy in powers of 1/N is particularly simple

F =
∞∑
g=0

N2−2gfg(x) (1.38)

One may worry that the planar graphs give a contribution of order O(N2) to the free-

energy, which seems to diverge. However, this is of the same order of the Lagrangian

itself evaluated on a generic configuration

1

g2
YM

TrF 2 =
N

x
TrF 2 ∼ O(N2) (1.39)

since the trace of a matrix is of typical order N . So the leading term in the free

energy correctly reproduces the behavior of the Lagrangian. The subleading terms

are suppressed by powers of 1/N2.

We could repeat a similar analysis for Green functions. In these notes we shall

be interested in composite operators rather than in elementary fields. These can be

written as traces or product of traces of elementary fields. Particularly important for

us are the single trace operators, for example TrF 2
µν . We normalize single traces of

products of adjoint fields with a further factor of N

O =
1

N
Tr(φφφ....) (1.40)

in such a way that they are or order O(1) on a generic field configuration. Connected

correlation functions of O have then a 1/N2 expansion according to the topology of

the graph starting with a leading term of order O(1) given by the planar graphs.
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The large N expansion considerably simplifies perturbation theory. For N →∞
only the planar graphs (f0) survive. This has been used to solve some two-dimensional

models in the planar limit. However no similar solvable model exists in dimension

greater than two. The reader should be alerted that f0 contains an infinite number

of graphs which should be re-summed. The perturbative expansion simplifies in the

planar limit but it is not solved in general.

Let us finish this discussion with few observations:

• In most of these notes we are interested in finite theories, where gYM does not

run and it is a dimensionless parameter. For theories like QCD, N is the only

dimensionless parameter: the coupling constant runs with the scale g(µ) and it

is better traded for the Renormalization Group invariant quantity ΛQCD.

• As we see each graph corresponds to a Riemann surface and it is classified by the

genus. The t’Hooft expansion is similiar to the word-sheet expansion of string

theory. The formula for the free-energy (1.39) is similar to the loop expansion

of a string with coupling gs = eφ = 1/N .

planar graphs: f(x)

+ O(1) + ... O(g      )

O(N ) + O(1)

O(g  )2

2

s s

2-2g

genus g

-2 -- +

Figure 6: Emergence of a string structure from the Feynman graph expansion in the

large N limit.

• We only discussed the case of adjoint fields, which will be the one of most

interest for us. Fundamental fields introduce some novelty. It is easy to see

that loops of fundamental fields have further powers of 1/N with respect to

loops of adjoint fields, since a single line instead of a double line is used. In
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particular, fundamental fields are suppressed in the planar limit and they enter

in the perturbative expansion with odd powers of N . The topology of the

graphs is also changed: double lines allow to draw the graphs on closed surfaces,

single lines necessarily introduce boundaries. We then obtain an expansion in

Riemann surfaces with boundaries. The power of N of a graph is still given

by the Euler characteristic which now can be odd. The expansion of a theory

with only adjoints is in powers of 1/N2, the expansion of a theory with also

fundamentals is in powers of 1/N . Pursuing the analogy with string theory, we

see that fundamental fields are associated with open strings. In the contest of

the AdS/CFT correspondence a theory with adjoints is associated with a closed

string background while fundamentals requires the introduction of open string

(typically in the form of D-branes which introduce the required boundaries).

• Finally a technical remark. In the large N limit SU(N) ∼ U(N). However

this is only true in the planar limit. The gluon propagator for SU(N) is not

diagonal, < Aij̄Apq̄ >∼ δiq̄δpj̄ − (1/N)δij̄δpq̄ and the 1/N term mixes with the

subleading terms of the 1/N expansion.

2 The AdS/CFT correspondence

Up to now we saw two apparently different ways of realizing theories with O(4, 2)

symmetry

• Conformal field theories in four dimensions

• Relativistic gravitational theories in AdS5

Since the two objects live in space-times with different dimensions it is difficult

to imagine a relation between them. However, holography has always been a favorite

principle when dealing with gravity. For several reasons, it is thought that in quantum

gravity the number of degrees of freedom of a region of space-time grows with the

area of the region and not the volume. Here we shall see another form of holography,

related to the fact that the boundary of AdS5 is Minkowski space-time. All dynamics

in AdS5 can be reformulated as a boundary effect and it is captured by a four-

dimensional local field theory. We shall set up a correspondence between CFT in four

dimensions and gravitational theories in AdS5.

20



The study of this correspondence is the purpose of the rest of these notes. In

this Section, we start with the general construction without referring to explicit re-

alizations of the correspondence which will be analyzed in Sections 3 and 4. More

precisely, now we shall construct, for every five-dimesional gravitational theory with

AdS5 vacuum, a set of correlation functions for operators which satisfy all constraints

required by a four dimensional local field theory with scale invariance. In this Sec-

tion we work at the level of effective action in 5 dimensions. We deal with a theory

that at low energy reduce to General Relativity coupled to gauge and matter fields.

We assume the existence of a suitable UV completion of our five dimensional theory

although this will not be used. We shall enlight some general aspects of the corre-

spondence which do not refer to explicit realizations. We shall also make clear that

AdS5 is not really necessary. All we need is a space with the topological structure of

AdS5 and a conformal boundary.

2.1 Formulation of the correspondence

To define the correspondence we need a map between the observables in the two

theories and a prescription for comparing physical quantities and amplitudes.

We refer to the fields in five dimensions as bulk fields. We may assume that

their interaction is described by an effective action

SAdS5(gµν , Aµ, φ, ...) (2.1)

with AdS5 vacuum. We included the metric, gauge fields and scalars. In most appli-

cations this effective action corresponds to some supergravity with also tensor fields

and fermions. We assume a potential for the scalar field with a negative value at the

minimum thus creating a negative cosmological constant for the AdS5 vacuum.

We refer to the CFT fields as boundary fields. We call LCFT the four-dimensional

Lagrangian. Recall that most often the elementary fields are not observables in the

quantum theory, due to gauge invariance.The spectrum is specified by a complete set

of primary operators in the CFT.

A basic point of the correspondence is the following statement: a field h in

AdS is associated with an operator in the CFT with the same quantum numbers

and they know about each other via boundary couplings. More precisely, from the

four-dimensional point of view, every operator O can be associated to a source h

LCFT +

∫
d4xhO (2.2)
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For the moment h(x) is a four-dimensional background field that is introduced in

order to compute correlation functions for the operator O. As usual,

eW (h) =
〈
e

R
hO
〉
QFT

(2.3)

define W (h) as the functional generator for connected correlation functions of O

〈O....O〉c =
δnW

δhn

∣∣∣
h=0

(2.4)

We can now think of the source h(x) as the boundary value of a five dimensional

field h(x, x5). For every source configuration h(x) there is an five-dimensional field

configuration obtained

h(x)→ ĥ(x, x5) (2.5)

by demanding that h(x, x5) solve the five-dimensional equations of motion derived by

h(x,x )

h(x)

5

boundary value

AdS

CFT

h(x) boundary

Figure 7: The prescription for extending sources to the bulk. We use the Euclidean

version for clarity.

SAdS. The extension from boundary to bulk is unique if we impose suitable boundary

conditions at the horizon.

The fundamental statement of the AdS/CFT correspondence is now:

eW (h) =
〈
e

R
hO
〉
QFT

= eSAdS5
(ĥ) (2.6)

where on the left hand side we have a functional depending on an arbitrary four

dimensional (off-shell) configuration h(x) and on the right hand side we have the

(on-shell) value of the five dimensional Lagrangian, evaluated on the solution of the

equations of motion that reduce to h(x) at the boundary. Since the knowledge of

W (h) for all possible sources of composite operators determines completely the CFT,
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the previous formula states the required equivalence between the CFT and the five-

dimensional theory. The precise meaning of this formula will be explored in the rest

of these notes. However, a few immediate comments are in order.

• The equation of motions in AdS are second order and we need to specify two

boundary conditions in order to find a unique solution. Both boundary condi-

tions require some care. First of all, we cannot simply set ĥ(x, boundary) = h(x)

since solutions of the equations of motion diverge or vanish at the boundary. The

typical example is the metric; as we saw, the metric blows up at the boundary.

The right condition at the AdS boundary is of the form ĥ(x, x5) ∼ f(x5)h(x)

and it will be extensively discussed in the next Section. The second boundary

condition is to be imposed in the interior of AdS. We shall mainly work with

the Euclidean version of the theory where things simplify. In the Euclidean,

AdS5 is a ball and the center of the space is just a point. We shall require reg-

ularity of the solution at the center of the ball. Working instead in Minkowski,

and using Poincaré coordinates, we have to impose a suitable condition at the

horizon in order to have an unique extension. This typically requires keeping

only incoming waves from the horizon.

• The prescription, as stated, uses the AdS effective action. When we have a

consistent UV completion of the five dimensional theory, the right hand side can

be interpreted also at the quantum level. In examples where AdS5 is embedded

in a full string theory background, the right-hand side of the last equation is

replaced by some string theory S-matrix element for the state h.

• We should again stress that we used the AdS equations of motion. An off-shell

theory in four dimensions corresponds to an on-shell theory in five dimensions.

This is a general feature of all the AdS/CFT inspired correspondences.

• We haven’t said how to map CFT operators to fields in the bulk. This will be

specified by the details of the two theories and will be available when we have

a constructive way of determining dual pairs. This is provided by string theory

and will be discussed in Sections 3 and 4, where we shall also see how to map

observables in specific examples. For the moment, let us notice that the field

that couples to an operator can be often found using symmetries. h and O have

the same O(2, 4) quantum numbers. In particular, there are obvious couplings

in the case of conserved currents: we introduce a background gauge field by
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covariantizing the boundary action. The natural linearized couplings

LCFT +

∫
d4x
√
g(gµνTµν + AµJµ + φF 2

µν + · · ·) (2.7)

suggest that the operator associated with the graviton is the stress-energy tensor

and the operator associated with a gauge fields in AdS is a current. Note that

conservation of stress-energy tensor or currents are associated with the gauge

invariance at the level of the sources (meaning that the field theory functional

W (Aµ, gµν) is a gauge invariant functional of Aµ and gµν). This obviously

extends by consistency to the bulk theory. We see from this a general fact:

global symmetries in the CFT correspond to gauge symmetries in AdS. We

couldn’t refrain from adding a particular scalar operator which is present in all

gauge theories: O = TrF 2
µν . We coupled it to a source φ; the corresponding

bulk field, in many explicit examples, is the string theory dilaton.

2.2 Physics in the bulk

One surprising thing about the correspondence is the existence of a fifth radial coor-

dinate in the gravitational picture which is needed for the holographic interpretation.

Let us see its role in more details.

A crucial ingredient in all the models obtained by the AdS/CFT correspondence

is the identification of the radial coordinate in the supergravity solution with an energy

scale in the dual field theory. The identification between radius and energy follows

from the form of the AdS metric in Poincaré coordinates (we put R = 1 when no

confusion is possible)

ds2 =
dx2

µ + dz2

z2
. (2.8)

A dilatation xµ → λxµ in the boundary CFT corresponds in AdS to the SO(4, 2)

isometry

xµ → λxµ, z → λ z. (2.9)

We see that we can roughly identify u = 1/z with an energy scale µ. The boundary

region of AdS (z � 1) is associated with the UV regime in the CFT , while the horizon

region (z � 1) is associated with the IR. This is more than a formal identification: as

we shall see, holographic calculations of Green functions or Wilson loops associated

with a specific reference scale µ are dominated by bulk contributions from the region

u = µ.
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Let us consider now the dynamics of bulk fields in AdS5. For the purposes of the

correspondence, the boundary values of fields are arbitrary functions of four-spacetime

coordinates xµ, while the profile of fields in the fifth directions is set on-shell by the

equations of motion. For simplicity, let us consider the case of a massive field φ in

AdS5 dual to some operator O in the CFT. We consider the Euclidean continuation

of the metric (2.8). Given a scalar field φ(z, xµ) with action

S ∼
∫
dx5√g(gmn∂mφ∂nφ+m2φ2) =

∫
dzdx

1

z5

(
z2(∂zφ)2 + z2(∂µφ)2 +m2φ2

)
the equation of motion reads

∂z

(
1

z3
∂zφ

)
+ ∂µ

(
1

z3
∂µφ

)
=

1

z5
m2φ (2.10)

Look first at the z behaviour. Consider first a mode independent of xµ. The equation

reduces to

z5∂z(z
−3∂zφ) = m2φ (2.11)

which has two independent power-like solutions φ ∼ z∆ with

m2 = ∆(∆− 4) (2.12)

Since under a dilation z → λz, xµ → λxµ, ∆ corresponds to a scaling dimension for

the field and, as we shall see, will be identified with the conformal dimension of the

dual operator O.

Denoting simply by ∆ the largest solution of the quadratic equation (2.12), we

find the near boundary behaviour of an on-shell field

φ ∼ φ0z
4−∆ + φ1z

∆ (2.13)

The coefficient φ0 and φ1 correspond to the two linearly independent solutions of the

second order equation of motion. They can be distinguished by the fact that the

solution corresponding to φ0 is not normalizable at the boundary,∫
dx5√g|φ|2 =∞ (2.14)

while the one corresponding to φ1 is. If we now include the xµ dependence the previous

behaviour is modified to

φ(z, xµ) ∼ (φ0(x)z4−∆ +O(z)) + (φ1(x)z∆ +O(z)) (2.15)
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where we can still identify the coefficients φ0,1(x) of the two linearly independent

solutions, which will still grow as z4−∆ and z∆ with corrections depending on both z

and xµ.

Now we are ready to discuss the boundary conditions to be imposed on a field

near the boundary. We see that the leading term of a solution of the equation of

motion can be singular if ∆ > 4 or vanishes if ∆ < 4. It approaches a constant only

in the case ∆ = 4. In order to have a consistent prescription we need to impose at

the boundary z = 0

φ(z, xµ)→ z4−∆φ0(xµ) . (2.16)

φ0(x) is the boundary value of our field to be identified with the source of the dual

operator O. Once the value of φ0(x) is specified, we have a unique regular solution

that extends to all of AdS5. In particular φ1(x) will be determined as a functional of

φ0(x) by imposing the equations of motion and regularity at the center.

Let us see explicitly how it works in the simple case of a massless scalar field

m2 = 0. In this case ∆ = 4. It is convenient to perform a Fourier decomposition of

modes on R4. The Fourier mode φp(z)eipx satisfies

z5∂z(z
−3∂zφp(z))− p2z2φp(z) = 0 (2.17)

which, with φp = (pz)2y(pz), reduces to a Bessel equation

(pz)2 d2y

d(pz)2
+ (pz)

dy

d(pz)
− (4 + (pz)2)y = 0 (2.18)

whose general solution is ApI2(pz)+BpK2(pz) 3. Correspondingly φp ∼ Bp(1+ · · · )+

Ap(z
4+· · · ) as expected from (2.15) for a field with ∆ = 4. K2 is the non-normalizable

solution and I2 the normalizable one. Since I2(pz) is exponentially growing for large

z, regularity of the solution at the center requires Ap = 0 and we are left with K2(pz),

which is exponentially vanishing for large z.

We can now go further and actually compute the effective action W (φ0) de-

pending on the boundary conditions φ0, identified with the field theory source. For

∆ = 4, (2.16) set the asymptotic value of the solution equal to φ0. In general compu-

tation in AdS5, various quantities in the game diverge for z → 0 and it is convenient

to introduce a cut off and impose boundary conditions at z = ε. At the end of the

computation one sends ε to zero. This allows to keep track of local divergent pieces of

3x2y′′+ xy′− (x2 + a2) = 0 with a ∈ N has solutions Ia(x) ∼ Ja(ix) and Ka(x), with asymptotic
behaviour, Ia(x) ∼ xa + · · · and Ka(x) ∼ 1

xa (1 + · · · + cax
2a log x) for x → 0 and Ia(x) ∼ ex√

x
and

Ka(x) ∼ e−x√
x

for x→∞.
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the effective action and it is a general prescription for computing correlation functions

in AdS5. So we impose

φp(z = ε) ≡ φ0
p (2.19)

so that the solution is

φp(z) =
(pz)2K2(pz)

(pε)2K2(pε)
φ0
p (2.20)

W (φ0) is now obtain by evaluating the five-dimensional Lagrangian on the solution of

the equations of motion. The computation can be simplified using a standard trick:

by integrating by parts

SAdS ∼
∫

boundary

√
gφ∂nφ+

∫ √
gφ(−� +m2)φ (2.21)

the second term is zero on the equations of motion and the action reduces to a

boundary contribution. In our case,

SAdS ∼ φ∂zφ

z3

∣∣∣
z=ε

(2.22)

and inserting the solution of the equations of motion

φ(z, x) =

∫
dp4eipxφp(z) (2.23)

we obtain

W (φ0) = SAdS ∼
∫
dpdp′δ(p+ p′)φ0

pφ
0
p′

1

z3
∂z log φp(z)

∣∣∣
z=ε

(2.24)

from which we see that

〈O(p)O(p′)〉 =
δW

δφ0
pδφ

0
p′
∼ δ(p+ p′)p4 1

(pz)3

d

d(pz)
log φp(z)

∣∣∣
z=ε

∼ p4 log(pε) +
∑
k

1

εk
(polynomial in p) +O(ε)

since φp(z) = a0 + a2(pz)2 + a4(pz)4 + c4(pz)4 log pz + · · · . We see that there are

divergent terms in ε but they are local polynomials in p. These analytic terms are

irrelevant in a quantum field theory computation since they can be reabsorbed by

local counterterms. In the ε→ 0 limit the relevant contribution is

〈O(p)O(p′)〉 ∼ p4 log(pε) (2.25)

which after Fourier transform to coordinate space becomes

〈O(x)O(x′)〉 =
1

(x− x′)8
(2.26)

27



in agreement with CFT expectations for an operator of dimension four.

An analogous computation can be performed for m2 6= 0 and ∆ = 4. In this

case the boundary condition (2.16) requires

φp(z = ε) ≡ φ0
pε

4−∆ (2.27)

so that φ(z) ∼ z4−∆ for z → 0 and the solution is

φp(z) =
(pz)2K∆−2(pz)

(pε)2K∆−2(pε)
φ0
pε

4−∆ (2.28)

As before

〈O(p)O(p′)〉 ∼ p2∆−4 + analytic terms (2.29)

which after Fourier transform to coordinate space becomes

〈O(x)O(x′)〉 =
1

(x− x′)2∆
(2.30)

Let us note that the introduction of a cut-off ε is not only a matter of convenience,

since the ε → 0 limit does not commute with other expansions performed to obtain

the result. In particular, the cut-off prescription is the right one for obtaining the

right normalization of the two point functions consistent with Ward identities when

vector fields are included [16].

This computation confirms the interpretation of ∆ as the conformal dimension.

There are various observations to be made about this identification and its relation

with the mass in AdS5

R2m2 = ∆(∆− 4) (2.31)

where we have restored the AdS radius,

• m2 ≥ 0 only for ∆ ≥ 4. There are certainly theories where ∆ < 4. In fact

the unitary bound is ∆ ≥ 1. Operators with ∆ < 4 correspond to fields with

negative mass in AdS5. However they are not tachions. Energy is positive as

long as the Breitenlohner-Freedman bound m2R2 ≥ −4 is satisfied [17]; the

curvature gives indeed a positive contribution to the energy of a scalar field

propagating in AdS. The minimal value m2R2 = −4 corresponds to ∆ = 2.

• Still a puzzle. Unitary bound requires ∆ ≥ 1. Using masses greater than −4/R2

we can obtain all operators with ∆ ≥ 2. What happens to the operators with

1 ≤ ∆ < 2? Recall that we choosed ∆ as the largest solution of equation
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(2.31). This because typically only the largest solution is greater than the

unitary bound. However, precisely for −4 ≤ m2R2 ≤ −3, equation (2.31) has

two different solutions satisfying the unitary bound, one with 1 ≤ ∆ ≤ 2 and

one with 2 ≤ ∆ ≤ 3. One then has two different choices for imposing boundary

conditions: they amount to choice φ0 or φ1 as boundary value of the bulk

field. The two different choices lead to correlation functions for two different

operators, one with 1 ≤ ∆ ≤ 2 and one with 2 ≤ ∆ ≤ 3 [18].

• The relation between mass and conformal dimension for fields of arbitrary spin

is

scalarφ (j1, j2) = (0, 0) m2 = R2∆(∆− 4)

vectorAµ (j1, j2) = (1
2
, 1

2
) m2 = R2(∆− 1)(∆− 3)

symm gµν (j1, j2) = (1, 1) m2 = R2∆(∆− 4)

antisymmBµν (j1, j2) = (1, 0) + (0, 1) m2 = R2(∆− 2)2

spin
1

2
ψ (j1, j2) = (1

2
, 0) + (0, 1

2
) m = R(∆− 2)

spin
3

2
ψµ (j1, j2) = (1

2
, 1) + (1, 1

2
) m = R(∆− 2)

The mass is a function of the three quantum numbers (∆, j1, j2), or more ge-

ometrically, of the Casimirs of the conformal group O(2, 4). For a scalar field,

the mass just corresponds to the quadratic Casimir. In general, mass is an am-

biguous concept in AdS because of the coupling to the curvature (for a scalar

φR2). We choosed a definition that is consistent with the dual interpretation

in terms of conformal fields. For example a massless graviton and a massless

gauge field correspond to operators with dimension four and three, respectively.

This is consistent with the fact that conformal invariance requires conserved

currents to have canonical dimension.

2.3 Construction of correlation functions

We now sketch the general construction of n-point correlation functions for a CFT

with a gravitational dual given by an effective action in AdS5. For all reasonable SAdS,

we can inductively construct a set of Green functions that satisfy all requirements of a

local quantum field theory. We shall perform the computation in a theory with AdS5

vacuum, but it will be clear from the construction how to extend the prescription

to other spaces that are have the same topological structure of AdS5. Our aim is to
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provide a general picture and not a working technology. For this the reader is referred

to the very good existing reviews [7, 8].

We shall focus for simplicity on a set of scalar fields φi with mass mi interacting

through a local Lagrangian LAdS(φ). We denote with φ0
i the boundary value of the

fields obtained by imposing (2.16) where ∆i satisfies (2.12); φ0
i is identified on the

quantum field theory side with the source for the dual operators Oi of dimension ∆i.

The CFT generating function is given by evaluating the bulk action on the solution of

the equations of motion with the prescribed boundary conditions. A n-point function

is obtained by differentiating the on-shell bulk action with respect to the sources φ0
i

and setting φ0
i = 0 afterwards

〈O1 · · ·On〉 =
δnS

δφ0
1 · · · δφ0

n

∣∣∣
φ0
i=0

. (2.32)

Since on-shell fields vanish when the souces φ0
i are turned off, it is obvious that

an interaction in the bulk action with more than n fields will not contribute to this

derivative. Therefore, in order to compute n-point functions we can keep in the action

only the terms with at most n-fields.

We shall now consider in turn 1-, 2- and 3-point functions. Up to order n = 2 we

just need to keep the quadratic terms in the Lagrangian. The equations of motion are

then a set of Klein-Gordon equations in the bulk, assuming that the kinetic terms are

canonically normalized. To extend a field φ with mass m and conformal dimension

∆ from the boundary to the bulk we need a Green function or boundary-to-bulk

propagator as shown in Figure 8:

φ(z, xµ) =

∫
dx′µK(z, x′µ − xµ)φ0(x′µ) (2.33)

which satisfies (−� +m2
)
K = 0

K → z4−∆ δ(xµ − x′µ) z → 0 (2.34)

It easy to find a solution working in Euclidean space and treating AdS5 as a ball

in R5. More precisely, we compactify the boundary to S4 by adding the point z =∞.

We saw in the previous section that the Klein-Gordon equation has a particular xµ-

independent solution z∆ (see (2.10) and discussion thereafter). This solution is zero

on most of the boundary (z = 0) and infinity at a particular point (z =∞); it looks

like a delta function corresponding to the insertion of a source at z = ∞. Since the
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φ(z, x) =
∫

dx′K(x′ − x, z)φ0(x)

φ(z, x)

φ0(x)

Figure 8: The boundary-to-bulk propagator.

equations of motion are covariant under the Euclidean conformal group O(1, 5) we

can find the generic Green function (2.34) by mapping z = ∞ to a generic point

on the boundary by a conformal transformation. In particular we can send it to

(z = 0, xµ = 0) by

z → z

z2 + x2
µ

xµ → xµ
z2 + x2

µ

obtaining the required Green function

K(z, xµ) = c
z∆

(z2 + x2
µ)∆

(2.35)

where c is some normalization constant. The value of c is not particularly important

for us but it can be found by computing∫
dxK(z, x)φ0(x) = cz4−∆

∫
dx

z2∆−4

(z2 + x2)∆
φ0(x)

= cz4−∆

∫
dy

φ0(zy)

(1 + y2)∆
→ c

∫
dy

(1 + y2)∆
z4−∆ φ0(0) , z → 0

so that c−1 =
∫

dy
(1+y2)∆ .

The solution of the equations of motion is then given by equation (2.33). We

can expand the solution in powers of z,

φ(z, xµ) ∼ φ0(x)(z4−∆ +O(z)) + φ1(x)(z∆ +O(z)) (2.36)

where

φ1(x) = c

∫
dx′

φ0(x′)

|x− x′|2∆
. (2.37)
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As in the previous section, the value of the on-shell action reduces to a boundary

term

SAdS ∼
∫

boundary

√
gφ∂nφ+

∫ √
gφ(−� +m2)φ (2.38)

since the second term is zero on the equations of motion and we obtain

SAdS ∼ 1

z3
φ∂zφ

∣∣∣
boundary

(2.39)

By inserting (2.36) we see that we have some divergent terms proportional to φ0(x)2

or other local functions of φ0
4. These are contact terms which can be reabsorbed by

local counterterms and we disregard them. The finite contribution is non local and

given by

SAdS ∼
∫
dxφ0(x)φ1(x) ∼

∫
dxdx′

φ0(x)φ0(x′)

|x− x′|2∆
(2.40)

The first thing we note is that in general the 1-point function is given by

〈O(x)〉 =
δSAdS
δφ0(x)

∣∣∣
φ0=0

= φ1(x)|φ0=0 (2.41)

the normalizable term in the solution of the equations of motion. Since φ1 is pro-

portional to φ0, the 1-point function vanishes identically. This is in agreement with

conformal invariance since an operator with non zero dimension cannot have non zero

vacuum expectation value without breaking the symmetry under dilations. However

the identification of the normalizable term in the solution with a VEV [18, 19] is

important in application of the AdS/CFT correspondence to non conformal theories.

The 2-point function is instead given by

〈O(x)O(x′)〉 =
δ2SAdS

δφ0(x)δφ0(x′)

∣∣∣
φ0=0

=
1

(x− x′)2∆
(2.42)

as prescribed by conformal invariance.

For computing n-point function we need to keep up to the n-adic terms in the

action,

SAdS =

∫
dx5

(
1

2

∑
i

(∂φi)
2 +

m2
i

2
φ2
i +

n∑
k=3

λi1...ikφi1 ...φik

)
(2.43)

We are considering for simplicity fields with canonic kinetic terms, no higher deriva-

tives interactions and we are neglecting couplings to other gauge and gravity fields.

4All the subleading terms in 2.36 with powers of z greater than z4−∆ contribute divergent terms.
However one can check that all these terms are local functions of φ0. φ1 and its subleading terms
are instead non local functions of the source φ0(x).

32



All these other ingredients can be incorporated in the AdS/CFT correspondence with-

out any conceptual effort (but with some technical effort). The equations of motion

now have higher order terms and cannot be solved exactly. We can however set a

perturbation expansion. The typical equation (−� + m2)φ = λφn can be solved in

power series of λ if we know the Green functions for the Klein-Gordon equation in

the bulk. At order λ0 we know that the solution is

φ(z, x)zero =

∫
K(z, x− x′)φ0(x′)

where K is the boundary-to-bulk propagator (2.34). At O(λ) we have

φone(z, x) = λ

∫
G(z − z′, x− x′)(φzero(z′, x′))n

where now G is a bulk-to-bulk Green function, that is the solution of

(−� +m2)G(z − z′, x− x′) =
1√
g
δ(z − z′)δ(x− x′) (2.44)

with (z, x) and (z′, x′) arbitrary points in the bulk. Explicit expressions for G can

be found in [7]. We can then reinsert φone in the right-hand side of the equation

of motion and determine φtwo. This sets a perturbative expansion for the solution.

Since all φ are functions of the source φ0 we can stop the expansion after a finite

number of steps: all contributions containing more than n powers of φ0 do not give

contribution to equation (2.32). One can even set a graphical Feynman description

of this pertubative series: the n points on the boundary are connected by boundary-

to-bulk propagators to points in the bulk where we insert vertices of the Lagrangian;

vertices in the bulk are connected to each other by bulk-to-bulk propagators and we

integrate on their position as in Feynman rules.

K

G

K

K

K

K K

KK

Figure 9: Contributions to 4-point and 3-point functions in a theory with cubic inter-

action. K are boundary-to-bulk and G bulk-to-bulk propagators. 3-point functions

are exhausted by the contribution shown.

For the simple case of a 3-point function, the three external points can only

connect a cubic vertex in the bulk. All other graphs will give higher powers of φ0.
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There is no need for bulk-to-bulk propagators. If the cubic interaction is λijkφiφjφk

we obtain

〈Oi(xi)Oj(xj)Ok(xk)〉 ∼ λijk
|xi − xj|∆i+∆j−∆k |xj − xk|∆j+∆k−∆i |xk − xi|∆k+∆i−∆j

in agreement with the requirements of conformal invariance that fix the coordinate

dependence of the 3-point function.

Starting with 4-point functions, we would need bulk-to-bulk propagators. The

functional dependence a 4-point function is not fixed by conformal invariance but

must be consistent with channel decomposition and the OPE expansion in the CFT.

Actual computations indeed confirm this: the correlation functions obtained by the

AdS/CFT prescription satisfy all requirements of a consistent local quantum field

theory.

Let us finish this section with some comments,

• As we saw, divergent contributions appear in the correlation function compu-

tation. Local terms in W (φ0) can be always eliminated by local counterterms.

However, this requires at least regularizing the effective action with a cut-off

as we did in section 2.2. This can be done in general and in accord with all

Ward identities in the presence of gauge fields. And this should be done in a

real calculation. In fact, the two point functions computed as we did, without

introducing a cut-off, lead to a wrong normalization. For the purposes of these

notes, this is an irrelevant detail. As already said, the reader interested in actual

calculation technology should refer to the existing literature.

• The same computation can be done for vector, spinor and tensor fields. Each

requires its own propagators. We again refer to the literature for explicit ex-

pressions. For example, the two-point function for a massless vector field would

give

〈Jµ(x)Jν(x
′)〉 =

δµν
|x− x′|6 − 2

(x− x′)µ(x− x′)ν
|x− x′|8 (2.45)

consistent with a field of dimension 3, the canonical dimension of a current

(recall m2R2 = (∆−1)(∆−3) for vector fields). The tensor structure shows that

the current is conserved. We should stress again a basic fact about vector fields:

gauge invariance in the bulk corresponds to a global symmetry in the boundary

with conserved currents. Gauge invariance requires zero mass in the bulk and

therefore ∆ = 3; conformal invariance now implies that a vector operator Jµ

with ∆ = 3, which saturates the unitary bound, is conserved ∂µJµ = 0.
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2.4 Wilson loops

In gauge theories, another natural observable is the Wilson loop, defined, for every

closed contour C and representation R of the gauge group, by the path ordered

integral of the holonomy of the gauge field along the path

WR(C) = TrRPe
i

R
C A

a
µT

adxµ (2.46)

where T a are the generators in the representation R. It has the following intuitive

interpretation. Given a pure gauge theory, we introduce external massive sources

(quarks) transforming in a representation R of the gauge group. The loop C corre-

sponds to the propagation of a quark-antiquark pair along C, from its creation to its

disappearing and measures the free energy of this configuration. For a rectangular

Wilson loop in Euclidean space with length L in space and height T in time,

WR(C) = e−TEI(L) (2.47)

where EI(L) is the energy of a pair of quarks at distance L.

The Wilson loop is a signal for confinement if it grows as (the exponential of )

the area of the loop C. In a confining theory indeed external quarks have an energy

which grows linearly with distance E = mq + mq̄ + EI with EI = τL since they

are connected by a color flux tube, or string, with tension τ . It follows that, for a

rectangular loop W = e−TEI = e−τTL, and more generally

W (C) ∼ e−τA(C) (2.48)

where A(C) is the area of the loop, or equivalently the area of the world-sheet for

the propagation of the string. In this picture, the quarks are considered as external

non dynamical sources (for example quarks with a very large mass) and W (C) just

captures the dynamics of the gauge fields in the theory. Confinement in QCD is

indeed a property of the glue vacuum.

We can define an analogous quantity in AdS. An external source is inserted at

the boundary and we may attach to it a string. This is very natural in the explicit

realizations of the AdS/CFT correspondence where the gravitational background is

embedded in a string vacuum. We are lead to consider a string whose endpoint lies on

a contour C on the boundary. The natural action for the string is the Nambu-Goto

action
∫
dx2√g, which is proportional to its area. We can now define a very natural

observable in AdS

W (C) = (minimal area surface with boundary C) (2.49)
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0center boundary

L

-L/2
L/2

u=0 u=u

Figure 10: The string world-volume that minimizes the area in AdS. It enters deeply

into the space.

This is identified with the value of some Wilson loop in the dual CFT. We shall see

in section 3 and 4 that this identification is very natural in explicit realizations of

AdS/CFT correspondence.

In a flat space-time, the surface of minimal area with rectangular C would lie

entirely on the boundary, giving an obvious confining behaviour S ∼ LT , good for a

confining theory, not certainly for a CFT. However, things are different in AdS. The

point is that the AdS metric diverges on the boundary u =∞:

ds2 = u2(dxµdxµ) +
(du)2

u2
(2.50)

(as usual we put R = 1 when possible) and it is energetically favorable for the string

to enter inside AdS. As in figure 10, the string will penetrate deeply in the interior of

the space where the gravitational interaction is weaker.

Choose a parameterization of the world-sheet by coordinates σ and τ . The

string world-sheet in AdS will be given by an embedding XM(σ, τ) and the action is

S =

∫
C

dσdτ
√

det
ab

(gMN∂aXM∂bXN) . (2.51)

We can perform a simple calculation for a time invariant configuration of two external

sources separated by a distance L. In this case, as in Figure 10, we can choose

t = τ , x = σ , U = U(σ) ≡ U(x) and we obtain the action

S ∼
∫ L/2

−L/2

∫ T

0

dt
√

(∂xu)2 + u4 ∼ T

∫ L/2

−L/2

√
(∂xu)2 + u4 (2.52)

We are taking T very large in order to have a very large strip and not to bore about

the bottom and top of the rectangle. To find the minimal area is just a classical
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exercise with the Euler-Lagrange equations. In particular, since the problem is time

invariant, the energy

H =
δL

δ(∂xu)
∂xu− L =

u4√
(∂xu)2 + u4

(2.53)

is conserved. Its value can be computed at the turning point of the string, which by

symmetry is at x = 0. Since at the turning point u′(0) = 0 we have H = u(0)2. We

obtain a differential equation for u

u′ = u2

√
u4

u(0)4
− 1 (2.54)

which we can solve by

x =

∫ x

0

dx =
1

u(0)

∫ u/u(0)

1

dy

y2
√
y4 − 1

(2.55)

First of all, note that, at the boundary u =∞, x = L/2 and we obtain a relation

between L and the turning point

L/2 =
1

u(0)

∫ ∞
1

dy

y2
√
y4 − 1

∼ 1

u(0)
(2.56)

The action evaluated on the solution reads

S = T

∫ L/2

−L/2

√
(∂xu)2 + u4 = 2Tu(0)

∫ ∞
1

y2dy√
y4 − 1

(2.57)

This integral is linearly divergent. The interpretation of this divergence is that we

are really computing the energy of a pair of quarks including their large renormalized

self-energy mq + mq̄ + EI . The energy of a single quark can be extimated by a long

linear string from u =∞ to u = 0. We are only interested in the potential energy of

the sources, therefore we subtract two linearly divergent contributions and we obtain

a finite result

S = 2Tu(0)

∫ ∞
1

(
y2dy√
y4 − 1

− 1

)
∼ Tu(0) ∼ T

1

L
(2.58)

With more effort, Wilson loops can be computed for more general contours. Let

us make some observations.
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• We see that the result for a Wilson loop is consistent with conformal invariance:

by dimensional reasons, in absence of dimensionful parameters, the potential

energy should go like 1/L. We shall see later what happens in backgrounds

which holographically realize confinement. If we restore factors of R and the

tension τ of the string, the final result is EI ∼ (τR2)/L. We shall discuss again

this behaviour in section 3.3.4.

• We see from equation (2.56) that for large separation between the sources the

turning point goes to the center of AdS. As we already anticipated, this has

a very natural holographic interpretation: probing large distances in quantum

field theory means probing the horizon. More generally, from L ∼ 1/u(0), we see

that field theory UV computations (L� 1) take contributions from region with

large u, while IR computations (L� 1) from region with small u, according to

the interpretation of u as an energy scale.

• The regularization of the action is similar in spirit to the elimination of local

terms in the holographic computation of correlation functions. We see that,

even if the theory in AdS is classical, we need to consistently implement a

regularization and a sort of renormalization of physical quantities.

2.5 Weyl anomaly

A very interesting object to compute with the AdS/CFT correspondence is the Weyl

anomaly. Conformal invariance breaks when the CFT is coupled to an external metric,

or equivalently when the theory is defined on a curved background. In fact < T µµ >6= 0

when gµν 6= 0 . By general covariance, one can prove that

T µµ = −aE4 − c I4 (2.59)

where E4, I4 are the two invariants we can make with the Riemann tensor

E4 =
1

16π2

(
R2
µντρ − 4R2

µν +R2
)

I4 = − 1

16π2

(
R2
µντρ − 2R2

µν +
1

3
R2

)
(2.60)

(and cannot be reabsorbed with local counterterms). c and a are called central

charges. They generalize the familiar central charge c of two dimensional confor-

mal field theories. It is known that c cannot be zero in a unitary two-dimensional
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CFT, and the same is true of a and c in unitary four dimensional CFTs. For example,

in free theories, we have a formula in terms of the number Ni of fields of spin i:

c =
12N1 + 2N1/2 +N0

120
a =

124N1 + 11N1/2 + 1N0

720
(2.61)

The non-vanishing of the trace of the stress-energy tensor is equivalent to the

fact that the functional

eW (g) =
〈
e

R
dx
√
|g|gµνTµν

〉
(2.62)

is not invariant under Weyl rescaling δλgµν = λgµν . In fact < T µµ >= δλW . This

looks like something that is amenable to an holographic computation: the AdS/CFT

correspondence in fact just computes the functional W (g) for external sources. In

fact, starting with the Einstein action with cosmological constant

S =

∫
dx5√g (R− Λ) (2.63)

we can compute W (g) using holography. After regularizing and removing divergences,

we can compute < T µµ > and we reproduce the functional form (2.59) predicted by

conformal invariance [20]. This is technical calculation that it is too long to report

here but it is very instructive and it is strongly suggested as a complementary reading.

As a surprising result of this computation, we have the prediction that for all

CFT described by AdS [20]:

c = a (2.64)

and the common value is determined in terms of the cosmological constant

a = c ∼ R3 ∼ (Λ)−3/2 (2.65)

Equation (2.64) is the first result that restrict the class of theories that have a

weakly coupled holographic description. Only theories with c = a can have a dual

description based on an effective Lagrangian for Einstein gravity coupled to other

fields.

2.6 Which quantum field theory?

Given an effective Lagrangian for gravity coupled to other fields and an AdS5 vac-

uum we have constructed a set of correlation functions satisfying the axioms of a local

conformal field theory. What kind of theory is it? Moreover, is it true that all four
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dimensional CFTs have a holographic dual? We already saw that there are restric-

tions. If we assume an effective weakly coupled Lagrangian that reduces to Einstein

gravity the central charges of the CFT are equal: c = a. This is not a general features

of CFTs, as the free field theory case clearly shows. Moreover, we considered only

theories with maximal spin equal to two. Therefore all CFT operators should have

maximal spin two. Again, it is very easy to find theories where conformal operators

have arbitrarily high dimensions, as the free field theory case shows. We see that, in

this way, we can describe completely only theories with very few operators with low

spin. We shall see in the next section that in the specific realizations of the AdS/CFT

correspondence these restrictions are naturally implemented and without any contra-

diction. But this restricts the class of CFTs with a weakly coupled gravitational

description.

We could include higher derivative interactions and higher spin fields in our

effective Lagrangian and hope to obtain a complete description of any CFT. However,

we typically face problems with ghosts and consistency of higher spin theories. For

example, the free field theory case, where we have an infinite number of conserved

currents of arbitrary spin, shows clearly that we should deal with a theory with infinite

massless higher spin fields in the bulk. All these theory typically make sense only

if embedded in a consistent string background. We can say that every CFT has a

holographic dual, but this is a string theory dual with all complications about string

theory. In particular there could be no regime where the gravitational dual is weakly

coupled; in this case, we will not be able to compute CFT correlators using a classical

theory.

2.7 The non-conformal realm

Holography, that works so well for conformal gauge theories, certainly has to play a

role in the description of non conformal, realistic theories. Pure glue theories (with

no supersymmetry or N = 1) confine, have a mass gap and a discrete spectrum of

massive glueballs. We will now describe how these features can be realized through

a gravitational dual.

In the description of non conformal theories we have to give up the AdS form of
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the metric for some more general metric with four-dimensional Poincaré invariance 5,

ds2 = e2A(z)
(
dz2 + dxµdx

µ
)
. (2.66)

We shall study only the case where the metric (2.66) is asymptotic to AdS5 for small

z. We also assume that it is everywhere regular. Since the space has a boundary

isomorphic to R1,3, we can apply most of the technology of the AdS/CFT correspon-

dence.

With respect with the conformal case, we also give up the association of bulk

fluctuations with conformally invariant operators. Fluctuations of the background are

now associated with bound states of the dual gauge theory. In QCD-like theories these

would be glueballs and mesons. Baryons, as usual in large N Lagrangian, will appear

as solitonic objects, typically wrapped branes. Other non-perturbative objects that

characterize the dynamics of strongly coupled gauge theories, like monopoles, flux

tubes or domain walls, typically apper as bound states made with extended objects,

strings or branes.

2.7.1 Confining theories

The computation of correlation functions and Wilson loop proceeds exactly as in the

conformal case. The results however are different.

• Confinement: In general, a criterion for confinement is the following: the

warp factor e2A(z) multiplying the four-dimensional part of the metric must be

bounded above zero. We can see this using a Wilson loop. As in the conformal

case, we introduce heavy external sources at the boundary of AdS and study

their energy by analyzing a string connecting them. Since the metric is still

blowing up at the boundary and decreasing in the interior, the string will find

energetically favorable to reach the IR part of the background. In particular,

the string will minimize its energy by reaching the point z0 where the warp

factor has a minimum. For large L, the minimal energy configuration consists

of three straight segments: two long strings at fixed xµ connecting the boundary

to the point z0, and a string at fixed z0 stretching for a distance L along the

four-dimensional spacetime directions as in Figure 11. The infinite energy of

5In explicit realizations, one typically considers higher dimensional metrics, but, for simplicity,
in this section we restrict to the five-dimensional case; all the results can be extended to the higher
dimensional case.
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the long string from z = 0 to z = z0 is interpreted as the bare mass of the

external source. All the relevant contribution to the potential energy between

two external sources is then due to a string localized at z = z0 and stretched in

the x direction. The total energy

E(L) = mq +mq̄ + e2A(z0)τL (2.67)

then gives the linear increasing potential characteristic of confinement. We

denoted with τ the tension of the string; in any explicit realization this will be

fixed by the string scale Ms. The theory has stable finite tension strings, which

!
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Figure 11: The quark-antiquark potential in the confining and in the conformal case.

we identify with the color flux tube of the dual gauge theory. They will live in

the region of the solution where the warp factor has its minimum value e2A0 and

their tension will be given by e2A0τ . This situation should be contrasted with

the AdS case, where the metric vanishes in the IR at z = ∞: the vanishing of

the metric is responsible for the 1/L behaviour of the Wilson loop.

• The Glueball Spectrum: In a theory with mass gap and discrete spectrum,

we expect poles in the two point functions corresponding to the physical states

(mesons, glueballs,...)

〈φ(k)φ(0)〉 =
∑
i

Ai
k2 +M2

i

(2.68)

where M2
i are the masses of the glueballs. We use for convenience the Euclidean

version of the theory. The poles appear for unphysical values of k2 = −M2
i .
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The correlation functions can be computed as in the conformal case by evalu-

ating the action on the equation of motion for a field φ dual to the operator O.

In the case of a minimally coupled scalar field, the equation of motion is

∂z
(
e3A(z)/2∂zφ

)
+ ∂µ

(
e3A(z)/2∂µφ

)
= e5A(z)/2m2φ (2.69)

At small z the theory is asymptotically AdS and the solution still behaves as

φk = z4−∆(A(k) + O(z)) + z∆(B(k) + O(z)), where R2m2 = ∆(∆ − 4). The

contribution proportional to A is non-normalizable while the one proportional

to B is normalizable. Regularity of the solution for large z determines B(k)

and the subleading terms as functions of A(k) exactly as in the conformal case.

By normalizing the field

φ̂k(z) = φ0
k

[
z4−∆(1 +O(z)) +

B(k)

A(k)
z∆(1 +O(z))

]
(2.70)

with the value of the boundary source, we see that 2-point Green functions

have poles if and only if A(k) = 0; or in other words if there exist normalizable

regular solutions of the equations of motion. In the physical region k2 ≥ 0 there

are no such solutions 6. However nothing prevents the existence of solutions in

the unphysical region k2 < 0. The corresponding values of k2 determines the

masses of bound states through M2 = −k2.

We have thus reduced the problem of finding the spectrum to that of finding the

regular normalizable solutions of the equations of motion. We can further reduce

this problem to a Schroedinger-like one. It is easy to see that the equation of

motion of a massive scalar field with mode expansion

φ(xµ, z) = φ(z)eikx, k2 = −M2 (2.71)

can be written as

−ψ′′ + (
9

4
(A′)2 +

3

2
A′′ +m2e2A)ψ ≡ Eψ , E = −k2 (2.72)

where φ = e−3A/2ψ. We see that the spectrum is given by the positive eigen-

values E = M2 = −k2 of a Schoedinger equation. Boundary conditions for this

6In fact the action reduces to a boundary term as in (2.40) that vanishes for A(k) = 0; on the
other hand the Euclidean action is definite positive for k2 ≥ 0 and can vanish only for a solution
which is identically zero. Recall that, in the case −4 ≤ R2m2 ≤ 0, the action is still positive definite
due to the effect of curvature.
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Figure 12: The potential in the confining and conformal case.

equation should be worked out from the original problem but are straightfor-

ward. Normalizability of φ

∫ √
g|φ|2 ∼

∫ |ψ|2
z2

dz (2.73)

requires vanishing of ψ at the boundary z = 0. Conditions at z = ∞ are

imposed by the regularity of the solution.

In the case of AdS5, the potential in the Schoedinger equation is ∼ 1/z2, and

we have a continuum spectrum starting from zero (see Figure 12), appropriate

for a confining theory. On the other hand, the typical potential for a confining

theory coincides with that of AdS5 only for small z, and it goes to a constant

value or blows up for large z; it has therefore a discrete spectrum M2
i bounded

from below which gives the glueball masses. This happens in particular in the

case where A(z) is finite and bounded above zero.

We shall discuss explicit examples of regular backgrounds based on string theory

in section 4.1.

Exercise: A very simple example to which apply the previous discussion is given by

a slice of AdS5. A bounded warp factor is obtained by introducing a boundary brane

at a finite value z0 and imposing Dirichlet or neumann boundary conditions. The

reader is invited to work out such a model and to compute the spectrum.
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2.7.2 The RG flow

In general, the background (2.66) should solve the equations of motion of a local

five-dimensional Lagrangian, which will be used for all computations based on holog-

raphy. In this section we shall discuss general properties of Poincaré-four invariant

solutions of an arbitrary five-dimensional theory. Simple exercises in classical General

Relativity lead to interesting conclusions.

Start with a local five dimensional gravitational theory

L =
√−g

[
−R

4
− 1

2
Gab∂φa∂φb + V (φ)

]
(2.74)

where, for simplicity, we have only considered scalar fields. In order to simplify the

equations of motion it is useful to write the metric in the coordinates

ds2 = dy2 + e2Y (y)dxµdx
µ . (2.75)

AdS5 is recovered for Y (y) ∼ y/R. An easy computation, that the reader is strongly

advised to perform, shows that all the Einstein and scalar equations of motion fol-

lowing from eq. (2.74) can be deduced from the effective Lagrangian

L = e4Y

[
3

(
dY

dy

)2

− 1

2
Gab

dϕi

dy

dϕj

dy
− V (ϕ)

]
, (2.76)

supported by the zero energy constraint

3(Y ′)2 − 1

2
Gab(ϕ

i)′(ϕj)′ + V (ϕ) = 0 . (2.77)

In particular, there are only two independent equations that comes from Einstein

and scalar equations of motion(
Gijϕ

′
j

)′
+ 4GijY

′ϕ′j =
∂V

∂ϕi
,

6(Y ′)2 = Gijϕ
′
iϕ
′
j − 2V. (2.78)

An obvious solution of these equations with a boundary is obtained at the

critical points of the potential ∂V
∂ϕi

= 0; if the critical value of V is negative, we obtain

an AdS5 solution of the equations of motion with constant scalar fields. In fact

Y (y) = y/R where 1/R2 = −Vcrit/3. The value of V at the critical point determines

the cosmological constant and the radius of AdS. By the general discussion given in

this section, we expect that the gravitational theory in this vacuum describes a dual

CFT.

45



Other solutions with a boundary can be obtained as follows. Start with a

five-dimensional theory with a critical point of the potential which, without loss of

generality, we take at ϕi = 0. This AdS vacuum corresponds to some dual CFT.

We can expand the action to quadratic order around the AdS vacuum and read the

masses m2
i of the scalar fields; call ∆i the dimension of the dual operator, obtained

using R2m2 = ∆(∆− 4). We now look for more general solutions with asymptotics:

Y (y) → y/R and ϕi(y) → 0 for y → ∞. Since asymptotically the background is

AdS5, the scalar fields behave as

ϕi(y) = Aie
−(4−∆i)y +Bie

−∆iy, (2.79)

for large y. According to the general rules of the AdS/CFT correspondence, Ai is

associated with a source for the dual operator Oi, while as seen in equation (2.41),

Bi can be associated with the 1-point function for Oi. We are then naturally led to

the following interpretation of the new solutions. We associate solutions behaving as

e−(4−∆)y with deformations of the original CFT with the operator Oi

LCFT → LCFT +

∫
dx4AiOi (2.80)

On the other hand, solutions asymptotic to e−∆y (the subset with Ai = 0) are asso-

ciated with a different vacuum of the theory, where the operator Oi has a non-zero

VEV proportional to Bi [18, 19].

Solutions of this type can be interpreted as the gravitational dual of a Renor-

malization Group flow (RG) in quantum field theory. The deformation of the original

CFT breaks conformal invariance and induces a running of deformation parameters

and coupling constants with the scale. In the gravitational description this RG flow

is described by the non-zero profile of the scalar fields. The energy scale can be

roughly identified with the fifth dimensional coordinate, with the region of large y

corresponding to the UV region. The functions ϕi(y) then encode the running with

the scale of the deformation parameters.

Interesting is the case where a CFT perturbed by a relevant operator Oi flows

in the IR to another fixed point. The supergravity description corresponds to the

case where the potential V has another critical point for non-zero value of the scalar

field ϕi. The 5d description of the RG flow between the two CFTs is a kink solution,

which interpolates between the two critical points [21]. Explicitly this is given by a

solution with asymptotics: Y (y) → y/RUV,IR for y → ±∞; ϕi(y) → 0 for y → ∞,

while ϕi(y) → ϕi IR for y → −∞. We associate larger energies with increasing y.

Most of the solutions however leaves a critical point and goes to infinity in the space
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Figure 13: Schematic picture of the RG flow.

of ϕi. They correspond to theories which are non-conformal in the IR. Unfortunately

most of these solutions have naked singularities.

Now some technical observations.

• Some of the squared masses around a critical point can be negative. As we have

already said, due to the non-zero curvature, these modes are not tachionic:

recall that a mode is stable iff m2R2 ≥ −4 (see section 2.2). We have

– Negative mass modes → Relevant operators (∆ < 4)

– Massless modes → Marginal operators (∆ = 4)

– Positive mass modes → Irrelevant operators (∆ > 4)

In particular, the critical point of V does not need to be a minimum. In the

interesting cases of CFT with relevant operators, it is a maximum, with some

unstable directions associated with fields with 0 ≥ R2m2 ≥ −4. In particular

the flow between two CFTs induced by a relevant operator interpolates between

a maximum and a minimum as in Figure 13; the deformation must be relevant

in the UV to leave the critical point and irrelevant in the IR to reach a new one.

• The problem of finding solutions simplify for potential of simple form, occurring

typically if some supersymmetry is present [22]. If the potential V can be written

in terms of a superpotential W as

V =
1

8
Gij ∂W

∂ϕi
∂W

∂ϕj
− 1

3
|W |2 . (2.81)
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we can find particular solutions by reducing the second order equations to first

order ones. It is easy to check that a solution of

dϕi

dy
=

1

2
Gij ∂W

∂ϕj
,

dY

dy
= −1

3
W. (2.82)

also solve the second order equations of motions. In supersymmetric theories

the reduction from second to first order is obtained by looking at the vanishing

of the supersymmetry variations instead than the equations of motion. It is

possible to show that for various gauged supergravity supersymmetric solutions

follow from a superpotential, even if this is not a general statement.

The existence of a holographic RG flow has striking conseguences for conformal

field theories at strong coupling. The most remarkable one is the possibility of proving

a c-theorem for all theories with an AdS dual. As discussed in section 2.5, there are

two central charges a, c in the superconformal algebra in four dimensions. It has

been conjectured in [23] that, for general four dimensional conformal field theories,

a is decreasing along the RG flow and thus it is the candidate central charge for a

c-theorem in four dimensions. There are examples that, on the contrary, show that c,

which enters in the OPE of two stress energy tensors, is not in general decreasing. For

theories with an AdS dual a = c and we can recover the value from the cosmological

constant a = c ∼ R3 ∼ (Λ)−3/2. It is possible to extrapolate the value of the

central charge all along an RG flow. We can define a c-function that is monotonically

decreasing [21,22] and reduces to the previous result at the fixed points. The obvious

choice

c(y) ∼ (Y ′)−3 (2.83)

makes the job. The monotonicity of c can be easily checked from the equations of

motion (2.78) and the boundary conditions of the flow [21]. The equations of motion

indeed give

Y ′′ = −4

3
Gabϕ

′
aϕ
′
b (2.84)

In a consistent theory, the kinetic terms for scalar fields need to be positive definite

to avoid ghosts. The previous equation then shows the decreasing of the c-function

for all sensible theories. More generally, without resorting on a specific Lagrangian,

we can reduce the c-theorem to a positivity condition for energy [22]. The equations

of motion for five dimensional gravity coupled to matter with a stress energy tensor

Tαβ give

−2Y ′′ ∼ (T 0
0 − T rr ) (2.85)
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The c theorem is then equivalent to the weak positive energy condition,

ξαξβTαβ ≥ 0 ξ null vector (2.86)

that is expected to hold in all physically relevant supergravity solutions. Let us stress

that the value of c is well defined only at a fixed point, where it represents a central

charge. In QFT, the value of c along the flow is scheme dependent. Similarly, in

supergravity there are several possible definitions of monotonic functions interpolating

between the central charges at the fixed points.

2.7.3 Some remarks

Let us finish the discussion of non-conformal models with some general comments.

• It is very easy to find solutions with Poincaré invariance and a boundary, as

we discussed above. However, it is very difficult to find regular solutions with-

out naked singularities. Regularity is a basic requirement in the AdS/CFT

correspondence. We can have a five dimensional effective theory with singular-

ities but these should be resolved when the model is embedded in a consistent

string theory. Singular solutions are nevertheless often used, in particular in

phenomenological applications like AdS/QCD, since in most cases correlation

functions computed through holography give finite results despite the singular-

ity.

• The most successful regular solutions describing confining theories in string

theory arise directly from ten dimensional constructions. Most of what we say,

from the criteria for confinement to the picture of an RG flow, straightforwardly

extend to higher dimensional solutions.

• We only consider asymptotically AdS solutions. In this framework we can only

describe field theories that become conformal in the UV. This condition can be

relaxed in specific constructions. In particular, the best understood example of

a dual for a N = 1 gauge theory, the Klebanov-Strassler solution [24], is based

on a background which is asymptotic to the AdS5 metric only up to logarithmic

corrections depending on the radial coordinate. Other regular solutions, for

example the Maldacena-Nunez one [25], are based on even more exotic form of

holography for NS branes.
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3 Explicit examples: the conformal case

In this section we analyze in details the founding example of the AdS/CFT corre-

spondence, the duality between N = 4 SYM and the type IIB string background

AdS5 × S5. We shall be able to give a precise map between observables in the two

theories and apply and extend the general results of section 2.

The basic tool for providing dual pairs is the ability of realizing gauge theories

on the world-volume of D-branes in string theory. D-branes are extended objects with

non zero tension and they modify the surrounding space-time. The gravity dual is

obtained by taking a near-brane (or near-horizon) limit of the D-brane geometry.

We shall work at the level of effective actions without requiring any specific

knowledge of string theory. All the necessary ingredients will be reviewed in the

following.

3.1 String theory, supergravity and D-branes

In this section, we give a quick presentation of the string theory ingredients of the

game. The following is not intended as a tutorial in string theory, but just a basic

description of the context and players, and an attempt to describe them in terms of

effective field theories. We refer to [26–29] for more details on string theory, super-

gravity, p- and D-branes.

A consistent quantization of gravity is obtained by replacing elementary par-

ticles with extended objects. The fundamental ingredient of the theory is a string

with tension M2
s = 1

2πα′
. The vibrations of this extended object give rise, upon quan-

tization, to some massless modes and a tower of particles of mass m2 ∼ 1
α′

. The

connection with gravity comes from the fact that the spectrum of a closed string con-

tains a massless tensor of rank two, which can be decomposed in a symmetric tensor,

an antisymmetric tensor and a scalar field,

gµν , Bµν , φ (3.1)

In particular, the massless spin 2 can be identified with the graviton. The scalar φ

has also an important role and it is called the dilaton.

It will be important in the following to consider also open strings. The quanti-

zation of an open string contains at the massless level a tensor of rank one, that is

a vector field Aµ. This will be extremely important for the constructions involving

D-branes.
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There is a variety of consistent string and superstring theories. At low energy,

the effective action of the massless modes of a closed string reduces to General Rela-

tivity coupled to matter fields or to supergravity when supersymmetry is present. We

shall often ignore the fermionic part of the effective action, thus avoiding all technical

details about supergravity theories.

One peculiar point of supergravities in higher dimensions is the presence of

antysymmetric tensor fields with a gauge invariance, generalizations of the electro-

magnetic field. These are given by multi-indices potentials Cµ1···µk invariant under

Cµ1···µk → Cµ1···µk + ∂{µ1Λµ2··· ...µk} (3.2)

which generalizes gauge transformations. The gauge invariant object is the curvature

Fµ1···µk+1
= ∂{µ1Cµ2··· ...µk+1} (3.3)

and the corresponding kinetic term is∫
dx10Fµ1···µk+1

F µ1···µk+1 (3.4)

We shall see that these antisymmetric fields play an important role in the correspon-

dence.

3.1.1 Type IIB supergravity

There are two consistent maximally supersymmetric string theories and both lives

in 10 dimensions. They are called type II string theories. Maximal supersymmetry

means N = 2 in ten dimensions, or better the existence of 32 real supercharges 7. At

low energy, we can consider a supersymmetric effective action for the massless fields of

string theory. Supersymmetry restricts both the field content and the effective action

up to two derivatives. In fact, there are only two supermultiplets with 32 supercharges

and the corresponding supergravity is uniquely fixed by supersymmetry. They are

obviously called type II supergravities, the non-chiral A and the chiral B 8. We are

mostly interested in type IIB supergravity.

7Counting in terms of real supercharges allows to compare theories in different dimensions and
avoid complications related to the properties of spinors that wildly depend on the dimension of
space-time. For example a N = 1 theory in four dimensions, where the supersymmetric param-
eter is a complex Weyl fermion with four real components, has 4 supercharges. The maximally
supersymmetric N = 4 gauge theory in four dimensions has 16 supercharges.

8Focusing on bosons, type II supergravity has a common set of NS-NS fields (gµν , φ,Bµν) , and
a set of R-R fields, consisting of antisymmetric tensors Ck, for all odd k in type IIA and for all
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The supersymmetry type IIB multiplet contains the following bosonic fields: a

metric gµν , a scalar φ, called the dilaton, a 2-indices antisymmetric tensor Bµν , and

three 0-,2-,4-, potentials (C0, C2, C4). Supersymmetry requires that C4 is self-dual

(F5 = ∗F5). The fermionic content is given by a spin 3/2 and a chiral spin 1/2

fermion. The action is completely fixed by supersymmetry and reads 9

SIIB =
1

(2π)7(α′)4

∫
dx10√ge−2φ

(
R + 4(∂φ)2 − 1

12
H2
µντ

)

−
√
g

2

(
(Fµ)2 +

F̃ 2
µντ

3!
+
F̃ 2
µντρσ

5!

)

−1

2
εµ1···µ10Cµ1···µ4Hµ5···µ7Fµ8···µ10 + fermions (3.5)

where we denoted with Hµντ the curvature for Bµν and by F̃µ1···µp+1 the modified

curvature Fµ1···µp+1−B{µ1µ2Fµ3···µp+1}
10. We haven’t written the fermionic part of the

Lagrangian since we shall not need it and it is completely fixed by supersymmetry.

We shall not use much the bosonic Lagrangian itself. The full action is invariant

under 32 supersymmetries given by two Majorana-Weyl parameters in 10 dimensions,

ε = ε1 + iε2.

Equation (3.5) is the effective action of type IIB string theory at low energy,

restricted to massless modes and two-derivatives. We can identify two parameters.

One is 2πα′ = 1/M2
s which determines the string mass Ms and control the masses

of the string modes, m2 ∼ 1/α′. A second one is implicitly given by the vacuum

expectation value of the dilaton gs =< eφ > which can be arbitrary since there is

no potential for φ. gs determines the string coupling constant and controls string

interactions and quantum corrections. Both parameters can correct the effective

even k in type IIB. The names NS and R refers to Neveu-Schwartz and Ramond, respectively, and
reflect the explicit world-sheet construction. In generic dimensions the electric-magnetic duality
Fµν → εµντρF

τρ is generalized by Fµ1···µk+1 = εµ1···µ10F
µk+2···µ10 (Fk+1 = ∗F9−k) so if we have a

potential Ck with k-indices we also have its magnetic dual C8−k. Obviously, they are mutually non
local and they cannot appear simultaneously in a local Lagrangian. When two potentials Ck are
electric-magnetically dual only the one with the lower number of indices is included in the type II
Lagrangian.

9Actually, type IIB supergravity has equations of motion and no Lagrangian, due to the presence
of a self-dual potential. (3.5) is nevertheless a good approximation to a Lagrangian: its equation of
motion (with unconstrained C4) are the equations of motion of type IIB supergravity to which we
need to add the self-duality constraint F5 = ∗F5.

10These couplings are required by supersymmetry and implies that the gauge invariance δBµν =
∂{µΛν} should be combined with the transformation δAµ1···µp

= Λ{µ1Fµ2···µp}. None of these details
will be used in the following.
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action. If we integrate out the massive fields we get higher derivative corrections

weighted by powers of α′. If we add the quantum corrections we get corrections (with

arbitrary derivatives) weighted by powers of gs. Schematically 11∫
dx10√ge−2φR+ · · · +

√
ge−2φ

(
α′R2 + · · · )

+
∞∑
g=1

e(2g−2)φ√g (· · · )

Any physical quantity has an expansion of form

∞∑
g=0

g2g−2
s fg(

α′

R2
) (3.6)

Note that, in order to have a well defined dimensionless expansion parameter, we

weighted α′ with the typical radius R of the space-time in the vacuum where the

computation is performed.

String theory gives an explicit way of computing all these corrections. The

loop expansion for a string is given by fattened Feynman graphs, represented by

Riemann surfaces where the genus is the number of loops (see figure 6). At each order

in perturbation theory we have precisely one graph, which can be computed using

the world-sheet formulation of string theory and the technology of two-dimensional

conformal field theories. The result is a non-trivial function of α′ encoding the effect

of all massless and massive string modes.

3.1.2 D-branes

Type II supergravities (and string theories) have solitonic extended charged objects,

called p-branes, which generalize strings and membranes. They are massive objects

that extend in p-spacelike directions and interact with the gravitational and gauge

fields through the coupling

Sp−brane = τ

∫
dxp+1√g + q

∫
dxp+1Ap+1 (3.7)

where the integral is taken on the world-volume of the brane. The first term is the

generalization of the Nambu-Goto action for strings and it defines the tension τ of

the brane. A massive object in General Relativity moves by minimizing the volume

11The RR fields kinetic term enters the action without a factor of e−2φ, in order to simplify gauge
couplings. It should be consider at all effect part of the tree level action.
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swept. The second term is the coupling to the Ap+1 antisymmetric tensor field; it

generalizes the coupling of a charged particle to a vector, which is given by the integral

of the one-form potential on the world-line of the particle,

q

∫
dt ~A~v = q

∫
dxµAµ ≡ q

∫
A1 . (3.8)

The parameter q is the p-brane charge. As in electro-magnetism, it is useful to

measure the charge by the flux on a sphere surrounding the source. For an extended

object with p+ 1 space-time directions, the transverse space is R9−p and the correct

definition is 12 ∫
S8−p
∗Fp+2 = N (3.9)

The flux N is proportional to the charge q by α′ and numerical factors. N is more

useful than q because N is an integer by the Dirac quantization condition, similarly

to what happens in electro-magnetism.

We can see p-branes as solitons. In fact, there exist classical solutions of type

II supergravity with sources corresponding to massive charged p-branes, or, in other

words, solutions of the coupled action

SII(g,B, φ, F ) + Sp−brane (3.10)

These solutions are called black p-brane and generalize rotating black holes. They

have SO(1, p)×SO(9−p) isometry (corresponding to an object extending in the first

p+ 1 coordinates of space-time), N units of flux for the Ap+1 potential as in equation

(3.9), and a finite energy per unit volume in the p space-like directions, which we can

identify with the tension of the brane

E =
E

Vold
= τ . (3.11)

The black p-brane solutions are very similar to Kerr black holes, with a singular-

ity surrounded by an inner and outer horizon. As in the case of rotating black holes,

we avoid naked singularities only if the energy density is greater than the charge,

E = τ ≥ N

(2π)2gs(α′)(p+1)/2
. (3.12)

When the bound is saturated, we speak of extremal p-branes. They are particularly

important because the saturation of the bound is equivalent to the preservation of

part of the supersymmetries of the theory. An extremal p-brane preserves exactly

12As we see from integrating the equation of motion d ∗ Fp+2 ∼ qδ on the trasverse space.
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half of the 32 supersymmetries of type II supergravity. For this reason it is called

a BPS object 13. The extremal p-brane lying in the first p + 1 directions (including

time) corresponds to the solution

ds2 = H−1/2(r)dx2
µ +H1/2(r)dy2

A0···p = H(r)

eφ = gsH(r)(3−p)/4

H(r) = 1 +
cgsN(α′)(7−p)/2

r7−p (3.13)

with c a numerical factor. y are directions transverse to the brane and r2 =
∑

i y
2
i

is the radial distance. Note that, perhaps not unexpectedly, H(yi) is the solution of

the Laplace equation in the transverse space R9−p with a delta function source at

the origin. The solution has an SO(1, p) × SO(9 − p) isometry group and preserves

16 supersymmetries. One can check all these statements by explicit computations

(which we shall not report here).

The horizon of an extremal p-brane collaps on the singularity. Something very

special happens for 3-branes: it is good exercise in General Relativity to check that

the metric for an extremal 3-brane is actually completely regular. Note also that the

dilaton becomes constant.

There is a generalization of the extremal solution where H is replaced by a more

general harmonic function

H(yi) = 1 + cgs(α
′)(7−p)/2

N∑
a=1

1

|y − ya|7−p (3.14)

This solution has still charge N , an energy density that saturates the unitary bound

(3.12) and it preserves 16 supercharges. While (3.13) corresponds to a brane of charge

N sitting at the point ~y = 0, (3.14) corresponds to N branes of unit charge sitting at

the arbitrary points ~ya. This is called a multi-center solution. The extremality of the

multi-center solution has an important consequence: p-branes do not exert force on

each other. They can be separated and moved around in space-time without any cost

in energy. Typically, if we put two massive objects with the same charge at a certain

distance, they will attract or repulse by a combination of gravitational and gauge

interaction. However, for extremal p-branes the energy density of a configuration is

13In the language of supersymmetry the inequality follows from the supersymmetry algebra in
presence of central charges (given by the charge of the p-brane) and its saturation is the BPS
condition.
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proportional to its charge. Since charge is additive, the energy density of a system of

identical extremal branes is equal to the sum of the energy density of the single branes:

the potential energy vanishes. In fact, precisely by equality of tension and charge, the

gravitational attraction is compensated by the gauge repulsion. This phenomenon is

typical of BPS objects and also happens in the physics of four-dimensional monopoles

in supersymmetric gauge theories.

In string theory extremal p-branes have an explicit characterization as planes

where open strings can end. These objects are called D-branes and we shall mostly

use this terminology in the following.

3.1.3 Collective coordinates

Solitonic objects usually carry collective coordinates. The same happens for p-branes:

there are fields leaving on their world-volume.

Some of these collective coordinates are related to fluctuations of our extended

object in the transverse directions. We can easily see where they come from if we look

closely to the Nambu-Goto action. The position of the brane in space-time is specified

by a set of functions XM(xa) where xa are coordinates on the world-volume while

XM are the coordinates of the ten-dimensional space-time. The functions XM(xa)

describe the embedding and the shape of the D-brane in space-time. The metric on

the brane is given by

gMNdX
MdXN = gMN∂aX

M∂bX
Ndxadxb (3.15)

and the Nambu-Goto action reads∫
dxp+1√g =

∫
dxp+1

√
det
a b

(∂aXM∂bXNgMN) (3.16)

For a p-brane embedded in the first p+1 coordinates and sitting at a point (φp+2 · · ·φ10)

we can set Xa = xa , a = 0, · · · , p + 1 and X i = φi , i = p + 2, · · · 10. To study fluc-

tuations, we allow the positions φi to vary slowly as functions of the xa. Computing

the induced metric and expanding it in powers of the fluctuations we see that∫ √
det
a b

(gab + gij∂aφi∂bφj) =

∫ √
g +

1

2

√
ggij∂aφ

i∂aφj + .... (3.17)

At the order of two derivatives we obtain the standard kinetic term for 9 − p scalar

fields leaving on the world-volume of the brane. Obviously, this result was expected:

it is the only term with two derivatives that is covariant under space-time symmetries.

The scalar fields parametrize the position of the brane in space-time.
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In addition to scalar fields parametrizing the 9−p transverse positions, there are

other fields on the brane. The nature of these modes and their effective Lagrangian

are difficult to find for generic p-branes. However in the case of extremal p-branes

supersymmetry comes to a rescue. Since an extremal brane preserves half of the

supersymmetry of the background, the world-volume theory should have 16 super-

charges. Fortunately, there is exactly one supermultiplet with 16 supercharges in any

dimensions and this is the vector supermultiplet. It is not a coincidence that a vector

multiplet contains exactly 9 − p scalar fields. This uniquely fixes the world-volume

fields leaving on an extremal p-brane. The Lagrangian is also fixed by supersymmetry

at the level of two derivatives. It can be obtained by the dimensional reduction of

ten dimensional YM theory, as we shall see explicitly.

The previous argument is confirmed by an explicit calculation in string theory,

where the world-volume modes can be studied and incorporated by allowing open

strings to end on a D-brane. By quantizing open strings ending on extended planes

we indeed find massless excitations corresponding to a vector multiplet with 16 su-

percharges. We also find a tower of massive string modes with squared masses of

order 1/α′. The effective action for world-volume fields and the interaction with the

background can be determined by the open plus closed string perturbative expansion.

In particular one finds a nice generalization of (3.7) (for a brane of unit charge),

1

(α′)(p+1)/2

∫
dxp+1

(
e−φ
√

det (g + (2πα′F +B2)) + e2πα′F+B2 ∧
∑
k

Ck

∣∣∣
p+1−form

)
(3.18)

The first term is called the Dirac-Born-Infeld action and generalizes the Nambu-

Goto action by including gauge fields and their coupling to the bulk field Bµν ; the

second one is called the Wess-Zumino term and generalizes the coupling to Ap+1 to

the other RR forms 14. The dilaton factor comes from the tension of a D-brane (see

equation (3.12)). By expanding up to two-derivatives in the gauge fields the previous

expression, similarly to what we did for the scalar fields, we would get the effective

action for gauge fields. Doing it explicitly for the case of a D3-brane in type IIB we

obtain ∫
dx4e−φ F 2

µν + C0 ε
µντρFµνFρσ (3.19)

which is indeed the action for a gauge vector. The background value of the dilaton

fixes the coupling constant while the background value of the scalar C0 fixes the theta

angle. Note that the expansion in derivatives is equivalent to an expansion in α′.

14In the Wess-Zumino term only the term in the exansion of eF+B ∧∑C with p+1 indices, which
can be intergrated on the world-volume, should be kept.
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Figure 14: The coupled brane-bulk system.
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Figure 15: Non-abelian gauge symmetries are naturally realized on the world-volume

of coinciding D-branes. When D-branes coincide, open strings connecting different

branes become massless giving an enhanced non-abelian symmetry.

3.1.4 Non-abelian gauge fields from D-branes

It will be of utmost importance for us that a set of N Dp-brane carries on its world-

volume a YM theory with gauge group U(N). Most of the recent interest in D-branes

comes from this fact.

The solution (3.13) with charge N can be interpreted as the superposition of N

elementary Dp-brane with unit charge. It is in fact the limit of the more general solu-

tion (3.14) when all the D-brane positions coincide. We already know that D-branes

carry vector multiplets. In string theory these multiplets come from the quantization

of open strings ending on the D-branes as in Figure 15. Open strings ending on the

same D-brane give rise to a massless vector multiplet. On the other hand, we also

have open strings connecting different D-brane are these give rise to massive vector

multiplets, since the string, which has a tension 1/α′, has a non zero length. The mass

of these modes is then proportional to the distance between branes: m ∼ |~φ1− ~φ2|/α′.
When D-branes coincide, however, the masses of these vector multiplets vanish. By

counting the number of open strings that become massless, we obtain N2 vector fields,
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consistent with an enhanced U(N) symmetry (see Figure 15 for the N = 2 case).

We shall see now that this spectrum of states is well reproduced by a world-

volume analysis. The bosonic part of the maximally supersymmetric YM theory in

p + 1 dimensions is obtained by dimensional reduction from super YM in ten. The

bosonic part of the 10-dimensional theory is remarkably simple

−
∫
dx10 TrF 2

µν , Fµν = ∂µAν − ∂νAµ + i[Aµ, Aν ] (3.20)

The dimensional reduction is obtained by considering configurations that depend only

on the first p + 1 coordinates. We also split the ten dimensional vector in a p + 1

dimensional vector Aµ , µ = 0, · · · p + 1 and 9 − p scalars φi = Ai , i = p + 2, · · · 10.

Since all derivatives in the 9− p trasverse directions vanish, we obtain a very simple

action for the scalar fields φi

10∑
i=p+2

Tr
(
∂µφ

i + i[Aµ, φ
i]
)2

+
10∑

i ,j=p+2

Tr[φi, φj]2 (3.21)

The scalar potential is a sum of squares, as required by supersymmetry, and its vacua

are given by the configurations

[φi, φj] = 0 (3.22)

In a U(N) theory the φi are hermitian matrices. Since they commute, they can be

simultaneously diagonalized by a gauge transformation. In the vacuum corresponding

to diagonal matrices 15 φi = diag{φi1, · · · , φiN} the gauge group U(N) is broken to

U(1)N . In fact, thinking of Apqµ as an N by N hermitian matrix, it is easy to see that

the diagonal components remain massless (giving the U(1)N) while the off-diagonal

ones aquire a mass

|Apqµ |2
10∑

i=p+2

|φip − φiq|2 (3.23)

The diagonal VEV for the φi can be interpreted as the position of the N D-branes

in space-time. There is a one-to-one correspondence between the set of vacua of the

world-volume theory and the minimal energy configuration of a set of D-branes in

space-time. Moreover, the mass of the gauge fields in any given vacuum nicely fits

with the space-time description: the diagonal gauge fields correspond to open strings

connecting the same D-brane and the off-diagonal ones to open strings connecting

different D-branes with a mass proportional to the distance. Finally, we see what

15Due to a residual discrete gauge symmetry corresponding to the Weyl group of U(N), a permu-
tation of the eigenvalues give a gauge equivalent configuration.
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happens when all the D-branes coincide. In field theory, we have an inverse Higgs

mechanism. Some W± bosons becomes massless enhancing the symmetry to U(N).

In the space-time picture the open string connecting different branes become massless.

We see that the set of vacua of a U(N) world-volume field theory matches the

space-time expectation for a set of N BPS objects.

3.1.5 A closer look to D3-branes

We shall be interested in particular in D3-branes. As already mentioned the super-

gravity solution is regular and the dilaton is constant. On the field theory side, the

world-volume theory on N D3-branes is N = 4 SYM with gauge group U(N) (16

real supercharges). The theory contains a gauge field, six scalar fields φi (parametriz-

ing the six transverse directions) and four Weyl fermions ψa. A D3-brane has a

SO(1, 3) × SO(6) global symmetry. The first factor is the Lorentz group while the

second is the SU(4)R ∼ SO(6) R-symmetry of the theory, which rotates the four

supercharges Qa
α. Scalar and fermions transform in the 6 and 4 representation of the

R-symmetry group, respectively. Altough we shall not use it much, we report the

Lagrangian for completeness

S =
1

g2
YM

∫
dx4Tr(−F

2
µν

2
− iψ̄a 6Dψa − (Dµφ

i)2 + Cab
i ψa[φ

i, ψb] +
[
φi, φj

]2
)

with Cab
i Clebsh-Gordan coefficients for the decomposition 4×4→ 6. The supersym-

metry transformations are generated by Qa
α acting on fields as δaχ = [εαQa

α+ ε̄α̇Q̄a
α, χ]

and sending

φi → Ciabψα b

ψβ b → F+
µνσ

µν
αβδ

a
b + [φi, φj]εαβC

a
ijb

ψ̄b
β̇
→ Cab

i σ̄
µ

αβ̇
Dµφ

i

Aµ → σβ̇µαψ̄
a
β̇

(3.24)

We see that the scalar potential agrees with the general discussion in the pre-

vious section. The form of the Lagrangian makes manifest the SU(4)R symmetry.

There is a simpler form of this Lagrangian using the language of N = 1 supersym-

metry. The N = 4 multiplet can be decomposed in a N = 1 gauge multiplet Wα,

containing Aµ and ψ4, and three complex chiral fields Φi, containing φi + iφi+3 and
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ψi for i = 1, 2, 3. The Lagrangian is then

1

g2
YM

∫
dx4

(∫
dθ4(W 2

α +
3∑
i=1

Φ̄1Φi) +

∫
dθ2εijkΦiΦjΦk

)
(3.25)

A disadvantage of this formulation is that only a U(1)R × SU(3) subgroup of the

R-symmetry SU(4)R is manifest.

From the explicit expression (3.19), we know that the kinetic term of a D3-brane

should be multiplied by 1/gs. We are thus led to the identification of the Yang-Mills

coupling on a D3-brane with the constant value of the dilaton g2
YM ∼ gs. More

generally, from the same equation, we identify

τ =
θ

2π
+

4πi

g2
YM

=
C0

2π
+

i

gs
(3.26)

where we for reference we reintroduced the correct numerical factors. As discussed

above there is a moduli space of vacua where the scalar fields φi are diagonal with

arbitrary entries. These are flat directions of the gauge theory.

More importantly, the theory is conformal. As already discussed in section

1.1.2, the beta function vanishes up to three-loops and it is believed to vanish at all

orders. All correlation functions of elementary fields are finite at all order, when a

suitable regularization is used. With supersymmetry the conformal group is enhanced

to SU(2, 2|4) obtained by O(2, 4) by adding the global SU(4)R generators, the four

Weyl supercharges Qa
α , a = 1, ...4 and the four so-called conformal supercharges Saα̇.

These are required to close the superconformal algebra [K,Q] ∼ S. In particular,

if we include the S generators, we collect 32 real supersymmetry generators, the 16

supercharges and the 16 conformal supersymetries. We shall not use explicitly the

superconformal group; the reader can find more details about it in the Appendix.

3.2 The near-horizon geometry

The original Maldacena conjecture states that N = 4 SYM is dual to the type IIB

string background AdS5 × S5. The conjecture arised from the observation that the

two theories can be obtained by the same decoupling limit α′ → 0, performed on the

world-volume theory and on the back-reacted metric in space-time.

N = 4 SYM theory can be realized on the world-volume of N parallel D3-branes

in Type IIB, as depicted in Figure 15 and 16. The D3 branes interact with the bulk

fields which lives in 10 dimensions. If we expand in powers of α′ the leading terms in
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decoupled from gravity
N=4 U(N) SYM 5TYPE IIB  on   AdS     S
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Figure 16: The two limits.

the action for the coupled brane/bulk system are

1

gs

∫
d4xF 2

µν +
1

α′4

∫
d10x
√
gRe−2φ + · · · (3.27)

where g2
YM ∼ gs. We see that, in the limit α′ → 0, we can turn off the interaction

with the bulk: the brane theory decouples from the bulk and reduces to N = 4 SYM.

The limit should be performed in a careful way in order to keep field theory quantities

finite. The mass of a gauge boson in the Higgs phase of N = 4 YM is given, in the

D3 brane description, by the mass of a stretched open string m = ∆r/α′, where ∆r

is the distance between branes. If we want to keep these masses finite we take the

limit

α′ → 0

gs fixed

N fixed

φi = ri

α′
fixed (3.28)

In other words, we zoom on the region containing the branes.

On the other hand, a D3-brane is a solution of the equation of motion of type

IIB supergravity and deforms the background as in equation (3.13),

ds2 = H−1/2dxµdx
µ +H1/2(dr2 + r2Ω5)

F (5) = flux of a charged object

eφ = gs ≡ g2
YM

4π

H = 1 +
g2
YMNα

′2

r4
= 1 +

g2
YMN

α′2φ4
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This is the background induced by a tensionful 3-brane charged under the field C4;

far from the brane the deformation vanishes and the metric becomes flat. If we take

the limit (3.28) on the solution we obtain

ds2 ∼ α′
{
R2 (dφ)2

φ2
+
φ2

R2
(dx)2 +R2Ω5

}
, R2 = α′

√
g2
YMN

which we recognize as the product of two Einstein spaces of constant curvature:

AdS5 × S5. Starting from an asymptotically flat space-time and performing a limit

we have obtained a curved space. This is possible because the limit amounts to

discard the constant term in H(r) thus decoupling the asymptotically flat part of

the metric. Equivalently, we are taking r → 0 and zooming on the region where the

branes sit. For this reason this procedure is called a near-horizon limit.

This observation led Maldacena to formulate his conjecture and propose the

equivalence between N = 4 SYM and the type IIB string background AdS5 × S5.

A first obvious check concern symmetries on the two sides. These are reported

in the following self-explaining table:

N = 4 SYM Type IIB on AdS5 × S5

Conformal group O(4, 2) Isometry group O(4, 2) of AdS5

Supersymmetries =16 Q + 16 S 32 supersymmetries

R-symmetry SU(4)R Isometry of S5: SO(6) = SU(4)

In a word, the symmetry on both sides is the superconformal group SU(2, 2|4).

The only subtle point in these identifications regards supersymmetry. The D3 brane

solution has 16 supercharges. However its near horizon region has an enhanced super-

symmetry: one can check that AdS5×S5 is a maximally supersymmetric background

of type IIB. On the field theory side, the 16 supercharges of the YM theory are

enhanced to 32 by adding the conformal supersymmetries.

Since S5 is compact, we can perform a dimensional reduction and think about

the gravity theory as an effective five-dimensional theory with an infinite numbers of

fields and an AdS5 vacuum.
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It is interesting to compare parameters in the two theories. The radius of both

AdS5 and S5 is given by R2 = α′
√
x, where x = g2

YMN is the t’Hooft coupling. This

suggests some relation to the large N limit. In fact, the CFT has two dimensionless

parameters, x and N and these can be matched with the two string parameters, gs

and α′ as follows

4πgs =
x

N

R2

α′
=
√
x (3.29)

The dual string theory is useful when it is weakly coupled, reducing to an effective

supergravity. This happens if gs → 0 (string loops suppressed) and α′/R2 → 0 (higher

derivatives terms and massive string modes suppressed). This regime corresponds to

the large N limit and the strong coupling (x→∞) of the CFT.

• We see that the t’Hooft limit N → ∞, x = g2
YMN fixed, is naturally imple-

mented in the correspondence.

• We also see that we have a duality: the weak coupling regime of the gravity

theory corresponds to the strong coupling regime of the CFT. This is what

makes the correspondence useful. We can learn everything about the weak

coupling of N = 4 SYM using Feynman graphs and perturbative expansion.

Let us finish this section with some comments.

• We can apply the methods of section 2 and compute Green functions of the

CFT using a classical gravitational theory. This method will work in the large

N limit and strong coupling. The correspondence is valid for all N and x,

but for computations at finite N and x we need the full string theory. We

can organize a t’Hooft expansion in 1/N and 1/x, as in Figure 17. The CFT

expansion in 1/N is the loop expansion of string theory; both are organized as

a Riemann surface expansion. The expansion in 1/x is the expansion in higher

derivatives. In field theory, at each order in 1/N , we need to re-sum the infinite

graphs of given topology obtaining an highly non trivial function fg(x) of the

t’Hooft coupling. In the limit x → ∞, f0(x) is computable in supergravity,

the corrections in 1/x corresponding to the higher derivatives corrections of

string theory. The correspondence is useful at the moment only at large N and

strong coupling. To go beyond the planar limit is probably hopeless, since it

requires computing string loops. On the other hand, to go beyond the strong
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Figure 17: The string expansion versus the the large N expansion

coupling involves computing world-sheet corrections, which are, in principle,

more tractable than loop corrections. In flat space, for example, all the α′

corrections are computable. In the AdS case, the analogous computation is

made difficult, but perhaps not impossible, by the presence of RR-fields.

• Taking a near horizon limit is a general method for obtaining the gravity dual

of the gauge theory living on a set of D-branes. This works every time the

limit is able to decouple consistently brane and bulk physics. For example, we

can find many other examples with less supersymmetry by placing D-branes in

curved geometries or considering complicated set of intersecting branes. Some

examples will be briefly discussed in the following.

3.3 Matching the spectrum

We shall now give a map between observables in the dual theories. In both case we

shall classify them in terms of the quantum numbers of the superconformal group:

the dimension ∆, the spin (j1, j2) and the R-symmetry representation.

3.3.1 The field theory side

The theory is finite and (using a suitable regularization) elementary fields are not

renormalized. However, gauge invariance requires observables to be composite oper-

ators. As well-known, composite operators need additional renormalization: Green

functions have short-distance singularities when two or more elementary fields coin-
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cide. The conformal dimension of a composite operator can be renormalized

∆O = canonical dim + γO(gYM) (3.30)

where the anomalous dimension γO = Λ ∂
∂Λ

logZO is obtained from the wave-function

renormalization of the operator: Oren = Z−1
O Obare.

Some particular operators are protected by the superconformal algebra and their

dimension is not renormalized; this certainly happens to the conserved currents (and

their partners under supersymmetry) that have canonical dimension. The multiplets

of conserved currents are special cases of the so-called short multiplets, which con-

tain less states than a generic representation, as discussed in the Appendix. They

saturate an unitary bound and, as a consequence, the dimension of the operators in

such multiplets are uniquely determined by the Lorentz and R-symmetry quantum

numbers.

• In N = 4 SYM we have various conserved currents, the stress-energy tensor

Tµν , the supercharges Qa
α and the SU(4)R R-currents (Ra

b )µ. They all belong to

the same supermultiplet

(Trφiφj − trace, · · · , Qa
α , · · · (Ra

b )µ, · · · , Tµν) (3.31)

whose lowest component is a scalar field. Since the currents are conserved and

have canonical dimensions, the same is true for their supersymmetric partners.

• The relevant short multiplets of N = 4 SYM are the generalization of the chiral

multiplets of N = 1 supersymmetry. Recall that in N = 1 a multiplet is

chiral when is annihilated by half of the supersymmetries (let’s say the Q̄); the

corresponding superfields depends only on the θ coordinates (and not θ̄) and

it is shorter than a generic multiplet. A chiral multiplet satisfies the unitary

bound

∆ =
3

2
R (3.32)

where R is the R-charge. This bound implies a non-renormalization theorem: ∆

and R can be re-normalized but their ratio is not. The analogous case in N = 4

is a multiplet annihilated by half of the supercharges. It has maximum spin two

with a scalar lowest state transforming in the symmetric traceless representation

of rank k of SO(6) ∼ SU(4)R. The dimension of the lowest state is fixed by

the shortening condition to be ∆ = k 16. Since k is an integer, it follows that

16A more general short multiplet with lowest scalar state transforming in the [p, k, p] representation
of SU(4) with dimension ∆ = k + 2p plays a role in analyzing multi-trace operators.
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the dimension of the lowest state (and of all its partners under supersymmetry)

cannot be renormalized. In the following, the words short or chiral in N = 4

will refer to this particular multiplet.

An example of chiral multiplet Ak of N = 4 SYM is obtained by applying

supersymmetries to the operator

Trφ{i1 · · · φik} − traces (3.33)

of canonical dimension k. A2 corresponds to the supercurrent multiplet. Quite re-

markably, one can prove that the Ak are short multiplets with protected dimensions

and that they are the only single-trace short multiplets of N = 4 SYM.

All single-trace operators not lying in one of the Ak are not protected by the

superconformal symmetry and are in general renormalized, unless some miracle or

some dynamical reason intervenes.

• Example: Consider the quadratic operators made with the six scalar fields of

N = 4 SYM: Trφiφj. These operators are symmetric in i and j due to the cyclic

property of the trace. We have 21 independent operators. In terms of SU(4)R

representations, the trace Tr
∑

i φiφi is a singlet and the symmetric traceless

part spans a 20. An explicit computation shows that the singlet is renormalized

while the 20 is not,

20 : Trφiφj − δij
6

∑
i φiφi ∆ = 2.

1 :
∑

i φiφi ∆ = 2 +O(gYM) (3.34)

The scalar operator in the 20 is not renormalized since it belongs to the short

multiplet A2; it is the lowest component of the supermultiplets of currents. On

the other hand, the trace part does not belong to any multiplet of currents and

there is no reason why it should not receive corrections. Trφiφi is the lowest

component of a long unprotected multiplet, called the Konishi multiplet, and

its dimension is renormalized.

• One can check the non-renormalization of Ak just by using the N = 1 subalgebra

and its bounds. The N = 4 Lagrangian is written in N = 1 notations in (3.25).

It has a U(1)R symmetry which give charge 1 to θ and charge 2/3 to Φi. As

we said, in N = 1 supersymmetry, the chiral multiplets are short and their

lowest component saturates the unitary bound ∆ = 3R/2. The 20 multiplet,
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when decomposed in N = 1 supersymmetry, contains among other things the

chiral multiplet TrΦiΦj which is protected and has dimension ∆ = 2 since

its R-charge is R = 4/3. By supersymmetry the entire N = 4 multiplet has

protected dimension. On the other hand, the singlet Trφiφi corresponds in

N = 1 notations to Φ̄iΦi which is not chiral and not protected. Analogously

the multiplet Ak contains, after decomposition, the chiral multiplet Φ{i1 · · ·Φk}

with protected dimension k. Note however that the products φi1 · · ·φk, where

the indices are not symmetrized, are not protected. In fact, although Φi1 · · ·Φk

looks as chiral multiplets, they are not. In fact, by the equations of motion of

N = 4 SYM we see that

[Φi,Φj] ∼ εijkD
2Φ̄k (3.35)

so that the anticommutator of two scalars is not the lowest component of a

chiral field, but rather a descendant under supersymmetry of something else.

The non-renormalization condition only applies to the lowest component of a

chiral field.

3.3.2 The gravity side

Since S5 is compact we can perform a KK reduction of the ten-dimensional fields to

five-dimensions. This is similar to the KK reduction of fields on a circle given by

expansion in Fourier modes. If we have a space-time R1,3×S1, with a circle of radius

R, the equations of motion of a five-dimensional massless field can be diagonalized

by considering Fourier modes φ(x, y) =
∑

k φk(x)eiky/R with k ∈ Z,

−�5φ(xµ, y) = −�4φ(xµ, y)− ∂2
yφ(xµ, y) =

∑
k

eiky/R
(
−�φk +

k2

R2
φk

)
(3.36)

We thus obtain an infinite tower of KK modes with mass k2/R2.

The situation is similar on S5. We need to diagonalize the Laplacian on S5 and

this is done using spherical harmonics. The bosonic massless modes in ten-dimensions

are

(gµν , Bµν , Cµν , φ, C0, A
+
µνρσ) (3.37)

They give rise to five-dimensional modes by expansion on spherical harmonics on the

sphere: for a scalar for example

φ(x, y) =
∑

φI(x)YI(y) (3.38)

where YI are the eigenfunctions of the scalar Laplacian on S5.
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Figure 18: The lines connect states belonging to the same KK tower. Multiplets of

supersymmetry are arranged in vertical lines. There is one multiplet for all integers

k ≥ 2.

The KK spectrum was computed and organized in supersymmetry multiplets

in the eighties [30, 31]. In figure 18 the reader can find the lowest scalar excitations.

For each state we indicated the SO(6) representation. The mass can be read on the

vertical axis. Modes on the same vertical line belong to the same supermultiplet.

One can show that the entire spectrum consists of a series of short multiplets A′k of

the superconformal algebra, labelled by an integer k ≥ 2. The lowest state in A′k is a

scalar in the k-fold symmetric representation of SO(6) with mass m2 = k(k − 4)/R2

and the maximum spin in the multiplet is two. For example, k = 2 is the graviton

multiplet,

(gµν , ψ
i
µ : in the 4, Aµ : 15, Bµν : 6+6̄, λ : 4+10c, scalars : 1c+10c+20) (3.39)

Note that even if this is called the massless multiplet, only the gauge fields are strictly

massless: the mass is not a Casimir of the superconformal group and varies inside a

multiplet.

Let us make some observations.

• In the classical KK expansion on a circle, the zero-modes are massless and

separated from massive modes by a quantity of order 1/R2. We can decouple

massive modes by taking large R. Due to the non-zero curvature, in AdS there
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is no separation: all the KK modes have a mass of the same order of the

zero-modes. In fact strictly massless modes are those with gauge invariance

(graviton,etc...). But as we already noticed even some of their susy partners are

massive.

• Even if we cannot decouple the massive multiplets A′k with k ≥ 3 by taking

the internal manifold large, it make sense to write an effective action for the

massless multiplet A′2. This is the N = 8 gauge supergravity in five-dimensions.

It is believed to be a consistent truncation of the theory in the sense that every

solution of its equations of motion can be uplifted to a solution of the ten-

dimensional equations of motion.

3.3.3 The comparison

There is a complete correspondence between the KK spectrum and the short multi-

plets of N = 4 SYM: In each case we have precisely one short multiplet of the su-

perconformal algebra for every k ≥ 2. The massless multiplet A′2 on the gravity side,

which contains the gravitons, the gravitino and the SO(6) gauge fields, corresponds

to the supercurrent multiplet on the field theory side. This is the usual manifestation

of the fact that gauge symmetries in the bulk correspond to global symmetries in the

boundary. The multiplets A′k corresponds to the field theory multiplet Ak with lowest

component

Trφ{i1 · · · φik} − traces . (3.40)

It is an useful exercise to check explicitly that the two multiplets contains fields

with the same quantum numbers and compare their masses and dimensions using the

standard AdS rules discussed in section 2.2.

Exercise: identify all scalars in Figure 18, by using susy, mass/dimension relations

and SU(4) quantum numbers. The result is (schematically)

SU(4) rep. operator multiplet/dim.

20 Trφ{iφj} − traces A2 ∆ = 2

50 Trφ{iφjφk} − traces A3 ∆ = 3

10c Trλaλb + φ3 A2 ∆ = 3

105 Trφ{iφjφkφp} − traces A4 ∆ = 4

45c Trλaλbφi + φ4 A4 ∆ = 4

1c on− shell Lagrangian A2 ∆ = 4
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Up to now, we have discussed the KK modes. What happens to the string

modes? In the supergravity limit, all stringy states are very massive and decouple.

In the CFT these states correspond to operators with anomalous dimension x1/4

m2 =
∆(∆− 4)

R2
∼ 1

α′
=

√
x

R2
→ ∆ ∼ x1/4 . (3.41)

Since they have infinite dimension, they should decouple from all the OPE and Green

functions. We then have a very strong prediction: in N = 4 SYM at strong coupling

only the set of protected operators Ak have finite dimensions; all the other non pro-

tected operators have an anomalous dimension that diverges at strong coupling as

x1/4. In particular all multiplets containing spin greater than two and many other

including the Konishi multiplet should have infinite dimension. We thus have a very

large separation between a set of operators with maximum spin two and all the other

operators in the theory. This separation, as discussed in section 2.6, is necessary

for every CFT with a weakly coupled dual. All quantum field theory indications are

consistent with the fact that this separation actually occurs for N = 4 SYM at strong

coupling.

Let us finish with some important comments.

• Some of the KK modes have negative mass. The corresponding mode is stable

if m2R2 ≥ −4 (Breitenloner-Freedman bound). In N=4, all operators have

∆ ≥ 2 and therefore m2 ≥ −4. Stability is a consequence of supersymmetry.

Non-supersymmetric solutions might be unstable and the corresponding CFT

non-unitary.

• The separation of scales is a property of strong coupling. InN = 4 SYM at weak

coupling all operators, including the non protected ones, have small dimensions,

computable in power series of x = g2
YMN . The dual description of this weakly

coupled regime requires a stringy limit where the radius of AdS is small; in this

situation many stringy states have low masses and correctly reproduce the CFT

spectrum at weak coupling, including operators with arbitrary spin.

• The exact correspondence between KK modes and protected operators is a

peculiarity of N = 4 SYM and it does not extend to theories with less super-

symmetry. The reason why the KK spectrum of N = 4 SYM contains only

chiral multiplets of the form discussed is that all other short, semishort and

long multiplets of the N = 4 superconformal algebra contain fields with spin

greater than two which cannot appear in supergravity. The N = 1 superalgebra
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has even long multiplets with maximum spin two. And in fact, in examples of

N = 1 dual pairs there are KK modes corresponding to non-protected operators

with finite dimension.

• We discussed only single trace operators. Multi-trace operators correspond in

the AdS/CFT correspondence to multi-particles states in the bulk.

There is a final important remark. It is believed that the correspondence applies

to an N = 4 SYM theory with SU(N) gauge group. The extra U(1) factor leaving

on the D3 branes is IR free and its dynamics is not captured by the duality. A first

indication that the gauge group is SU(N) comes from the KK spectrum. In a U(N)

theory Trφi is a gauge invariant operator with protected dimension. However, the

corresponding KK mode can be gauged away and it is not a physical state [30]. The

full A′1 multiplet is absent from the KK spectrum. Further strong indications that the

correspondence describes SU(N) gauge theories come from dual pairs with N = 1

supersymmetry where one can identify states dual to baryonic operators, which would

be not gauged invariant in a U(N) theory.

3.3.4 Correlation functions, Wilson loops and all that.

The methods developed in section 2 can be applied to N = 4 SYM.

• Green function for operators in Ak can be computed at strong coupling using

supergravity as explained in section 2. As a curious result, 3-point functions

for the lowest component of Ak, which in principle depends multiplicatively by

an arbitrary function of the t’Hooft coupling x, agree with the free-field theory

result [32]. This is a hint for some non-renormalization theorem.

• In N = 4 SYM the computation of Wilson loops can be seen in a better light:

external sources can be naturally obtained by separating one brane from the

other and breaking the group U(N)→ U(N−1)×U(1) as in Figure 19. At large

N , U(N − 1) ∼ U(N). Since the near-horizon focuses on the stack of branes,

moving away one the them corresponds to pull it to the boundary. The W±

bosons then play the role of external sources: they are described by long and

very massive strings connecting the boundary with the bulk and they transform

in the fundamental representation of the unbroken U(N − 1) ∼ U(N) group.

This interpretation makes clear why, in the prescription described in section

2.4, we renormalize the Wilson loop by subtracting the mass of two very long
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U(N) U(N-1)  U(1)

(external sources in the fundamental representation)L

T

qq

W
+-

W bosons become massive quarks

Figure 19: In a systems of branes, external sources in the fundamental representation

of the gauge group can be obtained by moving one brane far away from the others

strings: this is the mass of the external quarks. In section 2.4 we obtained the

result E ∼ R2

L
∼
√
g2
YMN

L
. The coefficient in this formula is a genuine strong

coupling result, as the presence of a square root indicates. At weak coupling we

would find E =
g2
YMN

L
. There is no non-renormalization theorem for the basic

Wilson loop.

• SU(4) anomaly: in N = 4 SYM the global SU(4)R symmetry is anomalous,

since there four Weyl fermions ψa transforming in the 4 of SU(4), a chiral

representation. Interestingly we can see the anomaly in the dual supergravity.

It is enough to consider the five-dimensional effective action for the massless

multiplet on AdS5 which is N = 8 gauged supergravity. It contains a Chern-

Simon coupling for the SU(4) gauge fields LCS =
∫
A∧dA∧dA. Under a gauge

transformation A→ A+ dΛ, this gives a boundary term:

LCS →
∫
AdS

d(ΛF ∧ F̃ ) =

∫
∂AdS

ΛF ∧ F̃ (3.42)

The field theory functional W (A), obtained by evaluating the on-shell five-

dimensional action, is not invariant under gauge transformations, but exhibits

the standard non-abelian anomaly.

3.4 Other N = 1 CFTs from D-branes

In this section we present a brief detour on the other N = 1 CFTs that admit an AdS

dual. The content requires some more advanced knowledge of N = 1 supersymmetry.

The results of this section will not be used in the following.
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3.4.1 Deformation of N = 4

We can obtain other CFT by deforming N = 4 SYM. In field theory, it is difficult

to say when a deformed Lagrangian is conformal or, more generally, flow to a confor-

mal theory in the IR. However we have some tools for dealing with supersymmetric

theories.

• The Leigh and Strassler argument (LS) [33]: the understanding of this argu-

ment requires some advance knowledge of supersymmetry but the result is very

easy to manage. Consider a N = 1 gauge theory with chiral matter fields trans-

forming in some representations Ra and a superpotential W . Anomalies and

supersymmetry relate the N=1 gauge beta function to the dimension of matter

fields via,

β(g) ∼ 3
[
T (adj)−

∑
T (Ra)(3− 2∆a)

]
(3.43)

where a runs over chiral matter fields and T denotes the second Casimir. The

requirements for conformal invariance are exhausted by the vanishing of the

previous expression combined with the fact that the sum of dimensions of the

fields appearing in each term of the superpotential is three.

We can also obtain information from the dual supergravity side, when the operator

used for deforming the Lagrangian is dual to a KK mode. In this case we can use the

results of section 2.7.2. In particular we can study the deformations of N = 4 SYM

by all the modes contained in Table 2 using supergravity.

Let us discuss first the marginal case. We see from Table 2 that we have marginal

modes transforming in the 1, 45 and 105. When added to the original Lagrangian as

deformation, these operators preserve conformal invariance at first order in hi. We are

interested in exactly marginal operators. that preserve conformal invariance for all

values of the parameters. They provide lines of fixed points continuously connected

to the original CFT. It is impossible to study this problem in full generality, however:

• The scalar 1c is an example of exactly marginal deformation: it preserves N=4

supersymmetry and the corresponding perturbation of the N=4 theory is simply

a change in the complexified coupling constant. This corresponds to an exactly

marginal deformation, because the N=4 Yang-Mills theory is conformal for each

value of the coupling. Its supergravity description is extremely simple and it

corresponds to vary the constant value of the dilaton and axion C0.
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• There is an exactly marginal deformation of N = 4 SYM preserving N = 1

supersymmetry given by the superpotential

W = hεijkTrΦiΦjΦk + YijkTrΦiΦjΦk, (3.44)

In this equation, Φi are the three adjoint chiral fields of N = 4 SYM in N = 1

notations and Yijk is a generic symmetric tensor transforming in the 10 of SU(3).

By expanding in components we see that the deformations in the Lagrangian

are cubic and quartic terms contained in the 45 and 105. The N=4 theory

is recovered for Yijk = 0 and h = gYM . The 11 complex parameters in the

superpotential can be reduced to 4 independent ones by using the (complexified)

SU(3) global symmetry. A convenient parametrization of the superpotential is

hTr(eiπβΦ1Φ2Φ3 − e−iπβΦ1Φ3Φ2) + h′Tr(Φ3
1 + Φ3

2 + Φ3
3) (3.45)

There is a particular relation between the four complex parameters gYM , h, h
′, β

for which the theory is superconformal. In the specific case, the gauge beta

function vanishes if

∆Φ1 + ∆Φ1 + ∆Φ1 = 3 (3.46)

On the other hand, the requirement that the superpotential terms have formal

dimension three, gives the condition ∆Φi = 1 for all i = 1, 2, 3. Complessively,

the equations for the vanishing of all beta functions are satisfied if

∆Φi(gYM , h, h
′, β) = 1 (3.47)

Using the obvious permutation symmetry among the Φi we conclude that we

have a single equation for four unknown.This yields a three-dimensional complex

manifold of fixed points. Although will be never able to solve equation (3.47)

but in perturbation theory, the LS argument is strong enough to conclude the

existence of the manifold of fixed points. The supergravity dual of this man-

ifold is obtained by deforming AdS5 × S5 with the corresponding KK modes.

From Table 2 and figure 18 we see that we need a deformation of the metric

but also the inclusion of a non-zero background for the antisymmetric complex

two-form of type IIB. A perturbative analysis of the supergravity equations of

motion, performed up to second order, reveal that it is possible to find an AdS5

solution with these new modes turned on, in agreement with the fact that the

corresponding deformations are exactly marginal. The solution with arbitrary

parameters is only known at few orders in perturbation theory [21,34]. For the

case h′ = 0, called the β deformation of N = 4 SYM however a full supergravity

description exists [35].
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Now we turn to the relevant deformations of N = 4 SYM. We see from Table

2 that we have relevant modes in the 20, 50 and 20c. In particular, we can describe

almost all massive deformations of N = 4. The only exception corresponds to the

mass term
∑
φiφi which is dual to a string mode. We can use supergravity to study

the existence of possible IR fixed points. They should correspond, as discussed in

section 2.7.2, to kink solutions of type IIB supergravity that connect two different

AdS5 vacua. The existence of these kink solutions is better investigated in the contest

of a five-dimensional reduction of the theory. We do not have a full consistent 5d

Lagrangian containing all relevant states in Table 2. However we do have a consistent

Lagrangian for the massless multiplet A′2, N = 8 gauged supergravity. The scalar

sector of the gauged supergravity contains the complexified dilaton 1c, the 20 and 10c,

for a total of 42 scalars. In particular it describes all KK modes dual to mass terms.

As discussed in section 2.7.2, IR fixed points correspond to the critical points of the

gauged supergravity potential. The full potential is too hard to study, however:

• All critical points with at least SU(2) symmetry have been classified [36]. A

central critical point, with SO(6) symmetry and with all the scalars λa vanish-

ing, corresponds to the unperturbed N = 4 YM theory. There are three N=0

theories with residual symmetry SU(3)×U(1), SO(5) and SU(2)×U(1)2. They

correspond to non-zero VEV for some of the scalars in the 10, 20, and 10 + 20,

respectively. Then there is an N = 2 point (this corresponds to a N = 1 field

theory) with symmetry SU(2) × U(1), obtained giving VEV to scalars in the

10 + 20. The three N=0 theories are unstable and correspond to non-unitary

CFTs. The N = 2 theory is stable by supersymmetry. The central charges of

these theories can be computed from the value of the cosmological constant at

the critical points.

• The supersymmetric IR point can be explicitly identified in field theory [22,37].

It is obtained by adding a mass term for one of the chiral fields of N = 4 when

written in N = 1 notations,

hTrΦ3[Φ1,Φ2] +m2Φ2
3 (3.48)

Integrating out the massive field Φ3, we obtain an SU(N) theory with two

adjoint fields Φi, i = 1, 2 and a superpotential

λTr[Φ1,Φ2]2, λ ∼ h2

m2
(3.49)

It is easy to show that the theory flows to an IR fixed points. The vanishing

of the gauge beta function and the requirement of scaling invariance of the
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superpotential give the same constraint

2(∆Φ1 + ∆Φ2) = 3 (3.50)

Since the theory has an SU(2) symmetry rotating Φ1 and Φ2, the fields Φi have

the same dimensions and the previous equation reduces to a single constraint

∆Φ(gYM , h) = 3/4 (3.51)

With two couplings, gYM and λ, we have a line of fixed points. Using some

more sophisticated methods, one can even compute the central charge of of the

IR fixed point: aIR
aN=4

= 27
32

[22]. It is probably superfluous to say that it corre-

sponds exactly with the supergravity prediction based on gauged supergravity:(
ΛUV
ΛIR

)3/2

= 27
32

. The supergravity dual of the Renormalization Group flow from

N = 4 to the IR fixed point was found in [22] using five dimensional gauged

supergravity and succesively uplifted to ten dimensions [38]; as expected from

Table 2 and Figure 1, the solution is a warped AdS5 compactification on a

squashed sphere with non zero B field.

3.4.2 Other N = 1 theories.

We can obtain an infinite class of N = 1 theories by taking a near horizon limit

of systems of D3-branes in curved geometries. Since the AdS/CFT correspondence

focuses on the near brane region and every smooth manifold is locally flat, we will

find new models only when the branes are placed at a singular point of the transverse

space [39–41]. An interesting class of theories makes use of conifold singularities. We

place branes at the singularity of Ricci-flat manifolds C6 whose metric has the conical

form

ds2
C6

= dr2 + r2ds2
M5
. (3.52)

One can prove that C6 is Ricci-Flat iff M5 is a five-dimensional Einstein manifold [40,

42]. The AdS/CFT correspondence is then formulated with the background AdS5 ×
M5, which is the near horizon geometry of the previous metric. The gauge theory is

maximally supersymmetric N = 4 SYM with gauge group U(N) in the case M5 = S5

and a less supersymmetric gauge theory depending on M5 otherwise.

• Famous examples of this construction are orbifolds on N = 4 SYM or the

Klebanov-Witten theory, pictured in Figure 20. They give examples of the so-

called quiver gauge theories, with product of U(N) gauge groups (where N is

the number of branes) and bi-fundamental or adjoint matter fields.

77



>>
>

2

<<<

<<
<

3

1

A

1 2

B

Figure 20: The quiver corresponding to M5 = S5/Z3 (the orbifold C6 = C3/Z3) and

M5 = T 1,1 (the conifold C6 : xy = zw in C4).

• The correspondence between M5 and CFTs can be worked out explicitly when

the cone C6 = C(M5) is a toric manifold using Tiling techniques [43,44] 17.

• The five-manifold M5 has typically non trivial topology, with two and three

cycles. Three cycles lead to the existence of baryons in these theories [48] and

indicate that the gauge group is SU(N). Their existence is also the base for

the most succesful attempts to describe confining theories using the AdS/CFT

correspondence [24].

We shall not discuss further this general class of theories since they have a very rich

structure that will take us too far.

Other examples of N = 1 CFTs can be obtained by considering flux compacti-

fications of type IIB. Much less is known about this class of backgrounds, in principle

very large; the typical example in this class is the warped compactification correspond-

ing to the IR point of the N = 1 adjoint deformation of N = 4 SYM [38]. Other

classes of (quite exotic) N = 2 CFTs are obtained from M theory compactifications

on Riemann surfaces [49].

4 Explicit examples: the non-conformal case

One aim of the correspondence is the description of non-conformal theories that reduce

at low energy to pure YM theories. We will now describe as a simple toy model for

17Toric roughly means that there are three U(1) isometries. The corresponding quivers can be
drawn as a tiling of a two-dimensional torus. One can show that the these quivers are conformal
(using a LS argument), that the field theory mesonic moduli space is (SymC6)N [45] and that the
spectrum computed via a-maximization [46] coincide with the prediction of supergravity [47].
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Figure 21: Scalars get mass through Yukawa couplings.

confining theories based on a regular background obtained using D-branes at finite

temperature [2]. We shall explicitly confirm the picture of confinement discussed in

section 2.7.1.

4.1 The back three-brane

We shall study euclidean N = 4 SYM with gauge group SU(N) at finite temperature

T . This can be obtained by compactifying the euclidean time on a circle of radius

R0 ∼ 1/T . In theories at finite temperature, the fermions have antiperiodic boundary

conditions along S1

ψ(y) = −ψ(y + 2πR0) → ψ =
∑

Z+1/2

ψke
iky/R

m2
ψk

=
k2

R2
0

> 0 (|k| > 0) . (4.1)

Conformal invariance is broken by the compactification and supersymmetry by the

boundary conditions. The fermions get masses through these boundary conditions

and the scalars get masses through loops of fermions. For R0 → 0 all fermions and

scalars decouple and we are left with pure YM in three-dimensions. From∫
d4x

1

g2
4

F 2
µν =

∫
d3x

2πR0

g2
4

F 2
µν (4.2)

we see that the three-dimensional coupling is given by 1
g2
3

= 2πR0

g2
4

. In order to keep the

three-dimensional coupling finite in the decoupling limit, we need to send R0 → 0,

and g4 → 0 with g3 fixed. In this limit, one obtains a non-supersymmetric and non-

conformal YM theory in three-dimensions. Such a theory confines, has a mass gap

and a discrete spectrum of massive glueballs.

This model can be studied using a weakly coupled supergravity dual. We con-

sider a set of N D3-branes defined on a space-time with topology R3 × S1. The
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Figure 22: The black brane describing N = 4 SYM at finite temperature.

solution for an Euclidean black three-brane with this boundary topology is known

and its near horizon geometry is given by:

ds2 = R2

[(
u2

3∑
i=1

dx2
i + u2

(
1− u4

0

u4

)
dτ 2

)
+

du2

u2(1− u4
0

u4 )
+ dΩ5

]
(4.3)

where, as usual, R =
√

4πgsNα′. The geometry has an horizon at u = u0. If we

expand the metric around u ∼ u0, we obtain

ds2 ∼ R2

(
4u0(u− u0)dτ 2 +

d(u− u0)2

4u0(u− u0)
+ ...

)
= R2(4u2

0ρ
2dτ 2 + dρ2 + ....) (4.4)

with ρ =
√

(u− u0)/u0. This becomes the two-dimensional flat metric in polar

coordinates only if τ is an angular variable with radius R0 = 1
2u0

. For all other choices

of periodicity, the metric would have a conical singularity at u = u0. Moreover the

metric admits only one spin structure where fermions change sign along S1. One

way of see it is to consider that τ is not a good coordinate everywhere; near u0 it

corresponds to the polar angle in the plane (u−u0, τ) whose value is not defined at the

origin. In local cartesian coordinates, the wave functions for a fermion is single valued;

however, it is easy to see that if we coordinate transform it to polar coordinates the

same wave-function will change sign in a loop around the origin. For all these reasons,

the black three-brane solution is the natural candidate for the gravitational dual of

N = 4 SYM with gauge group SU(N) on R3 × S1.

There is a refined and more complicated version of this construction that gives

pure YM in four-dimensions [2].

• Confinement: As discussed in section 2.7.1 , the criterion for confinement is

the following: the warp factor e2A multiplying the space-time part of the metric

must be bounded above zero. In the black brane example, the warp factor

reaches its minimum e2A0 =
√

4πgsNu
2
0 at the horizon u0. The theory has then
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stable strings with finite tension; they live in the region of the solution where

the warp factor has its minimum value e2A0 and their tension will be given by
e2A0

2πα′
.

• Glueball Spectrum: The masses of bound states can be extracted from

correlation functions of gauge invariant operators evaluated at large distance,

〈O(x)O(y)〉 ∼
∑

aie
−Mi|x−y|, |x− y| � 1 (4.5)

More efficiently, as discussed in section 2.7.1, we can extract Mi from the nor-

malizable solutions of the equations of motion. We expand a massive field in

Fouries modes both on S1 and on the three-dimensional space-time

φ(x, τ, u) = φ(u)einτeikx (4.6)

For simplicity, we consider the lowest states and we keep only the zero-mode on

S1 (n=0). The action in the black three-brane background is

S =

∫ ∞
u0

du u3

{
u2

(
1− u4

0

u4

)(
∂φ

∂u

)2

+m2φ2 +
k2

u2
φ2

}

The glueball spectrum is obtained by finding the normalizable solutions of this

equation which are regular in the IR. The corresponding values M2 = −k2 give

the masses of the bound states. As discussed in section 2.7.1, with a redefinition

of fields and coordinates (u→ z, φ→ ψ), we can always reduce the problem to

a Schroedinger equation

−ψ′′ + V (z)ψ = −k2ψ, E = −k2 = M2 (4.7)

The potential V (z) behaves as 1/z2 near the boundary and goes at a finite value

at z0 = z(u0). Regularity and normalizability of the solution requires vanishing

conditions at the two boundaries. We then face a standard Schoedinger problem

for a well with impenetrable bareers. We find a discrete spectrum Ei = −K2
i =

M2
i of glueball bounded from below.

Exercise: Show that the right change of coordinates is z =
∫∞
u

du√
u4−u4

0

and

study the resulting potential V (z). Examine closely the boundary conditions.

Recall that u is a polar coordinate: a zero mode, independent of the angle τ , is

a smooth function in the origin only if expands in even powers of u. Check that

all normalizable solutions corresponds to negative k2 and thus positive masses.
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• Decoupling YM3: The theory on the black three-brane is N = 4 SYM in the

UV and flows to pure YM in three dimensions in the IR. We would like to take

a limit where the low energy YM theory decouples from the CFT . Since the

YM coupling constant

1

g2
3N

=
2πR0

g2
4N

. (4.8)

should remain finite in the decoupling limit, we need to take R0 → 0 with

x = Ng2
4 → 0. Unfortunately, this is a limit where we can not trust supergravity.

In fact, we have a weakly coupled gravitational background only when x =

Ng2
4 � 1 (recall that the coupling constant on a D3 brane is related to the

string coupling by g2
4 = 4πgs). In order to describe the pure YM theory in

three-dimensions we need to use a strongly coupled string background. The

supergravity solution describes a theory that reduces in the IR to pure three

dimensional YM theory but has an UV completion which is a strongly coupled

four-dimensional conformal gauge theory.

We might consider the supergravity solution as a description of pure YM with a

finite cut-off Λ ∼M . The situation is similar, in spirit, to a lattice computation

at strong coupling. To remove the cut-off, it would be sufficient to re-sum all

world-sheet α′ corrections in the string background. World-sheet corrections are,

in principle, more tractable than loop corrections. In flat space, for example, all

the α′ corrections are computable. In the AdS case, the analogous computation

is made difficult by the presence of RR-fields and at the moment it is outside

our technical abilities.

Quite surprisingly, although the theory is not really pure YM, a numerical

evaluation of the ratio of glueball masses for the black D3 brane give results in

good quantitative agreement with the lattice results for the three dimensional

YM theory [50].

4.2 Examples of non conformal theories with gravitational

dual

Various methods have been used in order to construct string duals of non-conformal

gauge theories. Here we list the main ones and we refer to the reviews [11, 13] and

references therein for a detailed discussion. There are very few solutions dual to non

conformal theories which are completely regular.
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• Finite temperature: Historically this was the first example of non-conformal

gauge/gravity duals. We already briefly discussed the case of N = 4 SYM at

finite temperature. This method necessarily implies a dimensional reduction

from an higher dimensional theory and the resulting theory is typically not

supersymmetric.

• Deformations: we can break conformal invariance by deforming the AdS back-

ground. The gauge theory becomes conformal in the UV and the gravity back-

ground will asymptote to AdS5×H. Most of the massive deformations of N = 4

SYM can be studied in this way. One notable example is the N = 1 massive

deformation of N = 4 SYM, which is called the N = 1∗ theory. We still do

not have a complete supergravity description of this theory. A solution can be

obtained as a RG flow in five-dimensional gauged supergravity [51] but it is

singular even when lifted to 10 dimensions [52]. A 10 dimensional approach has

been pursuit in [53]; only the UV and IR behaviours of the solution are known.

• Fractional and Wrapped Branes: this method applies to branes wrapping van-

ishing cycles in singular internal geometries (fractional branes) or non trivial

cycles in regular ones (wrapped branes). It has been the most successful way

of obtaining regular solutions dual to N = 1 confining YM theories. The

Klebanov-Strassler solution [24] uses fractional branes and it is based on a

SU(N + M) × SU(N) gauge theory with bi-fundamental fields in four dimen-

sions. It is asymptotic in the UV to a logarithmic deformations of AdS5. The

Maldacena-Nunez solution [25] uses wrapped branes and decompatifies to higher

dimensions in the UV. Both theories are believed to reduce to an SU(M) SYM

in the IR. The gravity description is based in both cases on a background with

bounded warp factor which is geometrically R7×S3 in the IR. The spontaneous

breaking of chiral symmetry, the existence of domain walls and confining strings

can be explicitly verified in these backgrounds and are related to the behaviours

of various types of D-branes.

4.3 The decoupling problem

All the weakly coupled supergravity solutions considered so far describe YM theories

with many non decoupled massive modes.

• For example, the YM3 of the black-brane example becomes N = 4 SYM in the

UV. As already discussed, the supergravity limit is valid only when the N = 4
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SYM is strongly coupled; in the same regime we cannot decouple the UV and

IR regimes.

• Analogously pure N = 1 SYM can be embedded in a massive deformation

of N = 4 (the N = 1∗ theory) and have a supergravity description. Even

in this case we cannot decouple the massive modes without leaving the su-

pergravity regime. A mass deformation m indeed induces a dimensional scale

Λ ∼ me−1/Ng2
YM . Once again the decoupling limit is m →∞, x = Ng2

YM → 0,

with Λ fixed, and this is the opposite of the supergravity limit.

• A similar argument, although more complicated, applies to the Klebanov-Strassler

solution, where one can decouple the pure YM theory in the IR from its com-

plicated UV completion only at the price of leaving the supergravity regime.

The general lesson is that supergravity describes gauge theories which are strongly

coupled at all scales. We learned indeed that the curvature of the background is in-

versely proportional to the strength of the coupling constant. When the curvature

is small the coupling constant should be large. Within this general picture, QCD at

large N , which is asymptotically free and becomes weakly coupled in the UV, cannot

have a supergravity description; the QCD dual is a string theory on a strongly curved

background. This expectation is also strengthened by simple considerations about

the spectrum of bound states. In QCD we expect Regge trajectories of bound states

with masses linearly increasing with the spin. On the other hand, in any effective

supergravity limit of string theory we only have states with maximum spin two; all

the other stringy states are separated by a very large energy gap. This clearly does

not fit QCD expectations. The path to the real large N QCD involves quantizing

tree level string theory on a strongly coupled background. As we already mention, we

are not yet able to solve string theory on curved backgrounds, but this is a technical

problem that we might hope to overcome in the future.

However, by engeneering gauge theories on D-branes, we can construct many

stringy-inspired modifications of pure gauge theories and we have a large moduli space

of QCD-like theories. Some of these theories correspond to gauge theories with weakly

coupled dual backgrounds. These theories have field content different from QCD or

modified couplings and Lagrangian. In particular, they substantially differ from QCD

in the UV where they are strongly coupled. Typically new massive fields are added

in such a way that the UV completion has a weakly coupled holographic dual. The

theory may become conformal or decompactify in the UV. The IR behavior instead

can be very similar to that of QCD. We can use these exactly solvable theories as
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extremely efficient toy models for studying the strong dynamics of non abelian gauge

theories, from confinement to chiral symmetry breaking.
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A Appendix: The superconformal group

In this Appendix we include few information about representations of the (super)

conformal group in four dimensions. For more information the reader is referred

to [54–56] and references therein.

The CFT fields and operators are usually classified by quantum numbers under

the non-compact sub-group SO(1, 2) × S(1, 3) ⊂ SO(2, 4) ∼ SU(2, 2). As one can

see from the algebra, Pµ and Kµ act as raising and lowering operators for D. The

lowest state of a representation will be annihilated by K. Every irreducible (infinite

dimensional) representation is then specified by an irreducible representation of the

Lorentz group with definite conformal dimension and annihilated by Kµ. In terms of

the operator in x = 0, stabilized by the subalgebra Kµ, D,Mµν , we define a primary

conformal field, in the (jL, jR) representation of the Lorentz group, by

[D,O(jL,jR)(0)] = i∆O(jL,jR)(0)[
Kµ, O(jL,jR)(0)

]
= 0. (A.1)

The descendents ∂....∂O(jL,jR)(0) reconstruct the operator by Taylor expansion and

fill an infinite dimensional representation specified by three numbers (∆, jL, jR), cor-

responding to the conformal dimension and the Lorentz quantum numbers of the

primary operator.

Since the operators O(jL,jR)(0) lead to non normalizable states when applied

to the vacuum 18, it is useful to consider the maximal compact subgroup SO(2) ×
18This is necessary, since otherwise these states would realize a finite dimensional unitary represen-

tation of the non compact group corresponding to the stability algebra at x = 0 which is forbidden
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SO(4) ⊂ SO(2, 4). Using this compact subgroup, we can study and classify unitary

representations of the conformal group using states with finite norm. The choice

of this subgroup is also natural in AdS5. In this picture, we classify states though

the eigenvalues of H = (P0 + K0)/2 and SO(4) = SU(2) × SU(2), identified with

(∆, jL, jR) respectively. This choice of quantum numbers is also useful when, upon

Euclidean continuation, we radially quantize the theory on S3 × R.

The superconformal group SU(2, 2|N) corresponding to a theory with N super-

symmetries is obtained by adding N supercharges Qa
α, N superconformal charges Sαa

and the generators of a U(N ) global symmetry Ra
b . Some of the relevant commutation

relations are

[D,Qa
α] =

i

2
Qa
α

[D,Sαa ] = − i
2
Sαa

[Kµ, Q
a
α] = −(σµ)αα̇S̄

α̇
a

[Pµ, S
α
a ] = (σ̄µ)α̇αQ̄α̇ a[

Qa
α, Q̄α̇ b

]
= 2δab (σ

µ)αα̇Pµ[
S̄α̇ a, Sαb

]
= 2δab (σ̄

µ)α̇αKµ{
Qa
α, S

β
b

}
= −iδab (σµσ̄ν)βαJµν − 2iδab δ

β
αD − 4δβαR

a
b (A.2)

where (Qa
α)† = Q̄a α̇ , (Sαa )† = S̄aα̇. The first two lines specify the dimension of the

charges; notice that Q is a raising operator while S is a lowering operators for D.

The next two lines clarify why we need to introduce S to close the algebra. Next we

have the standard commutation relation defining supersymmetry and after that its

conformal partner. There are other equations that specify the R-symmetry quantum

numbers of the various quantities,

[Ra
b , Q

c
α] = δcbQ

a
α −

1

4
δabQ

c
α [Ra

b , S
α
c ] = −δacSαb +

1

4
δabS

α
c (A.3)

The Ra
b are generators of U(N ) and close the corresponding algebra. For N =

4, the trace Ra
a decouples from the algebra and become an outer automorphism.

Correspondingly the R-symmetry is SU(4).

Superconformal representation have a lowest state which is annihilated by both

the lowering operators K and S; it is identified by the quantum numbers ∆, jL, jR

by group theory; this is also the reason why the necessary i in the D commutator in A.1 does not
contradict the hermicity of D.
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under the conformal group and R, a1, · · · aN−1 under the R-symmetry U(1)×SU(N).

The infinite dimensional representation is obtained by acting on the lowest state with

an infinite numbers of P and Qs. Since the Q are fermionic charges, only a finite

numbers of applications of Qs give a non-vanishing result. We can keep track of the

action of the supercharges by introducing superfields Φ(jl,jR,R,a)(x, θ
a
α, θ̄

a
α) where the θa

are superspace coordinates in theN of SU(N ); the expansion in θ has generically 24Nr

components, where r is the dimension of the Lorentz and R-symmetry representation,

with a generic spin range of ∆jL = ∆jR = N/2.

Unitarity imposes bounds on the representations. These are obtained by impos-

ing that all the states in a representation have positive norm. The saturation of the

bounds corresponds to representations with null states which can be removed leaving

a shorter representation. The vanishing of a particular state implies some differential

constraints on the primary field (it is annihilated by some polynomial in P and Q)

which indeed make the representation shorter.

For the conformal group non trivial operators must satisfy,

∆ ≥ 1 + jR jL = 0 , or (jR → jL)

∆ ≥ 2 + jL + jR (jLjR 6= 0) (A.4)

The two unitarity thresholds are satisfied by free massless fields and conserved tensors

field, respectively. The saturation of the bounds corresponds in fact to

∂2Φ(0,jR) = 0

∂α1α̇1Oα1..α2jL
,α̇1..α̇2jR

= 0 (A.5)

The first bound for jR = 0 say that the dimension of a scalar primary operator is

greater than one and it can be one if and only if the field is free. The second bound

for jL = jR = 1/2 says that a spin one operator Jµ has dimension greater than 3 and

equal to 3 if and only if it is a conserved current, ∂µJµ = 0. Analogously, a spin two

operator Tµν (jL = jR = 1) has dimension greater than 4 and equal to 4 if and only

if it is conserved.

The superconformal representations are richer but similar in spirit. Shortening

now may correspond to annihilation of the primary operator by some supersymmetry

charge or some combinations of charges. An example that can be familiar to the

reader is that of a chiral superfields in N = 1 supersymmetry D̄αΦ = 0. Chiral

superfields are annihilated by half of the supersymmetries and the corresponding

multiplet are short, depending only by θ and not by θ̄ (modulo subtelties). This
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shortening corresponds to a saturation bound fixing the dimension of the operator in

terms of its R-charge

∆ =
3

2
R (A.6)

where, as customary, we normalized the R charge of Q to one. While the generic

scalar superfield has a spin range of 1, a chiral superfields has spin range 1/2.

Just for curiosity,we can report the full unitarity bounds for non -trivial SU(2, 2|1)

representations,

a) ∆ ≥ 2 + 2jR +
3

2
R ≥ 2 + 2jL − 3

2
R (or jL → jR, R→ −R)

b) ∆ =
3

2
R ≥ 2 + 2jL − 3

2
R , jR = 0 (or jL = 0, jR = j, R→ −R) .

where R is the U(1) R-charge. We will not discuss in detail all the varieties of short-

ening. The chiral superfield is contained in case b) as well as some generalizations.

Case a) contains conserved supercurrents

Dα1Lα1···α2jL
α̇1···α̇2jR

= D̄α1Lα1···α2jL
α̇1···α̇2jR

= 0 (A.7)

with ∆ = 2+jL+jR and various other shortenings (for example semiconserved super-

fields (D̄α1Lα1···α2jL
α̇1···α̇2jR

= 0)). All these short as well as some long representation

appear in the KK spectrum in generic N = 1 AdS5 background.

The N = 4 superalgebra SU(2, 2|4) has analogously a variety of representations

with different unitary bounds. The lowest state is characterized by (∆, jL, jR, p, k, q),

where p, k, q are the Dynkin labels of an SU(4) representation. They correspond to

SU(4) Young tableaux with rows of length p, p+k, p+k+q starting from the bottom.

With this notation, the fundamental 4 is [1, 0, 0], the anti-fundamental 4̄ is [0, 0, 1]

and the 6 (antisymmetric of SU(4)R and vectorial for SO(6)) is [0, 1, 0]. A generic

long representation has now spin range 4. Short multiplets of N = 4 have

∆ = 2p+ k , p = q , jL = jR = 0 (A.8)

Consider first the case p = 0. These are the so-called chiral primary operators and

generalize the chiral operators of the N = 1 case. They are 1
2

BPS representations,

with maximum spin two and range of dimensions ∆max−∆min = 4. The case k = 1 has

a further shortnening and has maximum spin 1; it is called a singleton representation.

It can be described by a superfield W[AB](x, θ, θ̄), A = 1, .., 4 which satisfies

W[AB] = 1
2
εABCDW̄[CD]

DαAW[BC] = Dα[AWBC] . (A.9)
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In a suitable harmonic superspace it becomes a twisted chiral superfield. W contains,

as first component, a set of six scalars φ[AB] in the 6 of SU(4), which will be denoted

also φl, l = 1, .., 6. The superfield itself will be also denoted Wl. The full multiplet

contains six scalars, four Weyl fermions and a gauge vector; this is the field content

of the elementary fields in N = 4 SYM. All other representations with k ≥ 2 have

maximum spin 2 and can be constructed by tensor products of singletons as W k =

W{l1 ...Wlk}−traces. One can show that these multiplets are short. Their dimension is

then ∆ = k. In the main text, we called them Ak. The special case k = 2 has a further

shortening with respect to k > 2 since it contains conserved currents. The series of

multiplets Ak with k ≥ 2 is in one-to-one correspondence with the KK spectrum on

S5. k = 1 does not appear indicating that the theory is SU(N) instead of U(N). We

could have predicted from the very beginning that all the KK modes correspond to

short multiplets because their maximal spin range is 2. Representations with p 6= 0

are 1
4

BPS with ∆max −∆min = 6 and appear when multi-trace operators in CFT (or

multi-particle states in the bulk) are considered.

There are also more complicated semishort multiplets of the N = 4 supercon-

formal algebra, which play a role in the operator product expansion of chiral primary

operators.
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